CESARO SUMMABILITY OF SUCCESSIVELY DIFFERENTIATED
SERIES OF A FOURIER SERIES AND ITS CONJUGATE SERIES

By YUNG-MING CHEN

1. Let f(x) be a Lebesgue-integrable function of period 2z. The Lebesgue-
Fourier series of f(x) is

@1 F) ~ ?17{ S " Fydt+ 2 lj" Ft) cosn(t — z)dt,
3 n=1T)—7m

and the derived series of (1.1) is

(1.2) ﬁlnj_ £ () sin n(t — ) dt.

It is well-known that if f(x+¢t)+ f(x—t)—24—0, as t—0, then the series
(1.1) is summable (C,a) to A, where « >0. This condition can be improved to
the Lebesgue’s condition

t
j | flx+u)+ flx—u)—24|du=0(t), as t—0.
0
Concerning the derived series of (1.1), if

1.3) flx+1t)— fx—1t)— 24t =o(t),

as t—0, then the series (1.2) is summable (C, @), a >1, to A.® The result has
been improved by K. K. Chen [4], [b]: If

(1.4) jz S (x+“);f @=% _ o4l du=o),

as t—0, then the series (1.2) is summable (C,a) to A, where a > 1.
Suppose that a function f(x) is defined in the neighbourhood of a point x«
and that there exist constants ay, ay, - -+, «, such that for small |¢],

trt t"
f(w+t)=do+d1t+°"+a'r-1(r—_i)—! +(a’r+£:),r—!,
where ¢, tends to 0 with £. We then say that f has a generalized rth derivative
(unsymmetric derivative) f,(x) at x and define f.,(x) =a,. This definition is
due to Peano. For applications to trigonometric series a certain modification of
it is due to de la Vallée-Poussin. We consider it separately for » even and odd.
Write

Received May 2, 1962.
1) This was proved by Priwaloff [10] and Young [12], [13].
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1
%elt) =20) = Z{f@+ D)+ fw— 1)},

9u(t) =900 = 5 {f @+ 1) — @ —1).

Suppose that » is even. If there are constants Sy, 8s, By, + -+, B, such that

(r—2)!

where & tends to 0 with ¢, we call 8, the generalized symmetric derivative —
or simply, the rth symmetric derivative of f at . The definition of the rth
symmetric derivative for odd integer 7 is similar. We denote the symmetric
derivative by the same symbol fi(2).

x(t) = ﬁo + BZ + + B'r 27, + (Br + 8;)

THEOREM A. If the symmetric derivative f.(x) of f(x) exists, then the rth
derived series of the Fourier series of f(x) is summable (C,a), a>1r, to the
sum fo(2).

Theorem A is due to Gronwall [6], Priwaloff and Zygmund [14].2 Suppose
that f, defined in the neighbourhood of x, has r —1 unsymmetric derivatives
g, @y, +++, &y, and define w,(z,t) by

r—1

v
(r—1!

If w.(x,t) has a limit as ¢—0, f has also an rth derivative f.,(x). If r is odd,
it follows from (1.5) that

(L5) F@ott) =+ art+- -+ ars ol )y

tT 1 1 tT
(1.6) x1(t) = ao + az + -+ - 1_(7—1)- + Esr(x, t)—,’,Ty
and if r is even, then we have

tr-t 1 t"
a.mn ¢(8) = ant + ae, + hagyy @ty

Suppose now, without assuming anything about w,(z, t), that there exist constants
a, such that we have (1.6) or (1.7) according to r is odd or even, and that

(1.8) 8,(x) = lim 0,(, ¢)
t—+0

exists. Then J.(x) may be thought of as a jump of the rth derivative, even if
this derivative does not exist near =z.

THEOREM B. If f satisfies 0-(x)=0 and if r<a=<r+1, then

~ar v (—1) [ 0w, t)
(1.9) @y —= Lm 59 410,

as n— oo, where su(x) is the nth (C,a) mean of the allied series of f(x).

2) Cf. also [15], p. 60.
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Theorem B is due to Plessner [8], [9].® The purpose of this paper is to
generalize Theorem A and Theorem B by K. K. Chen’s method.

2. The following theorem is an extension of K. K. Chen’s result:

THEOREM 1. If 42f(x) is the second symmetric difference of f(x): 2¢.(t)
=20(t) =i f (@)= f(@+ 1) —2f (@) + fw—1), and if

@.1) j:

then the second differentiated series of the Fourier series (1.1) of f(x):

2
éi‘j;(—x)—A ‘ du=o0(t), as t—0,

- i n—zjn f(t) cos n(t —x)dt = — i n—25 f(@+t)cosntdt
(2'2) n=1 T J—= n=1T J—=x
= = S [ o+ 0~ 2f@) + fla— ) cos medt

is summable (C, a), a>2, to the value A.
LEMMA 1. Let S5 wi) denote the ath Cesaro sum of > protUs, t.e.
n—k+«
<E ulc) Z An_vu —kzo( >uk-
If a=1, then
YtZS: (i V2 cos ut) dt = — Zru durS: <§ v? cos vt) dt
0 1 0 0 1

Tn*

2.3) . B
= —2§0tSn<? ysin ut>dt ~ — Ta+a) ~ —rnAs as n— oo,

The proof of (2.3) is essentially due to K. K. Chen.?

LEMMA 2. Let Ki(x) denote the nth (C,a) mean of the series 1/2+ cosx
+cos2x++--. Then

@.4) ] i) ' <Cn (0=t<n),
a 1
(25) KO S S (zsts=),

for —1Zasr+1, n=12,.--,
Lemma 2 is due to Zygmund.®

Proof of Theorem 1. Let us denote by o535 ur) the nth Cesaro mean of

3) See also [15], p. 63.
4) See [4], p. 83.
5) Cf. [15] pp. 60-61; and also [14], p. 213.
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order a of >'2our. By (2.2) and Lemma 1 (with «>2), we have, as n— oo,
the difference between the mth Cesiro mean of order « of the second dif-
ferentiated series of the Fourier series of f(x) and A is

R, = UZ{— i —:—J:—“i f(t) CcoSs V(t - x)dt} —A

_ lS"{Ag F)— Atz}a;:(i V2 cos ut) dt + o(1)
2.6) i '
= = L[ t2000 — 4303317 cos t) d + o(1)

— l(g”’# 5;n+ D +o(l)= — %(In +du+ To) + o(D),

T 0

say. Applying Lemma 2 with » =2, we obtain

2.7 l—an<2u COSut .__‘ i _W—%m <—:;—§t§7r),
@8) ’ . K“(t)‘<Kn3 Ost<n)

and therefore

| Tul = S r2e(t) — A1 {-% \de? K“(t)} dt ’ =K Yl 20(t) — At* [ m*etmetdt
2.9) 1 éan—ae—(ua)S |20(t) — At?| dt
0
=o(l), as m—oo.

Byi(2.8) and (2.1), we have the estimate:
— — 27— K«
111 = | [0 - ar1 (oK) @t
gKn:*jl [2¢(t) — At? | dt
0
< Knjl/” 2¢(t)
0

tZ
=o0(1), as m—oo,

(2.10)

—Aldt

It remains to estimate |J.|: From integration by parts and in virtue of (2.7),
we find, as n— oo,

20(t)
tZ

A gan-aﬁ/ nrer

< n2-of3(e)e> + d(m)yn-2+<} + Kn2- «j t- adt§

2¢(u) Al du
.11) u?
< 2 f3()e2< + dm)n-2} + o(e) {n2 «j - “dt}

=o(1),
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as e—0 and n—oo. Collecting (2.6), (2.9), (2.10), (2.11), we obtain
oo 2 (m

(2.12) R, =" { -3 ”75 F (&) cos v(t — x) dt} — A =o0(1),
1 —_T

as n—oo, This completes the proof of Theorem 1.

3. We come now to similar results for successive derivatives of higher
orders. The result of Theorem 1 cannot be extended to symmetric difference
of order 3, and therefore we are imposed to change it slightly to a similar form
with the generalized symmetric derivatives. The following results are generali-
zations of Theorem A:

THEOREM 2. If r is even and 1if there exist comstants Po,Bs, +++,[B3 such

that
Tt o] 100 = (Bt gy oo Bep) | du = o),

t
0

3.1)

as t—0, where x(t) = (1/2){f(x +t)+ f(x —t)}, then the rth derived series of
the Fourier series of f(x) is summable (C,a), a>r, to B,

THEOREM 3. If r is add and if there exist conmstanmts Bi,[s, =+, B, such
that

(3.2) oo = (Bt sy +o o8ty ) [ du= o,

as t—0, where ¢t)=1/2){f(x+t)— f(x—1)}, then the rth derived series of
the Fourier series of f(x) is summable (C,a), a>r, to B,.

The proofs of Theorem 2 and Theorem 8 are practically similar. So let us
consider a proof of Theorem 8. The result is obvious if f(x) is a trigonometric
polynomial, and therefore we may, without loss of generality, take By =8;="--"
=f,=0. The mth Cesaro sum of order a of the rth derived series of (1.1) is
given by

ot = 2 flo+ otk de= 2| oKy ae

1/n e n
=3U +§ +H=§[L+b+1g, say.

T 0 1/n

3.3

From Lemma 2 and (3.2) we find

1/n
(3.4) L =0w | 1101 dt = o),
as n—oo, In virtue of (2.5) and by integration by parts we find
|LI< Knj -1 1(t) | dt
(8.5) 1

€
1

=n'« {3(8)8"”‘ +o(m)n~ "= 4+ b‘(e)j , t”"z"“dt} ,
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which tends to zero as n—oo and e—0. Then by (2.5) in Lemma 2 we obtain
the estimate:

1I| < §”| 1) | | {Ks(t)} | dt

< KS”| () | m7-ot-a-1d¢
3.6) ‘

< K’nf’“e"“'ljzl x(t) | dt

=o(1),

as ¢ is arbitrarily fixed and n— . Collecting (3.4), (3.5), (8.6), we obtain the
required result:
3.7 {oa(@)}” =0(1), as Mm—oo.

4. We now consider corresponding results for the repeated differentiated
geries of the conjugate series of the Fourier series of f(x).

LEMMA 3. Let KXt) be the conjugate (C,a) kernel, and let

1 1, .
(4.1) H,(t)= 5 cos Et — K (t).
If 0<a=r+1, we have
4.2) R} | <Cn+t (0<t<un),
4.3) | HO(t) | < Cnr-eag-a-t <% <t< n'>.

Lemma 3 is due to Zygmund [14], [15], p.64. Corresponding to Theorem
2, we have the following results which are generalizations of Theorem B:

THEOREM 4. Suppose r is an odd integer and that there exist comstants
Qo A2y * ++y Uy, SUCH that

2 r-1

.4 [l | 9w — aou—augy =+ g gy | du =),

as t—0, then the rth allied series of the Fourier series of f(x) is summable
C,a), r<a=r-+1, to the integral:

4.5) - lr 2D g,
T J1l/n t
where
2 {1
o, (x, t) =2 {sb(t) — o — a’z‘z—! e “T-lm} ’
and

9(0) = 92(0) = 5 (@ + ) = fla— ).
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THEOREM 5. Suppose that r is even and that there exist integers ay, as,
cee, ar_y, Such that

(4.6) ﬁu

as t—0, then the rth allied series of the Fourier series of f(x) is summable
C,a), r<a=r+1, to the integral (4.5).

u3 u'r-1
P(u) — ayu — a3ﬁ — e — oy (r—_l)' du = o(1),

The proofs of Theorem 4 and Theorem 5 follow in a similar way as in the
proof of Theorem 2, except we use the corresponding inequalities in Lemma 3
which we omit here. I also remark that by the method due to Izumi [7], we
can further generalize our results. So we have:

THEOREM 1’. In Theorem 1, the condition (2.1) may by replaced by:
t 2
(@.1a) g {%@ — A} du = o(t),

0

% _ A\ du = O(t),

2.1b) St

0
as t—0.

THEOREM 2. In Theorem 2, the condition (3.1) may be replaced by:
1

t u? u”
(3.1a) WL {x(u) - (30 Byt ﬁrﬁ>} du = o(1),
1 (¢ u? u -
(3.1b) e - (80+ By ooy )| du =00,
as t—0.

Similar results for Theorem 3, Theorem 4, and Theorem 5 also hold; and
we omit the details here. The proofs of these results follow in a similar way.
For simplicity, let us consider a sketch of the proof of Theorem 1’: We only
need to change slightly the proof of Theorem 1. We change (2.6) to:

@6  R.=— %qm/"+ S;m+ S) +o(l)=— ;1—(1,1 T+ Ty + oL).

0

It is easy to see that T, =o0(1). To estimate I, we set
t

@) @(t):j { @) —A} du.
0

U
Then we have, by (2.4) and integration by parts:

I= S:"/"{ 2929 - A} 4 ;; (Kx()}dt
“.8) - [@(t)tz—o‘l’ltiz{K:(t)}r/"+ 0 {S;"/ T + tnt] dt}

=o(1),




CESARO SUMMABILITY OF FOURIER SERIES 141

as m is arbitrarily fixed and n—oco. It remains to consider J;. In fact, similar
to (2.11), we have

4.9)

BARS anj
m/n

oo (2] o], 0] 5=
n 0 wu

2¢(t) -a
—z —A l ti-ede

m/n

é KmZ—a,

which tends to zero as m—oco. Hence the result.

Finally it should be remarked that Bosanquet [1], [2], [8] has found a
necessary and sufficient condition that the r-times differentiated Fourier series
of f(x) should be summable (C,a + 7), for « =0. He has also found a necessary
and sufficient condition for the Cesaro summability (C,a«+ 7), « =0, of the sue-
cessively derived allied series of a Fourier series. But his results are related
to Cesaro-Lebesgue integrability of a certain function and Cesaro summability
(C, @) of its Fourier series.

Added in proof: 1 just learnt from Prof. Kenji Yano that his paper: On Fejér kernels.
Proc. Japan Acad. 35 (1959), 59-64, also contains some detailed estimates of the kernels
KX(x) and K (x) which are related to results in Lemma 2 and Lemma 3.
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