ON RIEMANN-LIOUVILLE INTEGRAL OF
ULTRA-HYPERBOLIC TYPE

By Yasuo Nozaxki

1. Introduction.

Riesz has persuited the many types, elliptic and hyperbolic types, of Riemann-
Liouville integral since 1933. Now let 74, be the distance between two points P
and Q, then we call the following integral the Riemann-Liouville integral

Ff(P)= Sf(Q)r; Q.

Hu(a) ( )
Here the range of integration is taken suitably according to the above mentioned
types. Further Hn(a) corresponds to the gamma function in the old theory of
Riemann-Liouville integral and it depends on the dimension s of the space and on
the constant . About this there hold the fundamental formulas

I«(If(P))=1+#f(P), AI***f(P)=+I+f(P) and I°'P)=f(P).

Using the Riemann-Liouville integral, Riesz [6] established the general potential
theory in m-dimensional Euclidean space. Further Frostman [3] proved elegantly
the fundamental theorem on the equilibrium potential in his a-dimensional potential
theory. In his proof a lemma played its essential part. This lemma can be obtained
from the theory of the Riemann-Liouville integral and it is

SL L M= Ha ) — L

Qs 7PM rMQ k+l 3

In addition, this equality has many applications to other branches of analysis; cf.
Nozaki [5].
Next let the distance 7pq of two points P(x) and Q(§) be

7pq*=(®1—61)* — (X2 —E2)* — - — (Xm—Em)™

Then Riesz called the space with this distance 7;q (hyperbolic distance) the Lorentzian
space. In this space he constructed the theory of Riemann-Liouville integral. Using
this integral he solved Cauchy problem which is one of the branches of the theory
of the hyperbolic partial differential equations. Riesz’s theories were given in his
splended paper [7].

Now in the present paper, the author will intend to extend Riesz’s results more
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70 YASUO NOZAKI
generally. Let the distance 7pq of two points P(x) and Q(¢) be
70" =7p*= (X1 —E1)* + (T2 —E2)* 4+ + (X, — &) — (Tpr1—Epr 1) — - — (Tm—Em)2

We call the space with this distance (ultra-hyperbolic distance) “an ultra-hyperbolic
space” or “a generalized Lorentzian space”. In this space we shall introduce the
Riemann-Liouville integral and shall derive its fundamental properties.

Our theory is much indebted to the Riesz’s one. Introducing the vector suitably
in our space, the geometrical properties of our space—surface area and volume of
the solid body etc.—can be obtained by the modified methods of Riesz. Therefore
we can obtain the analytic continuation of J*f(P) as similar as that of Riesz, but
then the complicated calculations must be necessary.

Also taking Hn(a) suitably in every space, we may obtain the distribution
7+ ™[ Hp(a)=®,. Then the composition theorem

@a*@p = ¢a+ﬁ

holds. This is one of the characterizations of Riemann-Liouville integral.
The author is much indebted to Professor Y. Komatu and Professor M. Ozawa
who gave him many useful advices.

2. Generalized Lorentzian space and J<f(P).

Let the distance 7pq between two points P(z) and Q&) be
7’pq2=7’QP2=($1—$1)2+(d’72—52)2+"“i‘(xp—'fp)?

(1)
—(@pr1—Epi )P = (X —Eprn)? (u+v=m).
Also let the Laplacian operator be
_ 82 82 aZ 82 82
ot am Y T wmn T

In the sequel we use the same terminologies and the same notations as those in the
Lorentzian space; cf. Riesz [7] Chap. III

Let the point P be fixed and the point Q be variable. We denote by DF the
inverse cone with the vertex at P which is defined by the inequalities

7pq" >0, x1—&>0.

Also we denote by D™ the common region which is bounded by the inverse and
direct cones, that 1s

79> >0, x1—&.>0, and Tou >0, Y:i—6:<0

where the point M(y) is an inner point of DF.
Next we define the scalar product of two vectors X and Y by

(2) (X') Y)=X1Y1+X2Y2+"'+XyYy‘_X,u+1 px+1_"'_Xp+va+p (#"“U:m),
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where X’s and Y’s are components of the vectors X and Y respectively. If we
take ¢'s satisfying
(3) 51:52:"‘25/1:1’ 5,u+1="'=5,u+u='—1’

then we can write the scalar product (2) in the form
2" X, Y)=kZm:1 &1 X5 Y.

Using those notations, we can represent the distance between two points briefly by
e’ =(X—&, X—8), ror’=(X, X).

We say that two vectors X and Y are orthogonal when their product vanishes.
We can also take ¢’s more generally in the place of those in (3) such that

&>0 (=1, 2, -, ), <0 (j=p+1, .-, m) and |eep-em|=1.
Using those ¢’s, the formula (2”) remains in the same form.

Now we consider the linear homogeneous transformation which remains (X, X)
invariant. Since (X, Y)=1/4){(X+ Y, X+Y)—(X—Y, X—Y)} holds, by such trans-
formations (X, Y') also remains invariant. Moreover a set of these transformations
constitutes a transformation group. We call it a transformation of Lorentz in a

wider sense.
As regard to the derivations of a function ¢(x), there holds evidently the relations

m a 2
(4) (grad ¢, grad )= 2, ek*(—(p) ,
k=1 0xx
and
m 82 m 3290
_ -1 _ -1
(5) Ago-(kglek axzk>go kéek TR

Here the formulas (4) and (5) are also invariant by generalized Lorentzian trans-
formation. By the above method we can proceed our vector analysis completely
analogous to that of Lorentzian space.

We call m dimensional vector space with the distance (1), “a generalized
Lorentzian space ” or “an ultra-hyperbolic space ”. Let D be any given region which
is enclosed by some surface T (m—1 dimensional varieties). We suppose that the
the surface T is sufficiently smooth. Then the volume element dQ at any point
Q of D can be represented, like that of Euclidean space, as

dQ=dé&&; -+ dém.
Also when the surface T is represented by means of parameters 2;, 4, -++, Am_; Dy
$i=5i(21y 22; Tty Z'm.—l) (221’ 2; AR m)y

then we put

_ _1 a(‘;él’ 52) Ty Ek—l; Ek-l—l; ) Em) . = -1 72 e
Je=(=1)" s, Zay -y Amos) and J _< neay ")
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Then the surface element dS at points Q of 7' becomes
dS=Jdrxd; -+ dam-1.
Similarily we can express an element do of the curves ¢ (p-dimensional varieties) by
do=|(d¢, df)|.

When n denotes the unit normal vector at point Q of the surface, as to the direc-
tional derivatives of the function in generalized Lorentzian space, we have as similar
as the derivatives in the usual Euclidean space

d m
if) g nk—(grad F, n).
Also let 1 denotes a unit vector at any point of the surface, then we have
i (5) f —ali li=(grad F, 1).
=1

Now let 72=73e? and consider the integral

1 -m
(6) @)= g )S AQrrgem dQ.
If we use the distribution
D.(P; Q= f’;‘(_‘f,?,

where 7, is equal to » when >0 and to 0 when »<0. Then (6) becomes

JS®)=(f+D)(P).

We call J2f(P) the Riemann-Liouville integral of the ultra-hyperbolic type. Hereafter
we investigate the properties of this integral.

3. Jf(P).

In the following sections, we are now to prove the fundamental theorems on
our Riemann-Liouville  integral.

THEOREM 1. Let f(P) be continuous and vanish rapidly at infinity in DF.
Then we have

(1) F1®)= =\ AQne da=(roe)

where

(@t a—mDI (1~ @
F(@Fa—pRL G2

Kn(a)=am-2

and
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rPQa—m 7/+d'-m

En(@  Kn(@)

LemMA (Extension of Boole’s theorem). We have

SS S(cz—xi—xé—---xfn)‘*/z dx; dzy - dxm
xf+x§+-~+w;‘;scﬁ
(2)
a—2/2)
I'((m—2)/2)

—prm-1 m/2

We can easily verify the validity of (2); Edwards [2] pp. 162-163.

Proof of the theorem. Putting f{P)=e* we shall determine K.(a) so that the
equality Jee**=e* holds. By a linear transformation which leads P to the origin
O, let Q be translated to another point which we write Q(¢) again. Then we can
write (1) in the form

el?

(3) Jeem= Fe)

|, ettt e~ @t ),

If we put &4-&24---.+&4,=p? and integrate with respect to £,.., .-+, &n in the region
o' — (&4, 4+ >0, then (3) becomes

T 1

Joer= #@SSS eﬁdsldszmdsﬂgS---S{pz~<szﬂ+-~+sfn>}<a-m>f2ds,,+lds#+z~'dsm.

Using the above lemma, we have

o€ T(Ct+a—m)/2) e g2 s

In the last integral, since Q is a variable point of D° with & <0 and since p varies
from 0 to oo, we may put &=—sinf, &+--+&2=p%os?d. Then the integral of
(4) become

27-,_-(;4—1)/2 7/2(
TG ), e oS0 do dp

Putting psin #=¢ again, we have

S il dseerdiym —are ("t sinen 20 dt d,
1pa—ué = —¢ fa— —a o=
S Se [4 S1 0852 “= TG=172) SO So e sin~*¢ cos fi]

(5)
L@I(1—a)2)

O u—11r2 /2
S I'((p—a)f2)

T T2

Jrom (4) and (5) we have

sin @-©-1¢ cos (/;—1)—10 ng etpal dt =m-11/2
0 0



74 YASUO NOZAKI

e F(@+a—m)2)'(1—a)/2)[ ()

im-1/2

Kn(@) I(@+a—p)/2) (p—x)/2)

(6) Jeem=

Since J*¢®*=e¢** must hold, we obtain finally from (6)

I'(@+a—m)2)[ (1—a)/2)[ (@)
I(@+a—m/2) I (p—a)/2)

REMARK 1. If we put »*=7p¢? and denote the convolution of AQ) with the
distribution @,(P; Q)=r,*"/Ku(a) by (f*®,)(P), we may write the Riemann-Liouville
integral in the form

(7) K(a)= mm=112

JS®)=(/+De)(P).

RemaArk 2. If we put =1 in (7) we can show that Kn(a) can be reduced to
that of hyperbolic type by using the relation, /'(@)/'((a-1)/2)=2="17"12]"(a/2),

I(@+a—m)2)L(A—a)/2) (@) o 2 Fa—m @) _
Tatapl(—ap "~ 2T ( 5 >F<2> Han(a).

Kn(a)=nm-Dr2

Concerning the compositions of the distributions @, and @ we have the fol-
lowing theorem.

THEOREM 2. Under the same conditions on f(P) and the same notations as in
Theorem 1, we have

(8) ([ ) @p=(f+Dp) D=1 %D 5.
Proof. The first term of (8) may be written explicitly as

1

(f6D)*Dy= nld)

Frgt ™ dQ{ SDQ F(Myraut~m dM

1
Kn(a) S DP
(9)

1

= R @Ka() SDP S dMSDPM ot Ton - Q.

Now consider the integral

B—m

dQ.

_ VPQ”_’” 7‘QM
@u0y)= SDPM e

By a linear transformation which leads P to the origin O, M to (1,0, ---, 0) and Q
to a point 7" with r,,=1 respectively, we obtain from (9)

10) S - 7pg" ™rou ™ dQ= 7PMa+p—mS Jor® M ry P dT =rpy ™ Bu(a, B),
D pO1

where By («, 8) indicates the integral of the second member. Then (9) becomes

Bu(a, B)Em(a+p)
Kun(a)Ku(B)

(11) (f*®a)*@ﬁ= Mgppf(M)pra4-ﬁ—m dM =

*@a+ .
R @Eu(p) S Pass
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If we put f(P)=e*, then by Theorem 1, we have (e"+@.)*P;=¢" and e"'%P..;
=¢*, Therefore from (10) and (11), we obtain

Km(a)Km(B)
Km(a_l’.@)

Hence from (10) and (11), we obtain finally (f+®.)*®@s=f%P..;. Similarly we can
show that the relation (f#@g)#®.= %P, holds, so that the theorem is proved.
From (10) and (12) we obtain the following corollary.

a2) Bu(a, B)=

[ rosren.
D

Corollary.
ot 3 =B, B e dQ
and
_ Kn(a) Kn(B)
Bu(e, p)= “Rulatp)

This corollary is an extension of Frostman’s Lemma stated in the introduction.

4. Hm(a) and Hm([s).

There are many kinds of extensions of beta and gamma functions and we can
refer to them Whittaker-Watson’s book [8], Chap. XII. The results of Riesz and
the present work are the extensions of their functions in another way, namely
Bo(e, B) and Hn(a) or Kn(e) are extensions of them to the Lorentzian space or to
the generalized Lorentzian space respectively. And our present results are the
extensions of them in me-dimensional generalized Lorentzian space, and they are as
follows:

Bu(a, B)= 801 Yor* ™ ™ dT, Kn(a)= S Doe”:‘roqa—m dQ,
Kn(a)Kn(B)

SDPQ 7o ™ quf "™ dQ= Bu(a, B)rpy* ™, and Bu(a, B)= Kn(a+B)

From this point of view the corollary of Theorem 2 is interesting and useful in
analysis. In this section we use the notations for a while, Hn, Hn and K, in the
place of the functions corresponding to the gamma functions, in m-dimensional
Euclidean, Lorentzian or generalized Lorentzian space respectively. Now let us
investigate the relations among Hp, H» and K.. Since

—m/2 Da F(a/z)
< A= 2 on ey
and
(2) Hp(o) =nm=212 2a I'(a/2)

I'((a+2—m)/2) ~
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between (1) and (2) there exists the relation (Riesz)

»ﬂm(a) 9 el o (m—a)n:
@) =2¢ sin 5

We have seen that Hn(a) is a special case of Kn(a).
To indicate the behaviour of K,(a) precisely we use the notation in this section
K% (a) for Kn(a). Then we have

T(@+a—m)2)[ (@) sin {(p—a)7/2}
I'((1+a)/2) cos (an/2)

(3) KP(a)=mm-0/2

Let p be a positive integer, then (3) becomes

I'(@+a—m)/2)[ ()
I'(1+a)/2)

(—1)p-iztm-Dr2 for p=2p--1,

K¥(a)=
el (meDy/2 I'@+a—m)/2) ar _
(—1)p-tgim-1r N tan 5 for p=2p.

Let R@2+a—m)>0, then I'(2+a—m)/2)[(a)/'(1+a)/2) is an analytic function of a.
In addition if « is real and positive, this factor takes the positive value. But by
the cause of the factor tan (az/2), K& («) has other singularities other than those
of the previous factor. For example

2 ar ['(a/2)](«)

tan

KP(@)=n*t —5 tan—5= T((+a)2)’

has poles of order 1 at points a=1, 3, 5, --- other than the singularities of I'(a)I"(a/2)
[I(A+a)/2).

In the following sections we consider that the functions Kn(a) and Bn(a, B) are
analytic functions of a or of « and B.

5. Properties of Jf(P).
We shall prove the following theorem.

THEOREM 3. Under the same assumptions on f(P) as in Theovem 1, it holds

(1) A f5Dyy2)=f5D,,
where
82 aZ az aZ 62
A="a—ﬁ‘+a—ﬁ‘+"'+m—5xiﬁ—'“—m (p+v=m).

Proof. Since there hold
drpgettm=a(a+2—m)ree*™ and Ku(a+2)=ala+2—m)Ku(a),
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if we put
rPoﬂ—m r+a—"m
D= = X
Bn@ ~ K@ (D
we have
(2) 4D, ., =D,.

By differentiating under the integral sign and by using (2), we have

A« f*fl)a+2)=d{ UKn@ D Q@rigem dQ| | r@ue.9d={ r@o.a

=f4®,.
Therefore we have (1).
Iterating (1) we obtain the more general form of (1):
([ Do) =fxDP.  (k=1,2, ).

Remarx. We shall investigate in the following sections the conditions on «
in order to differentiate under the integral sign.

6. Further properties of J+f(P).

Here we write as such
et =(@1—&1)? (X2 —E)* + -+ (2, — ) — (W1 — )P = — (W) (ptv=m).

Now let us consider
(1) K f®= G DiG—a ot Gy =y

— e, —Y)2} ™2 d&,---dg, iy}

Let D® be the direct cone with vertex at P. To consider the integral over DF also
we make an even extension of f with respect to &—a; and denote the resulting
function by #. Then from (1) we have

1 = = = e
(2) Kn@ S @)= Drogr dve-dy e di.

Then using the polar coordinates

- ~ v
Ei—xi=76,, Ni—Y,=581; Z_:l(fi—l‘z)2:7’2 and X Gi—vyi)*=$%

=t

(2) becomes



78 YASUO NOZAKI

(3) 2K r®= { § utirt, yspr—sye it drisag,de.

pJo, Ja,
where df, and df2, denote the surface elements of the p- and v-dimensional Euclidean
unit spheres respectively and D denotes the region which is constituted by 0=s=7»
and »=0. Putting

(4) w(x, y; 7, S)= wl

S S w(x+7E, y+sy) d2,d0,,
Wy QIJ, Qy
then (3) becsmes

©,0,

(5) JfP)= SKon() SD w(x, y; 7, S)re-tsr=i(r2—s?)em/2 dy s,

where o, and o, denote the surface areas of p- and v-dimensional Euclidean unit
spheres respectively.

Now let Q tend to P or Q tend to any surface point of D® from within DF, i.e.,
let s—#, then 7po*=r*—s*—0. Hence when m =2 and when #, that is f; is continuous
in D* and vanishes rapidly at infinity in DP?, it can be easily verified that the
integral (5) converges under the condition a>m—2. We have thus the following

theorem.
TureoreM 4. [If f(P) be continuous and vanish rapidly at wnfinity within DY,
then J*f(P) converges when a>m—2 for m=2.

Next we are now to prove the relation /°f(P)=f(P). For that purpose we can
take O for P without loss of generality in (5). Then it becomes

) :__w_..“”w” “\" . 2 __ o2\ Ca—m)/2ppu—1cu—1
(6) FrO= 5§ w0, 0 e styemmryrets dsdy
and
w(0, 0; 7, )= S S w(r€, sn)dR2,d0,.
2@y Qu JQy

Under the condition that « is differentiable 2xn-+1 times, we can easily verify that
w(0, 0; 7, s) can be expressed by

n
w(0, 0; 7, 8)= X Cp, qrzpszq+0(rpszn+1_p),
2,9=0

where C,,q is a constant independent of 7, s and p, q are both non-negative integers.
Moreover we have

w(0, 0; 0, 0)=7(0).

Putting s=tr, then #2=T in (6), we have



RIEMANN-LIOUVILLE INTEGRAL 79

JeF0)= I'(2+a—w[2) (p—a)/2) 1
2am=D2L((2+a—m)2) [ (1—a)/2) [(e)

.Swra_l d?’Sl{ Zn: Cp’qu+q_|_O(7,2n{-1T(2n+1—p)/2)}T,,/z_l(l_T)(n_m) dT.
»,q=0

0 0

Now we can suppose without loss of generality that f(P) vanishes when 7,q=R
(R being a sufficiently large number). Hence

O § o N U CON  CAD
PIO= gty | 7 ), 7 ] BT

_I__O(r2n+1 T(2n+1—p)/2)] X TV/Z—I(I_ T)(a—‘ln)/z dT

_ L@l FODL@D (i L)
= ) IO | T, | SO0,

Hence we have J°f(0)=7(0).
Using the relation 4J=2%f(0)=]=f(0), and letting a—2k, we have J-2 f(0)
=4%f(0). As to the analytic continuation of J=f(P), we use the following lemma.

LemMmA. Let f(x) be continuous and let

(@) = S A (@—ty dt,

I'(@) Ja
If a>0, then I~f(x) represents an analytic function of a. And if f(x) is differentiable
n times, then I*f(x) can be continued as for as a>—n (n being a non-negative
integer) and we have

If(x)=f(x) and I'*f(&)=f®@®)  (*k=0,1,2, -, n—1).

This is the principle of analytic continuation by Hadamard (cf. Riesz [7] Chap. I).

Considering (6), by the lemma, J«f(P) can be continued as far as a>—2k—1,
S(P) must have continuous derivatives of order [(m+1)/2]4+2k (k=0, 1, 2, ---). Thus
we have the following theorem.

THEOREM 5. Let f(P) be continuous and vanish rapidly at infinity within DT,
and f(P) be continuously differentiable [(m--1)/21+2k times (=0, 1, 2, ---). Then we
can continue J*f(P) as far as a>—2k—1 and it represents the analytic function of
a. And we have

(7) JHP)y=4fP)  and ] f®)=f(P)=/f+D..
RemArk 1. The relation (7) shows that @, is the Dirac’s distribution (P), i.e.,

0=5(P).
REMARK 2. If we put p=v=m in 2m-dimensional space, then (4) becomes
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w(x, y; 7, )= i’S S w(x+7§, y+sn) d2,dR..
W QpdQm
The last integral is the mean value over the unit spheres with respect to &€ and 7
respectively. If we put
o, y; N=wx,y; ,0) and  (z, y; N=w=, y; 0, 7),

then both functions ¢ and ¢ satisfy the partial differential equation 4y0=4,r with
initial conditions o(z, ¥; 0)=u(x, ¥) and z(x, ¥; 0)=0. Further ¢ and ¢ may be found
to be the continuous solution of Darboux’s equation

m—1

A0 —

0r— 0 =0);

Cf. [1] pp. 411-412.

7. Jye, J‘bg and Green’s formula.

Let the surface S be S(&, &, -+, £x)=0, and suppose that it can be differentiable
any times for a while. Let D% denote the region bounded by the surface of D*
which contains the vertex P and the surface S, and let S* be the part of S which
is cut by S and which lies within D*. Moreover let C* denote the part of the
surface D* which is cut by S and which contains P. Then if # and v are con-
tinuously differentiable twice, we can apply the Green’s theorem upon D% and it
follows

ov ou
(1) SDE (udv—vdu) dQ= _SSP+0P <”W —v—(,),;)ds,

where # denote the inner normal direction.
Now let v=rpe=+?~™. Since #pq=0 on C* and 49,.,=9,, (1) becomes

1 -m _——1—— a+2-m
) g Qe Q= s Spg Au(Qpreq+*™ dQ
(2)
1 EPu(Q) attom_ arPQM'Z—m
+ Ku(a) SSP{ on Vre wQ) on }ds (a>m).
We put
7 = —1 a—-m —_
T/ B= g @ S pp J(Qrea ™ #Q=(/20)(F)
and

Jp f(P)= —Ki&)—g% F Qg™ dQ=(/+D.)(P).
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Suppose that f(Q) vanishes outside D%, then we easily see that the following
relations hold:

(3) (f6B ) Pp=(f4 Do) xDp=f5D rss=fDos,
and
(4) A(fsD gy0)=A(f5 D gr2) = (f5 D) =F4D .

Also we use the expressions by Riesz in order to write (2) simply,

« F o Dt — 1 a—m a—m __ arPQ
JT0I®= | SO = dQt | (0@rern — @ 5 )as.

Then (2) can be written
Topf@)=J5u, 2L up)
n

From (3) and (4) we have at once

Ji(J=J%* and  4Jgi=J%.

8. Js.

In this section we shall use the same notations as in §7, and we shall now
investigate the behaviour of Ji. Now let us consider the “hyperboloid ”

H: (Z, Z)=1 (2:<0).

Putting
0=t=1,  Tei=l, 3 gi=1

1=1 J=p+1

and

1t 14t .
a= 2+ ¢ (@:>0),  z=— 2+ i (0=2,3, -, 1)
t" .
and Zj=— Sb] (]=ﬂ+1; e, M),

the hyperboloid H may be represented by the parameter ¢. Let the surface S be
S(a):S(ah Ay am)'——_o-

We project the point @ of S upon the surface (z—x)?=1, by the segment which
connects P and Q. Also we put a—x=r,.z i.e. a—x=rz for simplicity. Now we
shall represent ]“Dg f(P)by the integral upon (z—x)?=1. In fact, since

(1) dQ=r'dHdr,  (rq=rsq)
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where dH denote the surface element of the surface H, and further since é—x
=d(la—x) (0=0=1) ie, £&=(1—0)x+0oa, (1) becomes dQ=r"dHo™'ds. Hence we
have

(2) ]"D};f(P)=_Kﬁ-SHF(a, ayr<dH

where

Fa, a)=S:f(a, o)oldo.

Next putting 224z3+---+2z2= cosh?d, 22,,+---+2%= sinh?), it becomes
(3) dH=sin™~#10 cos~10 dQ2mn-,d2,.d0.

Now we can proceed by the way of Riesz as follows. Putting 7'=e-%%, we have
from (3)
redH=21-mpa T Cc-m2(] — TYym=p=Y(1 4 T 1dQ2p_ ,dR,dT=k(T)v* T ™42y _,dR2,dT,

where

HT)=2n(1 =T+ Ty and  o=—t= .
Then (2) becomes
a —_ 1 ! (a—m)/2
(1) T3pf®)= 4 -\, KT T T,
where
KT, =k vFa dode. o=t
Qu Joy
Next since
| dva | .. _
dSﬂ rmtdH=|M|*NridH
dan
where
[ dra
M=(grad S, a—x), N=(gradS, grad S)"? and rZ‘“‘{% dS=dH,

we have similar formulas for J40, g, 0(P) and J50, 0, A(P) as that of J5%f, 0, O(P)
respectively. Thus we have
- 1 1
(5) J3076,00)= g ). T K (T, @) dT,
with
K(T, a)=k(T)S S |M |-*Noeg(a) d2,d2.,
2,992y

o
and
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1
K(T, a)T(a—m~2)/2 dT’

. —_ 1
(6) J%0, 0, h(P)= mgo

with

K(T, a):(a—m)k(T)S S ve-h(a) d2,d0,.

2, Jay

Therefore we may write (4), (5) and (6) in the form

1 RSN
(7) j :m‘so T K(T, a)dT,

where B is equal respectively to (a+2—m)/2, (a+2—m)/2 and (a—m)/2. These
formulas (4), (5) and (6) are the same as those of Riesz [7], p. 58.

9. Analytic continuation of J-.

Now we can easily show that the existence of the continuous derivatives with
respect to T and x, of ax and v of the last section, depends on the continuous
differentiability of the surface S. Also the existence of the continuous derivatives
of K(T7, @) depends on those of the functions f, ¢, # and the surface S.

As already stated, the formula (7) in §8 is the same form as that of Riesz, so
that (4) in §8 can be written

oo I*(a+2+pB) Sl
T a9 gin ((u—a)/2} T (L—a)/2) (@) (B)

T+ K(P, «) dP
0
where f=a+2—m.

Using the principle of continuation, we can conclude that f(P) and S(a) have
both continuous derivatives of order [(m+1)/2], and J= can be continued as far as
a>—1. Further if f and S have both the continuous derivatives of order [(#:-1)]
+3p, then J* can be continued as far as a>—2p—1 (p=1,2,---). As to (5) and (6)
in §8, we can conclude in the same way as above and we have the following
theorem.

THEOREM 6.1°. If the function f and S be both continuously differentiable
[m+1)/2]14-3p times, then J* can be continued as far as a>—2p—1 and we have

o FE—pPTm—p [, TC—mt2))
(1) JAF 0, 0B=2""Fe, — s mria—my) | 27 T@+m—26+2)2)

SP).

2°. If g and S be continuously differentiable [(m+1)/2]4+p and [(m+3)/2]+p
times respectively, then J* can be continued as far as a>—2p—1 and we have

J =] 0, g, 0(P)=0 (p=9,1,2, --).
3°. If the function h and S be continuously differentiable [(m+3)/2]14+p and
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[m+1)/2]+p times respectively, then J* can be continued as farv as a>—2p—1 and
we have

]—2I7=]*"2P0’ 0. h(P):O (p=0) ]-y 2) '”)'

RemArk 1. If we put pg=1, then (1) becomes J% £, 0, 6(P)=f(P), but otherwise

we cannot show the relation J%7, 0, 0(P)=5(P).

REMmARK 2. In our present case, we take the range of integration D* or D}
and further we treat the values of function on the surface S, so that our theory of
Riemann-Liouville integral is somewhat different from the work of Gelfand and
Shilov [4].

10. Applications

Abelian integral equations. In this section, using the Riemann-Liouville integral,
we shall investigate the integral equation of Abelian type.
Now we consider the Abelian integral equation

(1) SD FQrpgemdQ=¢P)  m>a>m—2,
where £ denote the m-dimensional Euclidean space and ¢(P) is a given continuous

function. We are now to obtain the continuous solution f(P), Next S* denote the
closed unit sphere of 2. We put

an SS* AQrege-mdQ=¢(P).

First, to reduce (II) to (I), we use the Poisson kernel with respect to S* (cf. Riesz

[6D:
2p(Q) =72 D [ (m)2) sin o |[1—7p2|«2| 1 —pg2|~/2ppqe—m
P 2 P Q PQ

where we mean 7, =7, etc. We can extend the function ¢(P) continuously in the
whole space as follows. We put

(1) i-{ su@aa
Then if PeS*, we know that ¢(P)=¢(P) by the property of 1,(Q). Therefore
P PeS*,
W(P)r—{ sf( : )
o(P) PéS*,

Then ¥'(P) becomes the continuous extension of ¢(P) in the whole space. But in
order to verify the convergence of the integral (1), let v(P) be potential of the positive
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mass distribution on S* and let ¢ be any positive constant. It is sufficient to sup-
pose that |¢(P)|=v(P)+¢. Thus we can reduce the equation (II) to (I), that is, we
have only to solve the equation of the type

Sa FQreq=m dQ=T(P).

The following method of our argument may apply not only in £ but also in
the generalized Lorentzian space. In the last case it is sufficient to replace D* for
2 and

Aj2f®)=Jf(®) for AI«**f(P)=—If(P).

Now let us consider the equation (I) which can be written

) Ff®=® s O 0= s 9P

where @.(P, Q) =7po*™/Hn(a). Hence it becomes

1
Ho(a)

(f5Purp)(M)= (=Dp)(M).

By operating the Laplacian operator, we have

() s M= o A O)M) = - (0O,

Since fx®@,=f, by letting f—2—a, we have

(3) FOD= = a0,

where H(a)=r™"22I"(a/2)/I"((m—)/2).

In general, when ¢(P) can be differentiable 2p (p=0,1, 2, ---) times I« can be
continued to [-22, Then the integral of the right hand member of (2) or (3) con-
verges absolutely, and therefore the function f(M) may represent the solution of
(I"), and then the integral of (3) converges.

11. Potential in ultra-hyperbolic space.

We put

1

VEO= g

[, e mdu@=(r0)®),  du@=r@dQ.

We call the function U (P), a-dimensional potential in the ultra-hyperbolic space.
Concerning this potential, we have as a usual potential,
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(U(a)*Qﬂ)(P):U(aﬂS)(P), AU D (Py= U@ (P),

that is, in this case the composition theorem and Poisson’s relation are valid.
Further if we put

1

i)

[ nema@,  a@=g@da,

then we have

1

I, »)=SDR U@ (T)V®(T)dT= SDRdT{ ST

SDP Foe=m du(P)

(1) { E%SDQ —— du(Q)]
1

~ Kulat+p) S g T ApP)A Q).

Therefore we have

(2) S gt dV(P)dv(Q)=Km(a+ﬁ)S UV (T) T,
D D

From (2) we obtain

(3) SDR Uw du<P>=SDR VD du(P),

that is the reciprocal formula is valid here also.
The formulas (1) and (3) are useful for a variation method. Further if we put
a=pB=a/2, p=v in (1), then we have

4 Ip ”>=SDR Trg ™ dy(P)dp<Q>=Km<a>SDR [U«(T)2dT  (a>0).

(4) corresponds to the energy integral in the usual potential theory.
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