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Introduction.

An odd dimensional differentiate manifold M2n~l is said to have an almost
cosymplectic structure or called an almost cosymplectic manifold if there exist in
M2n-1 a 1-form ω and a 2-form π such that

(0.1) ωΛ^-^O,

at each point of M2n~l and the pair (ω, π) is called an almost cosymplectic structure
of M2n~l. If, in an almost cosymplectic manifold, the 1-form ω and the 2-form π
are both closed, that is, they satisfy the conditions

(0.2) dω=Q, dπ=Q,

the manifold is called a cosymplectic manifold [2]. Ό The study of such manifolds
has been developed by Libermann [2, 3], Reeb [6] and Takizawa [10].

On the other hand, using a differential geometric method found by Sasaki [7]
recently, Kurita [1], Tashiro [8], Tashiro and Tachibana [9] and the present author
[4, 5] studied hypersurfaces of an almost complex manifold.

In the previous papers [4, 5], the author discussed normal almost contact hyper-
surface of a Kaehlerian manifold of constant holomorphic sectional curvature. In
this paper, the author discuss cosymplectic hypersurfaces of Kaehlerian manifold of
constant holomorphic sectional curvature.

In § 1, we give first of all some preliminaries of an almost Hermitian manifold
and of its hypersurface.

In § 2, we define the induced almost cosymplectic structure of the hypersurface
and show a certain condition for the structure to be cosymplectic.

In §3, we study non-existence of the cosymplectic hypersurface under certain
conditions for the sealer curvature of a Kaehlerian manifold of constant holomorphic
sectional curvature.

We devote § 4 to the study of the principal curvatures of the hypersurface and,
as an application, we prove that the scalar curvature of a cosymplectic hypersurface
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of a Kaehlerian manifold of constant holomorphic sectional curvature is non-positive
constant.

In §5, we discuss the distribution spanned by the orthogonal vectors to rf and
the integrability of the distribution is proved. Moreover, in this section, we study
the integral submanifold of the distribution in detail.

1. Almost Hermitian manifold and its hypersurfaces.

On an 2n-dimensional real differentiable manifold M2n with local coordinate
systems {.X*}, if there exist a tensor field JFV satisfying

(1.1) fW=-V,

then the tensor field Fλ

κ is called an almost complex structure and the manifold
M2n with such a structure is called an almost complex manifold. It is well known
fact that an almost complex manifold M2n always admits a positive definite Rieman-
nian metric tensor G;Λ satisfying

(1.2) GiiFSF^Gv,

which is called the Hermitian metric. The pair (F/, Gικ) with the above properties
is called an almost Hermitian structure and manifold M2n almost Hermitian mani-
fold. In an almost Hermitian manifold the covariant tensor field Fλκ given by
Fικ=GμκFλf is skew symmetric and so we can construct a 2-form

(1.3) Θ=FλμdXλf\dX^

which is called the fundamental 2-form of the almost Hermitian manifold M2n.
We call an almost Kaehlerian manifold an almost Hermitian manifold with the
closed fundamental 2-form. The condition of closedness of the fundamental 2-form
is equivalent to the following tensor equation:

(1.4) ,̂+7^+7^=0,

where V denotes the covariant differentiation with respect to the Christoffel symbol
formed from the Hermitian metric. In an almost Hermitian manifold, if the almost
complex structure Ft* satisfies

(1.5) <ί%F/=0,

then the manifold is said to be Kaehlerian.
Let M2n be an almost Hermitian manifold with local coordinates {X*} and

(F/, Gj.) be the almost Hermitian structure. A differentiable hypersurface M2n~l

of M2n may be represented parametrically by the equation Xκ=Xκ(xί).
Assuming that the hypersurface MZn~l be orientable, we put Biκ=dίX

κ

1 (di=d
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/dx*). Then, 2n—l vectors Bt

K span the tangent hyperplane of MZn~l at each point
of M2n~l and we denote by Cκ the unit normal vector to the hypersurface. The
2n vectors Bf, Cκ being linearly independent, we can construct the inverse of the
matrix (J5$«, O) which we denote by (B\, Cκ). Then we have the following
identities.

(1. 6) BtBhi=W, Bi'C^O, fi*,C?=0, C?C, = 1,

(1- 7) Λ 5*2+C Ci=3/.

From the Hermitian metric Gλκ of M2n, we can induce a Riemannian metric
gji of M2"-1 by

(1-8) <7/i=Ga.5/B* .

We call this metric the induced Riemannian metic and, in the following, we always
use the induced metric. If we denote by p, the covariant differentiation along the
hypersurface M2n~\ the Gauss and Weingarten equations for the hypersurface are
respectively given by

(1. 9)

(1-10)

where #/* is the second fundamental tensor of the hypersurface.
Let Rvμλκ and Rkjih be the covariant components of the curvature tensors of

M2n and M2n~l respectively, then the following Gauss and Codazzi equations are
well known.

(1. 11) R^ih^B

(1. 12) ^Hjί

2. Induced almost cosy mplec tic structure of a hypersurface of an almost
Hermitian manifold.

We put

(2. 1) η3=BfFfCf,

(2. 2) φjk=BjΨλκB^.

Then φjk is a skew symmetric tensor defined on M2n~l and by virtue of (1.6),
(1. 7) and (1. 8) we get

(2. 3)
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(2.4) φjiφh3 = Qih-T}ϊηκ, (φhJ = Cfjrφir).

From these facts, the forms defined by

ω = rjidx1, π = φjidx3 Λ dx%

satisfy the condition (0. 1). Thus we know that the pair of the forms (ω, π) defines
an almost cosymplectic structure of the hypersurface M2n~l. If the almost cosym-
plectic structure is a cosymplectic one, we call the hypersurface a cosymplectic
hypersurface of M2n.

From (2. 1) and (2. 2) we can easily see that

(2. 5) wt=l.

Using the local coordinates, we have the equivalent conditions of cosymplectic-
ness (0. 2) as

(2. 6)

(2. 7) l7j

in the hypersurface.
Differentiating (2. 1) and (2. 2) covariantly along the hypersurface, we have

by virtue of skew-symmetric property of Fχκ. Substituting (2. 1) and (2. 2) into
the above equations, we get

If the almost Hermitian manifold M2n is Kaehlerian, the above equations reduce 1o

(2.8) rMi=-φiΉr,,

(2. 9)

From (2. 8) and (2. 9), we see that in any hypersurface of Kaehlerian manifold,
the condition (2. 7) is always satisfied and that pr^

r=0. Thus we have the

THEOREM 2. 1. In order that a hypersurface of a Kaehlerian manifold is
cosymplectic, it is necessary and sufficient that the vector ηl is a harmonic vector, 2)

From this theorem, we have

2) As to harmonic vectors, we refer to Yano and Bochner [Π].
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THEOREM 2. 2. A totally geodesic hypersurface of Kaehlerian manifold is a
cosymplectic hypersurface.

Now, in what follows, we always consider the cosymplectic hypersurface of
Kaehlerian manifold. Then we have from (2. 6) and (2. 8)

(2. 10) Hfφir=Hriφf.

Transvecting this with >?% we get

from which

(2. 11) Iiriff=aj}i (a^Hrϊf ff).

This means that the scalar a is a characteristic root of the second fundamental
tensor H? and that the vector rf- is one of the corresponding characteristic vector
to the root α.

If we transvect (2. 10) with φjf, then it follows that

— Hjk + OLIjflk = Hriφfφk1,

and consequently

(2. 12) Hr

r=g^Hji=-a9

because of (2. 3), (2. 4) and (2. 5).

3. Hypersurface of a Kaehlerian manifold of constant holomorphie sectional
curvature.

Let M2n be a Kaehlerian manifold and X* be a vector in M2n, then FfXλ is
also a vector orthogonal to X", and consequently the holomorphie sectional curvature
with respect to the vector Xκ is given by

/Q iϊ
(ό'L)

If the holomorphie sectional curvature is always constant with respect to any
vector at each point of the manifold, then we call the manifold that of constant
holomorphie sectional curvature. It has been proved that the Kaehlerian manifold
of constant holomorphie sectional curvature has the curvature tensor of the form:3)

(3.2) Rvμικ

3) Yano and Mogi [13].
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where k=K/4 is constant.
Substituting (3. 2) into (1. 11) and (1. 12), we have

(3. 3) Rkjih = k(QjiQkh — QkiQjh, + φkhφjί ~ φjhφkί ~ Zφkjφίh) +Hkhffji ~ HjhHki,

and

(3. 4) ΫkHji—ΫjHkί^kfyKφji—ηjφki—Zφkjηi),

because of (2. 1), (2. 2) and (1. 8). Consequently we have

(3. 5) (VkHji-VjHki)^= -2kφkJ.

The Ricci tensor of the hypersurface is given by

(3. 6) Rji=kl(2n+l)gji-3^i] +aHji-HrjHir.

Now we prove the

THEOREM 3. 1. There is no cosymplectic hypersurface in a Kaehlerian manifold
of positive constant holomorphic sectional curvature.

Proof. Applying the Ricci's identity to ηι, we obtain

from which

(3. 7) VrVr1]j = irVflr = YR,r,

because of (2. 6). Substituting (3. 6) into (3. 7) and making use of (2. 11), we get

(3. 8) prPr?/=2(»-l)*ft.

Transvecting (3. 8) with η3 and making use of (2. 5), we have at last

(3. 9) 2(»-l)*= -F'WrW

The Riemannian metic being positive definite, we have, from (3. 9), k=K/4:^Q.
This completes the proof.

If the Kaehlerian manifold is a locally Euclidean manifold, by virtue of (3. 9),
it follows that (7/^=0 and consequently φjlHιr=Q. Hence we have

(3. 10) Hij=cawj.

Substituting (3. 10) into (1. 11), we get Rkjih=Q. Thus we have proved the

THEOREM 3. 2. Let E2n be a locally Euclidean manifold. Then, a cosymplectic
hypersurface of E2n is locally isometric with a Euclidean space EZn~l.



COSYMPLECTIC HYtΈfcSURFACES IN KAEHLER1AN MANIFOLD 69

4. Principal curvatures and the scalar curvature of the hypersurface.

In this section, assuming that MZn~l be a cosymplectic hypersurface of a non-
ίlat Kaehlerian manifold of constant holomorphic sectional curvature, we discuss
the scalar curvatures and the characteristic roots of the second fundamental tensor
HJ\ Differentiating (2. 11) covariantly and making use of (2. 8), we have

from which, together with (2. 6), we get

(4. 1) (Pkffjt - Pjffkity - Hjτφir

If we substitute (3. 5) into (4. 1), it follows that

(4. 2) -2kφkj-^2H^Hτsφj

s=^kaηj-i7jaηk,

because of (2. 8) and (2. 6). Transvecting (4. 2) with -q3, we have

Pja=βyj, (/3=3?r/7rα),

and so, from (4. 2), we get

(4. 3) HέH»<l>f=kφk3,

from which

(4. 4) HέHιJ+kgkj-(k+a*)ηkηj=b,

which implies that

(4. 5) HJίHji=a2-2(n-l)k.

Now, we prove the

THEOREM 4. 1. In a cosymplectic hypersurface of a Kaehlerian manifold of
constant holomorphic sectional curvature, the scalar curvature is a non-positive

constant.

Proof. From (2. 12) and (3. 6), it follows that

(4. 6) JR=4(Λ2-l)*+α2-ΐOίίP<.

Substituting (4. 5) into (4. 6), we have

(4. 7) R=2(n-ΐ)(2n+3)k,

and consequently we get #=const. ^0 because of Theorem 3. 1. This completes

the proof.
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Now, we treat to express the second fundamental tensor in matrix form. Let
λ be a characteristic root of the second fundamental tensor Hf which is distinct to
the one which corresponds to ηl and vl be a corresponding characteristic vector to
the root λ. Then we have

(4. 8) H.jτv3=λv\

Transvecting (4. 4) with vk and making use of orthogonality of vk to rf, we get

Since it has been shown that a is a characteristic root of the second funda-
mental tensor Hf and that η% is a corresponding characteristic vector to α, we have

THEOREM 4. 2. Let M2n~l be a cosymplectic hypersurface in a Kaehleήan
manifold of constant holomorphic sectional curvature, then M2n~l admits at most
three distinct principal curvatures.

When the hypersurface M2n~l admits only one principal curvature α, then
MZn~l is a totally umbilical hypersurface and so the Kaehlerian manifold M2n is
locally Euclidean.0 Since we assume that M2n be non-Euclidean, it follows that
the hypersurface admits two or three distinct principal curvatures. This fact,
together with (2. 12), means that with respect to a suitable orthonormal frame the
second fundamental tensor Hf- has the following components:

(4. 9)

n-l \

_

-A/-A

5. A certain distribution and its integral submanifold.

Let M2n~l be a cosymplectic hypersurface of an almost Hermitian manifold
and D be the distribution spanned by the all vectors orthogonal to η\ Then we
can easily see that D is an integrable distribution. From this fact, we know that
through each point of the hypersurface there passes a unique integral submanifold
of the distribution D. In this section, we speak of this integral submanifold.

Denote by Xa

% (a=l, ~ ,2n—2) the mutually orthonormal contravariant vectors
in the distribution D. Then 2n—l vectors γl, Xa

τ being linearly independent, we
can construct the inverse of the matrix (j?1, X^) which we denote by (ηt, X

a

t). It

4) Tashiro and Tachibana [9].
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is easily see that the -ηi in the inverse matrix is identical with that used in the
previous discussions. From this we have the identities:

(5.1) XfX«i=db*, XSιyi=Q, ^α»=0, '̂=1,

(5. 2) Xa*

If we put

(5. 3) 'ff

'/6

α is a tensor defined in the integral submanifold of the distribution. Making use
of (5. 1) and (5. 2), we can obviously see that 'fb

a defines an almost complex
structure of the integral submanifold and that the metric defined by

(5. 4) 'gba

is the Hermitian metric.
We put

(5. 5) Tfc^Xvt

then the covariant derivative of 'fba='gac'fb
c along the integral submanifold of D

becomes

(5.6)

where Ήab denotes the second fundamental tensor of the integral submanifold of
D. From this we get

(5. 7) 'Pc'f*a+'r*'fac+ 'F«'/c6=0,

because of (2. 7). This proves the following theorem by accordance of (1. 4).

THEOREM 5.1. In a cosymplectic hyper surf ace of an almost Hermitian manifold,
the integral submanifold of the distribution D which spanned by the all orthogonal
vectors to rf is an almost Kaehlerian manifold.

If the Hermitian manifold of Theorem 5. 1 is Kaehlerian, we substitute (2. 9)
into (5. 6) and obtain

which implies the

THEOREM 5. 2. In a cosymplectic hypersurface of a Kaehlerian manifold, the
integral submanifold of D is also a Kaehlerian manifold.

5) Yano and Davies [12].
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Now, assuming that M2n~l be a cosymplectic hypersurface of Kaehlerian mani-
fold of constant holomorphic sectional curvature, we consider the integral submani-
fold of the distribution D.

LEMMA 5. 3. Let v% be an orthogonal vector to -ητ. If vl is a characteristic
vector corresponding to the root ε\/—k (ε=±l) of the second fundamental tensor
of MZn~l, then the vector φjτvj is a characteristic vector corresponding to the root

Proof. According to (2. 10), we have

from which

This proves the lemma.
Denote by D+ and D- be the distributions spanned by the orthogonal vectors

to rf which corresponding to the characteristic roots ^/^k and —*/^k of the
second fundamental tensor Hf respectively. Then it follows that

D(p)=D+(p)®D-(p) (derect sum),

at each point of the integral submanifold of D. As to the distributions D+ and D-,
we show the

THEOREM 5. 4. The distributions D+ and D- are both integrable.

Proof. Since another case can be proved quite analogously, we only prove that
D+ is integrable. Let u* and vl be two arbitrary vectors belonging to D+. Then
we have

from which

and consequently

(5. 8) (ptfff-pjHfiutv'+Hftu, vV^J^k [«, »]'•

Substituting (3. 4) into (5. 8), we get
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However, by virtue of Lemma 5. 3, the first term of the above equation vanishes.

This means that the bracket of the vectors u% and v^ belongs to D+. This com-

pletes the proof.

From Theorem 5. 4 we know that through each point of M2n~l there pass the

integral submanifolds of D+ and D-. Since the distributions D+ and D- are com-

plement in D, the product of these integral submanifolds is integral submanifold

of D. Thus we have the following

THEOREM 5. 5. In a cosympίectic hypersurface of Kaehlerian manifold of con-

stant holomorphic sectional curvature, the integral submanifold of D is a locally

product manifold.
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