COSYMPLECTIC HYPERSURFACES IN KAEHLERIAN MANIFOLD
OF CONSTANT HOLOMORPHIC SECTIONAL CURVATURE

By Masarumi OKUMURA

Introduction.

An odd dimensional differentiable manifold M?! is said to have an almost
cosymplectic structure or called an almost cosymplectic manifold if there exist in
M*-1 a 1-form w and a 2-form = such that

0.1) O AT13:0,

at each point of M?»-! and the pair (w, =) is called an almost cosymplectic structure
of M*-1, If, in an almost cosymplectic manifold, the 1-form » and the 2-form =
are both closed, that is, they satisfy the conditions

. 2) dw=0, dr=0,

the manifold is called a cosymplectic manifold [2].> The study of such manifolds
has been developed by Libermann [2, 3], Reeb [6] and Takizawa [10].

On the other hand, using a differential geometric method found by Sasaki [7]
recently, Kurita [1], Tashiro [8], Tashiro and Tachibana [9] and the present author
[4, 5] studied hypersurfaces of an almost complex manifold.

In the previous papers [4, 5], the author discussed normal almost contact hyper-
surface of a Kaehlerian manifold of constant holomorphic sectional curvature. In
this paper, the author discuss cosymplectic hypersurfaces of Kaehlerian manifold of
constant holomorphic sectional curvature.

In §1, we give first of all some preliminaries of an almost Hermitian manifold
and of its hypersurface.

In §2, we define the induced almost cosymplectic structure of the hypersurface
and show a certain condition for the structure to be cosymplectic.

In §3, we study non-existence of the cosymplectic hypersurface under certain
conditions for the scaler curvature of a Kaehlerian manifold of constant holomorphic
sectional curvature.

We devote §4 to the study of the principal curvatures of the hypersurface and,
as an application, we prove that the scalar curvature of a cosymplectic hypersurface
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of a Kaehlerian manifold of constant holomorphic sectional curvature is non-positive
constant.

In §5, we discuss the distribution spanned by the orthogonal vectors to %* and
the integrability of the distribution is proved. Moreover, in this section, we study
the integral submanifold of the distribution in detail.

1. Almost Hermitian manifold and its hypersurfaces.

On an 2z-dimensional real differentiable manifold A72* with local coordinate
systems {X*}, if there exist a tensor field F* satisfying

(1. 1) FZ‘F/;2=—5;:‘,

then the tensor field Fi* is called an almost complex structure and the manifold
M? with such a structure is called an almost complex manifold. It is well known
fact that an almost complex manifold /7% always admits a positive definite Rieman-
nian metric tensor G,. satisfying

(1. 2) G)r,Fvle‘=Gv,u7

which is called the Hermitian metric. The pair (%, Gi) with the above properties
is called an almost Hermitian structure and manifold M?* almost Hermitian mani-
fold. In an almost Hermitian manifold the covariant tensor field Fi given by
Fyu=G.Fi* is skew symmetric and so we can construct a 2-form

1.3) 0=Fy,dX* \NdX",

which is called the fundamental 2-form of the almost Hermitian manifold M2
We call an almost Kaehlerian manifold an almost Hermitian manifold with the
closed fundamental 2-form. The condition of closedness of the fundamental 2-form
is equivalent to the following tensor cquation:

(1' 4) 'VFFI:"‘VIFs/A"l"V:FM:Oy

where ¥ denotes the covariant differentiation with respect to the Christoffel symbol
formed from the Hermitian metric. In an almost Hermitian manifold, if the almost
complex structure Fi* satisfies

1.5) 7 ,Fr=0,

then the manifold is said to be Kaehlerian.

Let M?" be an almost Hermitian manifold with local coordinates {X*} and
(Fy*, Gi) be the almost Hermitian structure. A differentiable hypersurface M2»-!
of M® may be represented parametrically by the equation X*=X*(x?).

Assuming that the hypersurface AM*~* be orientable, we put B;*=0,X*, (3;=9
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/0x%). Then, 2n—1 vectors B;* span the tangent hyperplane of M?%~! at each point
of M?-1 and we denote by C* the unit normal vector to the hypersurface. The
2n vectors B, C* being linearly independent, we can construct the inverse of the
matrix (B#, C) which we denote by (B, C.). Then we have the following
identities.

(1. 6) Bith)=6ih, B52C1=0, B%C*=0, C1C1=1y
1.7 BB +-C*C;=0,".

From the Hermitian metric G;. of M?", we can induce a Riemannian metric
g;: of M?1 by

1.8) gji=G1;Bij7;‘.

We call this metric the induced Riemannian metic and, in the following, we always
use the induced metric. If we denote by p, the covariant differentiation along the
hypersurface M?*-1, the Gauss and Weingarten equations for the hypersurface are
respectively given by

(1.9) yiBi*=H;C*,
(1. 10) VjC;= _HjiBin

where H;; is the second fundamental tensor of the hypersurface.

Let R,. and Ryjin be the covariant components of the curvature tensors of
M and M2t respectively, then the following Gauss and Codazzi equations are
well known.

(1. 11) Rijin=B¢*Bi*Bi* Bu* Rypae+ Hji Hin— HiiHijn,
(1.12) VkHji—Viji=Bkaj#Bixcrﬁu‘uZn

2. Induced almost cosymplectic structure of a hypersurface of an almost
Hermitian manifold.

We put
2.1 9;=BFFC,,
2. 2) ¢jk=Bj1F“Bk‘.

Then ¢;; is a skew symmetric tensor defined on M?-! and by virtue of (1.6),
(1.7) and (1. 8) we get

2.3) b=0,
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2.4 GjiPr! =Gin—Ni0n, (P’ =0¢""Psr).
From these facts, the forms defined by
w=ndz", =g dx’ Ndz®

satisfy the condition (0.1). Thus we know that the pair of the forms (w, z) defines
an almost cosymplectic structure of the hypersurface M?*-1, If the almost cosym-
plectic structure is a cosymplectic one, we call the hypersurface a cosymplectic
hypersurface of M?".

From (2. 1) and (2. 2) we can easily see that

(2.5) pipr=1.

Using the local coordinates, we have the equivalent conditions of cosymplectic-
ness (0. 2) as

(2. 6) v imi—pn;i=0,
2.7 7 iintpidni+pnp;i=0,

in the hypersurface.
Differentiating (2. 1) and (2. 2) covariantly along the hypersurface, we have

Vﬁ?i:Bi#BJ‘v‘VuF#ZCI—‘Bi”szBrlffm
7 i$in=HyC*FerBri+Bi*By¥ ,F 1 Bi+ Bt F o HynC,

by virtue of skew-symmetric property of Fi. Substituting (2.1) and (2. 2) into
the above equations, we get

pini=Bi*BjV ,FuCi— ¢ H,),
P ibin=Bit BpV ,F By 7. Hin—ynHji.
If the almost Hermitian manifold M2 is Kaehlerian, the above equations reduce to
2.8 pini=—¢i Hyy,
2.9 Vigin=niTjn—nnHjs.

From (2. 8) and (2.9), we see that in any hypersurface of Kaehlerian manifold,
the condition (2. 7) is always satisfied and that p,s"=0. Thus we have the

THEOREM 2.1. In order that a hypersurface of a Kaehlervian wmanifold is
cosymplectic, it is necessary and sufficient that the vector n* is a harmonic vector.®

From this theorem, we have

2) As to harmonic vectors, we refer to Yano and Bochner [11].
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THEOREM 2. 2. A totally geodesic hypersurface of Kaehlerian wmanifold is a
cosymplectic hypersurface.

Now, in what follows, we always consider the cosymplectic hypersurface of
Kaehlerian manifold. Then we have from (2. 6) and (2. 8)

(2. 10) Hy $ir=Hyig;".
Transvecting this with 7?, we get
Hyipi =0,
from which
2.11) Hoyr=ay; (a=Hyamph).

This means that the scalar « is a characteristic root of the second fundamental
tensor Hj;* and that the vector »* is one of the corresponding characteristic vector

to the root a.
If we transvect (2. 10) with ¢, then it follows that

— Hjitanme=Hyris"$i's
and consequently
(2.12) Hyr=g¢iHj=a,
because of (2. 3), (2.4) and (2. 5).

3. Hypersurface of a Kaehlerian manifold of constant holomorphic sectional
curvature.

Let M?" be a Kaehlerian manifold and X+ be a vector in M??, then FyX* is
also a vector orthogonal to X*, and consequently the holomorphic sectional curvature
with respect to the vector X* is given by

R FeFr X XXX
(3- 1) K'_ - G;,‘.XZX‘MGKVX‘Xv

If the holomorphic sectional curvature is always constant with respect to any
vector at each point of the manifold, then we call the manifold that of constant
holomorphic sectional curvature. It has been proved that the Kaehlerian manifold
of constant holomorphic sectional curvature has the curvature tensor of the form:®

(3. 2) Euy}x:k(G.uxGu:_GviGps+Fp2Fu;—Fyl ,at_ZFv,th)’

3) Yano and Mogi [13].
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where k=K]/4 is constant.
Substituting (3. 2) into (1. 11) and (1. 12), we have

3.3) Rijin="FE(0 ji0un— Ix:9 in~+ Punp i — P inPrs — 2PriPin) + HinHjs — Hjn Hi,

and

G4 VeHji—p iHyi= k(b ji— 00— 20572,
because of (2.1), (2.2) and (1. 8). Consequently we have
(3.5) (PiHji—p Hii)n = — 2k,

The Ricci tensor of the hypersurface is given by
(3. 6) Rji=k[@Cn+1)g;:—3nm:]+alj— H 1.
Now we prove the

THEOREM 3. 1. There is no cosymplectic hypersurface in a Kaehlerian manifold
of positive constant holomorphic sectional curvature.

Proof. Applying the Ricci’s identity to ;, we obtain
Vil inn—pff ijn=—"1:Rjn",

from which
3.7 P rni=pr =" R,
because of (2.6). Substituting (3. 6) into (3. 7) and making use of (2. 11), we get
R 7yi=2(n—1ky;.

Transvecting (3. 8) with 77 and making use of (2. 5), we have at last
3.9 2n—Dk=—p"p’ ;.

The Riemannian metic being positive definite, we have, from (3.9), £=K/4=0.
This completes the proof.

If the Kaehlerian manifold is a locally Euclidean manifold, by virtue of (3. 9),
it follows that p;;:=0 and consequently ¢,*H,,=0. Hence we have

(3.10) Hij=oanm);.
Substituting (3. 10) into (1. 11), we get Rijin=0. Thus we have proved the

THEOREM 3. 2. Let E** be a locally Fuclidean manifold. Then, a cosymplectic
hypersurface of E* is locally isometric with a Euclidean space E?"-1,
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4. Principal curvatures and the scalar curvature of the hypersurface.

In this section, assuming that A/2"~! be a cosymplectic hypersurface of a non-
flat Kaehlerian manifold of constant holomorphic sectional curvature, we discuss
the scalar curvatures and the characteristic roots of the second fundamental tensor
Hj. Differentiating (2. 11) covariantly and making use of (2. 8), we have

vl —Hy ¢ H=pram;+apin;,
Vil — Hei Hyj=p joni-+op i,
from which, together with (2. 6), we get
“.n (Pellji—p iHi)y*— Hyt ¢i" HrH i Ly = pracy — 7 joops.
If we substitute (3. 5) into (4. 1), it follows that
“.2) —2kpri+2Hy Hoss* = ron;— 0z,
because of (2. 8) and (2. 6). Transvecting (4. 2) with »?, we have
via=pn;,  (B=7p),

and so, from (4. 2), we get

4. 3) Hi Hys* = kepry,
from which
4. 4 HiHuj+ kgij— (B ~+a®)qin;=0,

which implies that
4. 5) HiHj=a?—2(n—1)k.
Now, we prove the

TuroreM 4.1. In a cosymplectic hypersuvface of a Kaehleridn manifold of
constant holomorphic sectional curvature, the scalar curvaturve is a mnon-positive

constant.

Proof. From (2.12) and (3. 6), it follows that
4.6) R=4(n*—1)k+a?—H; .
Substituting (4. 5) into (4. 6), we have
4.7 R=2(n—1)2n-+3)k,

and consequently we get R=const. =0 because of Theorem 3.1. This completes
the proof.
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Now, we treat to express the second fundamental tensor in matrix form. Let
A be a characteristic root of the second fundamental tensor H;* which is distinct to
the one which corresponds to 7* and »* be a corresponding characteristic vector to
the root 4. Then we have

4. 8) Hyw! =
Transvecting (4. 4) with ¢* and making use of orthogonality of o* to 7*, we get
(4R =0.

Since it has been shown that « is a characteristic root of the second funda-
mental tensor H;* and that »* is a corresponding characteristic vector to a, we have

THEOREM 4. 2. Let M®*-! be a cosymplectic hypersurface in a Kaehlerian
manifold of constant holomorphic sectional curvature, then M*"~* admits at most
three distinct principal curvatures.

When the hypersurface M?»~! admits only one principal curvature e, then
M1 is a totally umbilical hypersurface and so the Kaehlerian manifold M?® is
locally Euclidean.® Since we assume that M2 be non-Euclidean, it follows that
the hypersurface admits two or three distinct principal curvatures. This fact,
together with (2. 12), means that with respect to a suitable orthonormal frame the
second fundamental tensor H;* has the following components:

n-1 n—1
a —_———— —e
N —Fk
. 9) (Hy)= N 0
0 -/ =k
-k

5. A certain distribution and its integral submanifold.

Let M?"-! be a cosymplectic hypersurface of an almost Hermitian manifold
and D be the distribution spanned by the all vectors orthogonal to 7*. Then we
can easily see that D is an integrable distribution. From this fact, we know that
through each point of the hypersurface there passes a unique integral submanifold
of the distribution D. In this section, we speak of this integral submanifold.

Denote by X.* (e=1, ---, 2n—2) the mutually orthonormal contravariant vectors
in the distribution D. Then 2r—1 vectors 7', X,* being linearly independent, we
‘can construct the inverse of the matrix (y?, X,?) which we denote by (y;, X=). It

4) Tashiro and Tachibana [9].
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is easily see that the 7; in the inverse matrix is identical with that used in the
previous discussions. From this we have the identities:

(5.1) Xy X4=0", Xo'n:i=0, 7°X*=0, np*=1,
(6.2 Xo* X% 4-79;=05

If we put
5. 3) "for =5 Xp? X,

"f»* is a tensor defined in the integral submanifold of the distribution. Making use
of (5.1) and (5. 2), we can obviously see that ’f,* defines an almost complex
structure of the integral submanifold and that the metric defined by

(5.4) "ba=07: X" X
is the Hermitian metric.
We put
(5.5) Ty =(Xo?' Xe*{,% } + X070, X.5) X,

then the covariant derivative of ’fsa="ga."f5° along the integral submanifold of D
becomes

e foa=pepii Xt Xo? X+ @i’ Hoon? Xa*+ ¢ 1. Xo? Haenpt ®
(5. 6)
=y X Xo' Xa,

where ’"Hy, denotes the second fundamental tensor of the integral submanifold of
D. From this we get

5.7 ,Vc,fba'l‘,Vb’fac'l“,Va'fcb:O;
because of (2.7). This proves the following theorem by accordance of (1. 4).

THEOREM 5. 1. In a cosymplectic hypersurface of an almost Hermitian manifold,
the integral submanifold of the distrvibution D which spanned by the all orthogonal
vectors to p* is an almost Kaehlevian manifold.

If the Hermitian manifold of Theorem 5.1 is Kaehlerian, we substitute (2. 9)
into (5. 6) and obtain

7o' foa=0,
which implies the

THEOREM 5. 2. In a cosymplectic hypersurface of a Kaehlerian manifold, the
wntegral submanifold of D is also a Kaehlevian manifold.

5) Yano and Davies [12].
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Now, assuming that A/*"—! be a cosymplectic hypersurface of Kaehlerian mani-
fold of constant holomorphic sectional curvature, we consider the integral submani-
fold of the distribution D.

LemMmA 5.3. Let v* be an orthogonal vector to w*. If v is a characteristic

vector corresponding to the voot e/ —k (e==+1) of the second fundamental tensor
of M* 2, then the vector ¢ v’ is a characteristic vector corresponding to the root

—en/ =k
Proof. According to (2. 10), we have
Hy i’ =i,
from which

—en/ TR ST =H, 0.

This proves the lemma.

Denote by D, and D- be the distributions spanned by the orthogonal vectors
to »* which corresponding to the characteristic roots /=% and —./—% of the
second fundamental tensor Hj* respectively. Then it follows that

D(p)=D(p)DD-(p)  (derect sum),

at each point of the integral submanifold of D. As to the distributions D, and D_,
we show the

THEOREM 5. 4. The distributions D, and D- are both integrable.

Proof. Since another case can be proved quite analogously, we only prove that
D, is integrable. Let #* and »* be two arbitrary vectors belonging to D.. Then
we have

Hyw=/—Fw, Hyv=/~Fv,
from which

prH v+ Hipvbg ! = £/ — B v*p i’y

pelljurv!+ Hpwbp? = o/ —f Wiy,
and consequently
(5.8) (PeH—p iHdukv? 4+ Hi'[u, v} =/ —F [, v]*.

Substituting (3. 4) into (5. 8), we get
k(Coup st —nspet —2wm Yo’ + Hy'lu, v)' =x/ —k [, V]".
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However, by virtue of Lemma 5. 3, the first term of the above equation vanishes.
This means that the bracket of the vectors #* and »* belongs to D,. This com-
pletes the proof.

From Theorem 5.4 we know that through each point of A?*-! there pass the
integral submanifolds of D, and D-. Since the distributions D, and D_ are com-
plement in D, the product of these integral submanifolds is integral submanifold
of D. Thus we have the following

THEOREM 5.5. In a cosymplectic hypersurface of Kaehlevian manifold of con-
stant holomorphic sectional curvature, the integral submanifold of D is a locally
product manifold.
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