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1. Let fix) be a Lebesgue-integrable function of period 2π. The Lebesgue-
Fourier series of f(x) is

(1.1) f(x)~-^-[ f(t)dt+ Σ - Γ f(t)cosn(t-x)dt,

and the derived series of (1.1) is

(1.2) fjraΓ f(x)sinn(t-x)dt.
n = ί J-π

It is well-known that if fix +1) + /(# — t) — 2A-+0, as £—•(), then the series
(1.1) is summable (C, a) to A, where a > 0. This condition can be improved to
the Lebesgue's condition

[ f ( ) f ( ) \ o(t), a s t - ^ 0 .
Jo

Concerning the derived series of (1.1), if

(1.3) f(x + t) - fix -t)- 2At = o(t),

as t—>0, then the series (1.2) is summable (C, a), a>l, to A.Ό The result has
been improved by K. K. Chen [4], [5]: If

(1.4) r
Jo

u)-fix-u)
u

-2A du = o(t),

as ί—>0, then the series (1.2) is summable (C,a) to A, where a>l.
Suppose that a function fix) is defined in the neighbourhood of a point x

and that there exist constants aOfau •• ,αrr such that for small | ί | ,

f.r-1 fr

f{χ + t) = a0 + ait H h ̂ r-i, _ 1 c y + (αrr + ^)^y,

where ε« tends to 0 with t. We then say that / has a generalized r th derivative
(unsymmetric derivative) fcn(%) a t x a n ^ define /σ)(fl?) = αrr. This definition is
due to Peano. For applications to trigonometric series a certain modification of
it is due to de la Vallee-Poussin. We consider it separately for r even and odd.
Write

Received May 2, 1962.
1) This was proved by Priwaloff [10] and Young [12], [13].
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χx(t) = χ(ί) = j{f(x + t) + f{x -1)},

ΨS) = Φ(t) = j{f(x + t)- f(x -1)} .

Suppose that r is even. If there are constants βOf βz> &, , βr such that

)

where εt tends to 0 with t, we call βr the generalized symmetric derivative —
or simply, the rth symmetric derivative of / at x. The definition of the rth
symmetric derivative for odd integer r is similar. We denote the symmetric
derivative by the same symbol /σ>(#).

THEOREM A. // the symmetric derivative f(Ό(x) of fix) exists, then the rth
derived series of the Fourier series of fix) is summahle (C, a), a>r, to the
sum fcnix)-

Theorem A is due to Gronwall [6], Priwaloff and Zygmund [14] .2 ) Suppose
that /, defined in the neighbourhood of x, has r — 1 unsymmetric derivatives
ao,(Xu •••par-it and define ωr(x, t) by

tr~x V
(1.5) fix0 + t) = a0 + ait H h ar-i ( r _ 1x | + °>r(&, Q^y.

If ωrix, t) has a limit as ί-^0, / has also an r th derivative fmi%)> If r is odd,
it follows from (1.5) that

^ ^ + di ί ) ^(1.6) lit) = £ϊ ^ ^ j ^

and if r is even, then we have

(1.7) Φit) = ait + a*jfi + + α r - i - ^ ^ - , + γ ^ ( ^ , t)-^.

Suppose now, without assuming anything about ωr(%91), that there exist constants
a3 such that we have (1.6) or (1.7) according to r is odd or even, and that

(1.8) drix) = lim δr(x, t)
ί->+0

exists. Then δrix) may be thought of as a jump of the rth derivative, even if
this derivative does not exist near x.

THEOREM B. If f satisfies δrix) = 0 and if r<a^r + l, then

(1.9)
π Ji/n t

as n-*oo, where σlix) is the nth iC,a) mean of the allied series of fix).

2) Cf. also [15], p. 60.
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Theorem B is due to Plessner [8], [9].3 ) The purpose of this paper is to
generalize Theorem A and Theorem B by K. K. Chen's method.

2. The following theorem is an extension of K. K. Chen's result:

THEOREM 1. // A\f(x) is the second symmetric difference of fix): 2φx(t)
= 2φ(t) = Δ\f(%) = fix +1) - 2f(x) + f{x -1), and if

(2.1) r. -A = o(t), as ί—>0,

(2.2)

then the second differentiated series of the Fourier series (1.1) of fix):

oo ^,2 Γπ oo γ,2 rπ

- 2 — f{t) cos nit -x)dt = -Jl — f(fi +1) cos ntdt
n=L 7ΐ J—π n=l TC J — π

oo ΛO2 rπ

= - Σ3 — {/(* + *) - 2/(«) + /(* - *)> c o s n t dt

n=i π Jo

is summdble (C, a), a>2, to the value A.
LEMMA 1. Let S£(^j?uk) denote the ath Cesάro sum of ^\T=oUkf i.e.

If oL ^ 1, then

(2.3)
f ViSίΓΣ ^ cos \>t\ dt=-2[\du [USz(f] v2 cos vt) dt
Jo \i / Jo Jo \ i /

= - 2 ί πtSs(β v siv sin I
πna

as

The proof of (2.3) is essentially due to K. K. Chen.4'

LEMMA 2. Let K"(x) denote the nth (C, a) mean of the series 1/2 + cos *
+ cos 2a; H . Then

(2.4)

(2.5)

for - l ^ t f ^ r + 1, w = l,2, •••.

Lemma 2 is due to Zygmund.5)

Proof of Theorem 1. Let us denote by the wth Ces&ro mean of

3) See also [15], p. 63.
4) See [4], p. 83.
5) Cf. [15] pp. 60-61; and also [14], p. 213.
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order a of Σ*Uwft. By (2.2) and Lemma 1 (with a>2), we have, as n—>oo,
the difference between the nth. Cesaro mean of order a of the second dif-
ferentiated series of the Fourier series of f(x) and A is

Rn = σι[- fj J^Lf/(ί) cos *(ί -

(2.6)

say. Applying Lemma 2 with r = 2, we obtain

= - -f*{//?/(&) ~ A ί 2 K ( Σ ^ 2 cos vΛ dt (
π Jo \l /

= - — [*{2<ρ(t) - At2}σl(f\ v1 cos ^Λ At + o(l)
π Jo \ l /

= - - ( 1 + + )
7Γ \Jo Jl/ro J e /

(2.7) ( oo

ψ2 cos

(2.8)

and therefore

\Tn\ =

(2.9)

(0 ̂  ί ^ π),

At - At'\

S Kn2-aβ-a+a>[π\2ψ(t) - At21 At
Jo

as n~>oo.

By&(2.8) and (2.1), we have the estimate:

(2.10)

dt \

At

= o(l), as w->oo.

It remains to estimate | J W | : From integration by parts and in virtue of (2.7),
we find, as n—>oo,

2φ(t)

(2.11)

l/n t2 -A

~2+a} + Kn2-a[£ t~adt[
J l/n J 0

-2+a}+d(s){n2-«[S tι-«ά
( Jl/n

UΔ
-A du
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as ε->0 and n->oo. Collecting (2.6), (2.9), (2.10), (2.11), we obtain

(2.12) Rn = σl ί- fj ^ ~ j * f{t) cos *(ί - a)dί} - A = o(l),

as w-*oo. This completes the proof of Theorem 1.

3. We come now to similar results for successive derivatives of higher
orders. The result of Theorem 1 cannot be extended to symmetric difference
of order 3, and therefore we are imposed to change it slightly to a similar form
with the generalized symmetric derivatives. The following results are generali-
zations of Theorem A:

THEOREM 2. If r is even and if there exist constants β0, β2, , βr such
that

x(u) - (β0 + β2— + + βr^ϊ) I du = o(3-D ^

as t-+0, where %(t) = (l/2){/(# + t) + f(x — t)}, then the rth derived series of
the Fourier series of f{x) is summable (C,a), a>r, to βr.

THEOREM 3. If r is add and if there exist constants βu ft, , βr, such
that

(3.2) ψ(u) - (β,u + & ~ + + βr^ I du =

as t—>0, where ψ(t) = (l/2){f(x +1) — f(x — t)}, then the rth derived series of
the Fourier series of f(x) is summable (C,a), a>r, to βr.

The proofs of Theorem 2 and Theorem 3 are practically similar. So let us
consider a proof of Theorem 3. The result is obvious if f(x) is a trigonometric
polynomial, and therefore we may, without loss of generality, take βi = βs =
= βr = 0. The wth Cesάro sum of order a of the rth derived series of (1.1) is
given by

ί WW}(r) = - f f(χ + t){κmvr' dt = - [\(t){κmYr' at
(3.3) π } " π U

= ± + + U [ ί 1 + U/3], say.L ^LJo Ji/w JεJ π

From Lemma 2 and (3.2) we find

(3.4) 11,1 =O(nr+ί) \1/n\ x(t) I dt = o(l),
Joo

as n—>oo. In virtue of (2.5) and by integration by parts we find

t-1-°ί\X(t)\dt
<3 δ) "

)\ tr+1-2-adt\,
Jl/n )
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which tends to zero as n—>oo and e—>0. Then by (2.5) in Lemma 2 we obtain
the estimate:

^K.[π \%{t)\nr-n~a-1dt
(3.6)

as ε is arbitrarily fixed and %—>oo. Collecting (3.4), (3.5), (3.6), we obtain the
required result:

(3.7) K(aO} c r ) = o(l), as w—oo.

4. We now consider corresponding results for the repeated differentiated
series of the conjugate series of the Fourier series of f(x).

Hn(t) = j cos j t -

LEMMA 3. Let K"{t) be the conjugate (C, a) kernel, and let

(4.1)

If O^a^r + 1, we have

(4.2) I {K:(t)}°

(4.3) ] m\t) I ̂  i

Lemma 3 is due to Zygmund [14], [15], p. 64. Corresponding to Theorem
2, we have the following results which are generalizations of Theorem B:

THEOREM 4, Suppose r is an odd integer and that there exist constants
OLΊ, , ar-u such that

(4.4)
fί U2 Ur'x

du = o(l),

as t—>0, then the rth allied series of the Fourier series of f{x) is summάble
(C,af), r<a^r + l, to the integral:

I f- δr(x,t)
(4.5)

where

and

π J 1/TC t
-dt,

i
ψ(t) -a0-

t2

"-"^•(^^Γ/'

>-/(*-«)}.
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THEOREM 5. Suppose that r is even and that there exist integers aίf

,ar-i, such that

(4.6) [V
Jo

uό... u
ψ(u) - a,u - α 8 — ^-i u du = o(l),

as t-*0, then the rth allied series of the Fourier series of f(x) is summable
(C,a), r < a r ^ r + l, to the integral (4.5).

The proofs of Theorem 4 and Theorem 5 follow in a similar way as in the
proof of Theorem 2, except we use the corresponding inequalities in Lemma 3
which we omit here. I also remark that by the method due to Izumi [7], we
can further generalize our results. So we have:

THEOREM 1'. In Theorem 1, the condition (2.1) may by replaced by:

(2.1a)

(2.1b)

as t—>0.

Γ
Jo

= O(t),

THEOREM 2'. In Theorem 2, the condition (3.1) may be replaced by:

(3.1a) —^ 1 I %(u) — ί β0 + #2-^y H h βr—^

Λ/2 Λfί"

(3.1b)

as ί-

tT+ du - 0(1),

Similar results for Theorem 3, Theorem 4, and Theorem 5 also hold; and
we omit the details here. The proofs of these results follow in a similar way.
For simplicity, let us consider a sketch of the proof of Theorem V: We only
need to change slightly the proof of Theorem 1. We change (2.6) to:

1 / Γm/n Γε Γπ\ 1

(2.6)' Rn = ~ - + + ) +0(1) = - ~{Γn + J'n+ Tn)
π \Jθ Jm/n Jε/ π

It is easy to see that Γn = o(l). To estimate In, we set

Then we have, by (2.4) and integration by parts:

(4.8) rf2 -]m/n (Γm/n

W{K"{t)} Jo + O ϋo ί
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as m is arbitrarily fixed and n—>oo. It remains to consider JL In fact, similar

to (2.11), we have

(4.9)

Jm/n

2φ(t)

t2 - A V>-«dt

ί ί Ύϊl \2-«ϊ Cε Γ*

β2-" + ( — ) \+Kn2-a\ t-adt\
\ n ) J Jm/n JO

^ Km2-",

which tends to zero as m—»oo. Hence the result.

2φ(u)
- A du

Finally it should be remarked that Bosanquet [1], [2], [3] has found a

necessary and sufficient condition that the r-times differentiated Fourier series

of f(x) should be summable (C, a + r), for a ^ 0. He has also found a necessary

and sufficient condition for the Cesέxo summability (C,a + r), a^O, of the suc-

cessively derived allied series of a Fourier series. But his results are related

to Ces&ro-Lebesgue integrability of a certain function and Ces&ro summability

(C, a) of its Fourier series.

Added in proof: I just learnt from Prof. Kenji Yano that his paper: On Fejer kernels.
Proc. Japan Acad. 35 (1959), 59-64, also contains some detailed estimates of the kernels
K£(x) and K£(x) which are related to results in Lemma 2 and Lemma 3.
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