NOTE ON SOME GENERALIZATIONS OF
QUASI-FROBENIUS RINGS

By SHIGEMOTO ASANO

Let A be a ring satisfying the minimum condition for right and left ideals
(by a ring we shall always understand such one). Let A have a unit element.
Then owing to Ikeda [3] we know that A is a quasi-Frobenius ring if and
only if it satisfies the following condition:

(a) Every homomorphism between two left (right) ideals of A is given
by the right (left) multiplication of an element of A.

Recently Kawada [4] discussed the following condition which is a weaker

one than the above:
(*) Every left (right) ideal A-isomorphic to a given left ideal | (right
ideal 1) can be expressed as la (ar) by the right (left) multiplication of a regular

element of A.
In the present note we shall deal with rings (and algebras) which satisfy

the condition (*) for simple left (and right) ideals. Besides, we shall give a
remark on the duality relations of two-sided ideals in a ring.

1. Remarks on division algebras.

Let D be a (finite dimensional) division algebra over a field F'; let (u, us,
<+, Uy) be a basis of D over F. Let &, &, --+, & be n independent variables
and put

S = élaijkfi

where a.;x 1 <4, j, k <n) are the coefficients of the multiplication table

kJs

n
Uiy =kzlaijkuk.

The matrix S(£) is called the group matrix of D with parameters &, &, -+, &,
(defined by the basis (w1, s, + -+, %,)). In this section we shall prove the fol-

lowing proposition.

PrOPOSITION 1. Let D be a division algebra over a field F; let S(&) be
the group matrixc of D, defined by a basis (uy, Us, «++, Uy) of D over F, with
parameters &, &, -+, .. Then any minor determinant of S(£) does mot
vanish identically. More generally, let P and Q be two non-singular (n X n)
matrices with coefficients in F. Then any minor determinant of PS(§)Q does
not vanish identically.
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For the proof of this proposition, we have only to consider the case where
F' ig an infinite field. In fact, assume that our assertion is valid for a infinite
underlying field. Let 7 be a variable over F' and consider Dp,; as is well
known, this algebra is a division algebra over F'(3). The group matrix S(¢) of
D may be regarded also as the group matrix of Dy, defined by the basis
(%1, Uz, * -+, Un). Our assumption will imply then, since F(y) is an infinite field,
that the proposition is valid for any F.

We can see now straightforwardly that the above prop. 1 is equivalent to
the following one, to which we shall give a proof.

PROPOSITION 2. Let D be a division algebra over a field F with finite
rank n; let F have at least [n/2] elements.®’ Let (%1, X2, <+, &) and (Yi, Ya,
<o, Yn_r) be two sets of elements of D and let the elements of each set be
linearly independent over F. Then there exists at least one element a in
D such that the set (xi, X2, **+, Tr, Y10, Yo, * ++, Yu_,q) constitutes a basis of
D over F.

Proof. At the outset we may assume, without loss of generality, that
r=mn/2. For the sake of brevity we write

SO = (wly Loy ** Y wr)-

As D is a division algebra, we can take an element a; of D such that (S,
y10;) is a set of linearly independent elements over F'; then we choose as many
elements ¥i,, Yig ** *» Yio, as possible from (¥, ¥s, -+ +, Y»-r) for which the ele-
ments of the set (So, %141, ¥:,01, * -+, Yis,@1) are linearly independent over F.
After suitable reordering, we may set 1:=2, - -+, iy, = a1; We write

S1 = (So, Y101, Y201, ** *, Yo, Q1)

By the definition of S; the elements ¥e,.101, Ya,+2Q1, ***» Yn_r@: are linearly
dependent over F' to S;; therefore, if we put

ay
y(il) =Yay+1— Eszﬂlj
‘7=

with suitably chosen coefficients 7;; 1<i<n—(r+a),1<j=Zai) in F, the
elements yPa; (1 <i<n—(r+a,)) are linearly dependent over F' to So. The
two sets (U1, Yz, -+, Yn-r) 80A (Y1, Ya, =+ *5 Ya Y, Y5, ++ ) Yilcraap) 8TE linearly
dependent over F' to each other. Similarly proceeding, we obtain the sets of
linearly independent elements over F':

SZ = (Sly ’.l/(ll)az, y(Zl)a27 ) yg‘é)a2)y
Sz = (8s, ¥Puas, yPas, - -+, YPas),

......................

’
- - -1
St = (St—ly y? l)aty ’.llg Dat’ ] ygft )a't)'

Here, the last set S, constitutes a basis of D over F'; the two sets (yi, ¥z ** -,

1) [n/2] means the largest integer not exceeding n/2.
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Yn-r) A0A (Y1, Yo, * ;) Yay Y52, Y50, -+, 95, -+, Y55 ) are linearly dependent over
F' to each other; ¥Pa, is dependent to S, ; if A=v. Obviously we have only
to prove our assertion when (¥, ¥z, -+, Ynr) = (U1, Yz, ***» Yayp Y2, Y5, =+, Y50,
e, yfx‘;l)).

Let (u)= (w4, Uz, -, ,) be a basis of D over F' and let the expressions
of the elements ¢, 1<7=<7) and yjax A1<j=<n—71,1<k=<t) be

=W)X, and Y= u)Y,

respectively, where X, and Y;; are (n X 1) matrices with coefficients in F.
Now let &, &, ---, & be t independent variables over F' and put a(£) = 3i_; ai&s.
Then the products y,a(€) are the elements of Dy, =Dre,,s,,...,¢, and we have
ya(8) = (u) Dt Y&, Consider the derminant

|
d(§) =det tXl X oo X, ; Y6 };_‘. Yorbp « - ; Yoor, 16k {;

by the definitions, the coefficients of £5:&3:---&5¢ of d(€) does not vanish, and
hence d(&) does not vanish identically. But, as F' has at least [n/2] elements
and as » —r < [n/2], there exists at least one set of values () = (1, r2, **, 70)
of (¢) in F such that d(y) # 0. This means that the set of elements (x;, 3, - -,
vy, Y10(7), Y20(7), =+, Yn_ra(y) constitutes a basis of D over F. This completes
the proof.

The above prop. 1 will be used in the subsequent section 2. (It should be
observed that the same fact as in prop. 1 is also valid for the antistrophic
group matrix of a division algebra. Cf. section 2.)

2. Lemmas on simple (A, 4) double modules.

Let A be a ring with a unit element and let N be its radical. Let
A=A/N=A, +A,+---+ A, be the direct decomposition of A into simple two-
sided ideals. The unit element E of A is expressible as E=FE,+E,+---+E;,
E.=e¢. i+e, s+ +erm A=k=k), where e., 1=<x=k,1<i=<f(x)) are
. mutually orthogonal primitive idempotent elements and Ae,. .=Ae;, if and
only if k=A. Moreover, for each « there exists a system of f(«)*> elements
Ce,ij (1 =1, j <f(k)) such that ¢, ;= e, Cc,jCr, it = OjrCr,i1. We set e, 1 =€, (1=«
=< k) for the sake of brevity.

Let M be a simple (4, A) double module; moreover we shall always assume
that M is finitely generated when it is considered as a left (right) A-module.
For some E, and E; we have E.ME,=M; when that is so, M is called to be
of type (¢, ). We now introduce the following two conditions corresponding to
(a) and (*), respectively:

(a) Every homomorphism between two left submodules of M is given by
the right multiplication of an element of A;

(*) Every left submodule A-isomorphic to a given left submodule { of M
can be expressed as la by the right multiplication of a regular element of A.

We shall assume in the rest of this section, without loss of generality, that
A is semisimple.
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LEMMA 1. Let M be a simple (A, A) double module of type («, 2). Then
M satisfies (a)' for simple left submodules ©f and only if e.M is a simple
right submodule. Moreover, M satisfies (a)’ for every left submodule if and
only if e.M and Me, are simple right and left submodules, respectively.

The first assertion is a restatement of prop. 1 of [1]. The proof for the
second assertion is similar to that of Ikeda [3], prop. 2.

LEMMA 2. Let M be a simple (A, A) double module of type («, A). Let
M satisfy (*) for simple left submodules. Then either e.M is a simple right
submodule or we have f(2)=1.

Proof. Assume that e, M is not simple; let m be a non-zero element of
e.Me;,. Then, as e.Me;, is a simple (e Ae,, e;Ae;) module, we have e¢.Me;
=e¢,Ae.-m-e;Ae;; but, it follows from our assumption that m-e;Ae; & e.Me;.
Therefore we can choose an element x of e.Ae, such that xm does not lie in
m-e;Ae;. Suppose now that f(1) >1. Put [=A(m + xme;,12); | is a simple left
submodule and so A-isomorphic to |y =Am. Then we have [ =1,z for a suitable
regular element z of E;AE,;, and hence there exists an element y (#0) of A
such that m + xmec;, 12 = ymz; here ¥y may be assumed to be contained in e.Ae,.
This implies m = ymze; and xm = ymzc;, 21, which show that ym (+ 0) is contained
in m-e;Ae; as well as in xm-e;Ae;. On the other hand, however, we have
by the definition of 2 that m-.e,Ae; ~xm-e;Ae; =0. Thus we are led to a con-
tradiction and this completes the proof.

Let the notations and assumptions be as in the above lemma; let e.M be
not a simple right submodule. By the lemma we have f(1) =1; e.M=e.Me; is
a simple (e.Ade,, ¢;A¢;) double module and satisfies (*)’ for simple left sub-
modules. For the sake of brevity we write M, K and L in place of e.Me,,
e.Ae; and e¢;Ae;, respectively. We now prove the following

LEMMA 3. Let K and L be two (finite dimensional) division algebras
over o field F. Let M be a simple (K, L) double module over F and let M
satisfy (*), for simple left submodules. Then either M is a simple right L-
module or M is a simple left K-module.

Proof. We first prove our assertion in the case where the underlying field
F' is an infinite field. Let m be an arbitrary non-zero element of M. By our
assumptions it follows easily that every element z of M is expressible in the
form xmy, where x€K and y€L. Put (M:F)=n, (K:F)=7r and (L:F)=s;
let (w1, Uz, *++, Un) [(V1, Vg + =+, v,), (Wy, W, -+, ws)] be a F-basis of M [K, L].
Further we take a system of n+r+s indeterminates (2, 2;, ¥x) 1 <1< n,
1<j=<r,1<k=<s). Then a equation (3V;uv;)(C% z:u;) = m(S yxw:) must have
a non-trivial solution in (x,, yx) for every values of (z,) in F. This equation
is equivalent to a system of linear equations

n

(@) S Seham, — SNy =0  (1<vy=<mn),
I=12=1 k=1
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where ¢, (1<1,v=n,1<j=<7), din 1Sk<s,1<v<m) are -coefficients of
multiplication tables: v;u, =3}, ¢l u,, mw, =3, dru,. Suppose now that M is
not simple as left K-module and (at the same time) as right L-module. Then we
have evidently n = » +s. Let M =Kmw;, +Kmi, + - - - +Km,, where ;, W3, -,
W, are elements of L, be a decomposition of M into direct sum of simple left
K-modules; according to the decomposition we take a basis of M: (vimWy, VoMW,

coo, VML, ViMWz, VoMWz, -, VoMW, -+, V.MW,), moreover, we write for sim-
plicity 2i, 23, ---, 2%, 23, 2%, -+, 2%, ---27) instead of (21, %2,+--, 2,). The matrix

of the coefficients of («) is then of the following form:

_ [ RG) R RGe)
o = | I EE ]

where R(z") denotes the first regular representation of the general element
230+ 23vp 4+ -+ 2w, of K (i. e. the transposed matrix of the antistrophic
group matrix of K with parameters zi, 23, +--, 25), and D =|d|l. Next we
take another basis (mw;, mws, ---, MWws, *)= (VMWy, +++, VMW, VIMW2, -+,
v,mW,)T of M, and consider the correspondingly transformed matrix C(z)T of
C(2); by definitions D is transformed into

DT=(E;00---0)

=
where E; denotes the unit matrix of order s. On the other hand, (R(z') R(2%)- - -
R(2z%)) is transformed into (R(z!) R(2?) - - - R(2°))T = (A1(z) As(z) « - - As(z), Bi(2) By(2)
-+ B,_«(z)), say, where A;(z) 1=<1<s)and B;(z) 1=<j<n—s) are (r X 1) mat-
rices. But, by prop. 1 we can see straightforwardly that for a suitable set of
values (y;) of (z;) in F' we have rank(B;(z) Bx(2) « - - B,(z)) = r (observe that n — s
>r and that F is an infinite field); so we must have for the same values of
(z;) that rank C(z)T =rank C(z) =r + s, and hence the sysem of linear equations
(«) has no non-trivial solution in (x,, yx) for (2;)=(r;). This is a contradiction

and therefore proves our assertion.

We now consider the second case where the underlying field F' is a finite field.
The division algebras K and L must be then commutative. Denote by K, the
set of all #’s in K satisfying xm = my for some ¥ in L; similarly denote by L,
the set of all ¥’s in L satisfying my = xm for some z in K. Since K, and L,
are isomorphic fields, we may identify them and regard K and L as (commuta-
tive) division algebras over Ky,=L,. From this point of view we assume with-
out loss of generality that K,=L,=F; moreover, we may set v; =w; = w; =1,
the unit element of F' (the notations be the same as before). The proof of our
assertion in this case is now analogous to the above case; we have only to
observe that Km ~mL = mF.

3. Rings with the condition (*).

Let A be a ring and let N be its radical. If A satisfies (*) for simple left
ideals, A has a right unit element. (This fact can be proved in the same way
as the proof of Ikeda [3], lemma 1.) For a subset S of A we denote by
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U(S) [r(S)] the totality of left [right] annihilators of S.

LEMMA 4. Let A have a left unit element and let A satisfy (*) for
simple left ideals. Then A has a unit element and there exists a permuta-
tion = of (1,2, ---, k) such that the largest completely reducible left sub-
ideal of Ae, is a direct sum of simple left ideals which are isomorphic to
Aery/Ner.

The proof is similar to that of Ikeda [3], lemma 2. If the assumptions of
this lemma are satisfied, we have r(N) S I(N), E.,r(IN)=r(N)E, and that each
r(N)E,; is a non-zero simple two-sided ideal of A.

THEOREM 1. Let A be a ring satisfying (*) for simple left ideals and
Sor simple right ideals. Then: (1) A has a unit element. (ii) There exists
a permutation = of (1,2, ---, k) such that for each « the largest completely
reducible left subideal of Ae, is a sum of simple left subideals of the form lx,
where [ 1is an arbitrary simple left subideal of Ae. and isomorphic to
Ae,y/Nerw, and x’s are suitable units of e.Ae., and the same for e, A.
(iii) f(k) =1 if the largest completely reducible right subideal of e..,A is not
simple, and the same for f(z(x)) and for Ae,.

Proof. A has a unit element £ by what we have mentioned above. By
lemma 4 we have r(N)=1I(N), and we denote this by M. There is a permuta-
tion = of (1,2, ---, k) such that E,,.,M=ME, (1<« <k); each ME, is a simple
two-sided ideal of A. All of our assertions are now immediate consequences of
lemma 2.

COROLLARY. Let A be a primary ring satisfying (*) for simple left
ideals as well as for simple right ideals. Then A 1is either a quasi-Frobe-
nius ring or a completely primary ring.

The following theorem is a direct consequence of lemma 3.

THEOREM 2. Let A be an algebra over a field F satisfying (*) for simple
left ideals as well as for simple right ideals. Then besides (i), (ii) and (iii)
(in theorem 1), A has the property: (iv) For each x either Ae, has a unique
simple left subideal, or e..,A has a unique simple right subideal.

REMARK. If A is an algebra over an algebraically closed field and if A
satisfies (*) for simple left ideals, then by lemma 1 A satisfies also (a) for
simple left ideals. Therefore by Ikeda [3], prop. 1 A is a quasi-Frobenius
algebra whenever A has a left unit element.?

THEOREM 3. Let A be a ring which has the properties (i), (ii), (iii) and
(iv). Then A satisfies (*) for simple left ideals as well as for simple right
ideals.

2) Y. Kawada [4], theorem 3.
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Proof. Since the largest completely reducible subideal »(N)e,.,, of Ae. , is
a direct sum of simple left subideals isomorphic to Ae,/Ne..,, we have
r(N)e.,. =Er,7(N)e,,, and hence r(N)E,=E.r(N)E,(1=x=k). From this
it follows that r(N)E,=FE..,7(N) and that »(N)E, is a two-sided ideal 1<«
<k). Similarly, we have that I(N)E.=E,l(N) is a two-sided ideal (1=«
< k). Furthermore, we can see in the same way as the proof of Ikeda [2],
theorem 2 that »(N)E, and I(N)E, are both simple two-sided ideals; therefore
we must have r(N)=I[(N), and we shall denote this by M. Now let | be a
simple left ideal which is isomorphic to Ae..,/Ne.. and let I by any left
ideal which is isomorphic to I. Both I and I’ are contained in the simple two-
sided ideal E,.,,M =ME,. If e...,M=e..,ME, is a simple right subideal of ME,,
then by lemma 1 I’ is written as la by a regular element a of E.A.E,; the
element a can be taken to be a regular element of A. If, on the other hand,
e, M is not simple, then by (iii) and (iv) it follows that f(x)=1 and Me, is a
simple left ideal, i.e. Me,=ME, is itself a simple left subideal. Therefore we
have '=ME,=[=[(-E. Thus A satisfies (*) for simple left ideals. Similarly,
we see that A satisfies (*) for simple right iderls.

REMARK. In theorem 38, the assumption (iv) can not be omitted. For ex-
ample, let A be an algebra of order 9 over the field R of rational numbers
with a basis (1, o, ©?, m, om, w*m, mo, ome, o*me); let the multiplication
table be

’ 1 0] w? m wm ©*m me ome oMo

1 1 10} w? m om  o'm me omew  O'me

® w? 3 om o*m  3m ome ©new  3me

w? w? 3 3w o'm 3m 3om ©mw 3mew Some
m m mw —(0'm+omw) 0 0 0 0 0 0
om | om ome —@Bm+w*mw) 0 0 0 0 0 0
o*m | ©'m 0*mo —@Bom+3mw) 0 0 0 0 0 0
mw | mw —(0m+omw) 3m 0 0 0 0 0 0
ome | omew —@m+o*mo) 3om 0 0 0 0 0 0
0’mo | o*'mew  —Bwm+3mw) 3w?m 0 0 0 0 0 0

We can easily see that A satisfies (i), (ii) and (iii), and that A does not
satisfy (iv); furthermore A does not satisfy (*) for simple left ideals or for
simple right ideals.

4. A remark on the duality relation of two-sided ideals in a ring.

Let A be a ring with radical N satisfying the duality relations (1) {(7(3))
=3 and (r2) r(I(3)) =3 for every simple two-sided ideal 3, for 3=0 and for 3=N.
Then we can verify, in a similar way as the proof of Nakayama [5], theorem
7, that A has a unit element, »(IN)=1(N) (we denote this by M) and that
ErwyM=ME, 1<k =<k) are simple two-sided ideals. We now give
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THEOREM 4. Let A be a bound ring® with radical N. Let (y1) and (rz)
be valid for every simple two-sided ideal 3, for 3=0 and for every two-sided
tdeal 3 which contains M (=r(N)=UN)). Then (r1) and (r:) are satisfied by
every two-sided ideal 3 of A.

Proof. We have »(N)=I(N)=MZN by what we have cited and by the
definition of a bound ring. M= E..,M=>ME, is the unique decomposition
of M into direct sum of simple two-sided ideals. Let 3 be an arbitrary two-
sided ideal. Then we can prove (r;) and (r;) for 3 in an analogous manner as
the proof of prop. 6 of [1].
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