NOTE ON SOME GENERALIZATIONS OF QUASI-FROBENIUS RINGS

BY SHIGEMOTO ASANO

Let A be a ring satisfying the minimum condition for right and left ideals (by a ring we shall always understand such one). Let A have a unit element. Then owing to Ikeda [3] we know that A is a quasi-Frobenius ring if and only if it satisfies the following condition:

(a) Every homomorphism between two left (right) ideals of A is given by the right (left) multiplication of an element of A.

Recently Kawada [4] discussed the following condition which is a weaker one than the above:

(*) Every left (right) ideal A-isomorphic to a given left ideal 1 (right ideal r) can be expressed as 1a (ar) by the right (left) multiplication of a regular element of A.

In the present note we shall deal with rings (and algebras) which satisfy the condition (*) for simple left (and right) ideals. Besides, we shall give a remark on the duality relations of two-sided ideals in a ring.

1. Remarks on division algebras.

Let D be a (finite dimensional) division algebra over a field F; let (u_1, u_2, \dots, u_n) be a basis of D over F. Let $\xi_1, \xi_2, \dots, \xi_n$ be n independent variables and put

$$S(\xi) = \left\|\sum_{i=1}^n a_{ijk} \xi_i \right\|_{kj}$$

where a_{ijk} $(1 \leq i, j, k \leq n)$ are the coefficients of the multiplication table

$$u_i u_j = \sum_{k=1}^n a_{ijk} u_k.$$

The matrix $S(\xi)$ is called the group matrix of D with parameters $\xi_1, \xi_2, \dots, \xi_n$ (defined by the basis (u_1, u_2, \dots, u_n)). In this section we shall prove the following proposition.

PROPOSITION 1. Let D be a division algebra over a field F; let $S(\xi)$ be the group matrix of D, defined by a basis (u_1, u_2, \dots, u_n) of D over F, with parameters $\xi_1, \xi_2, \dots, \xi_n$. Then any minor determinant of $S(\xi)$ does not vanish identically. More generally, let P and Q be two non-singular $(n \times n)$ matrices with coefficients in F. Then any minor determinant of $PS(\xi)Q$ does not vanish identically.

Received June 19, 1961.

For the proof of this proposition, we have only to consider the case where F is an infinite field. In fact, assume that our assertion is valid for a infinite underlying field. Let η be a variable over F and consider $D_{F(\eta)}$; as is well known, this algebra is a division algebra over $F(\eta)$. The group matrix $S(\xi)$ of D may be regarded also as the group matrix of $D_{F(\eta)}$, defined by the basis (u_1, u_2, \dots, u_n) . Our assumption will imply then, since $F(\eta)$ is an infinite field, that the proposition is valid for any F.

We can see now straightforwardly that the above prop. 1 is equivalent to the following one, to which we shall give a proof.

PROPOSITION 2. Let D be a division algebra over a field F with finite rank n; let F have at least [n/2] elements.¹⁾ Let (x_1, x_2, \dots, x_r) and $(y_1, y_2, \dots, y_{n-r})$ be two sets of elements of D and let the elements of each set be linearly independent over F. Then there exists at least one element a in D such that the set $(x_1, x_2, \dots, x_r, y_1a, y_2a, \dots, y_{n-r}a)$ constitutes a basis of D over F.

Proof. At the outset we may assume, without loss of generality, that $r \ge n/2$. For the sake of brevity we write

$$S_0 = (x_1, x_2, \cdots, x_r).$$

As D is a division algebra, we can take an element a_1 of D such that (S_0, y_1a_1) is a set of linearly independent elements over F; then we choose as many elements $y_{i_2}, y_{i_3}, \dots, y_{i_{a_1}}$ as possible from $(y_2, y_3, \dots, y_{n-r})$ for which the elements of the set $(S_0, y_1a_1, y_{i_2}a_1, \dots, y_{i_{a_1}}a_1)$ are linearly independent over F. After suitable reordering, we may set $i_2 = 2, \dots, i_{a_1} = a_1$; we write

$$S_1 = (S_0, y_1a_1, y_2a_1, \cdots, y_{\alpha_1}a_1).$$

By the definition of S_1 the elements $y_{\alpha_1+1}a_1, y_{\alpha_1+2}a_1, \dots, y_{n-r}a_1$ are linearly dependent over F to S_1 ; therefore, if we put

$$y_i^{(1)} = y_{\alpha_1+i} - \sum_{j=1}^{\alpha_1} \gamma_{ij} y_j$$

with suitably chosen coefficients γ_{ij} $(1 \le i \le n - (r + \alpha_1), 1 \le j \le \alpha_1)$ in F, the elements $y_i^{(1)}\alpha_1$ $(1 \le i \le n - (r + \alpha_1))$ are linearly dependent over F to S_0 . The two sets $(y_1, y_2, \dots, y_{n-r})$ and $(y_1, y_2, \dots, y_{\alpha_1}, y_1^{(1)}, y_2^{(1)}, \dots, y_{n-(r+\alpha_1)}^{(1)})$ are linearly dependent over F to each other. Similarly proceeding, we obtain the sets of linearly independent elements over F:

$$egin{aligned} S_2 &= (S_1, \ y_1^{(1)} a_2, \ y_2^{(1)} a_2, \ \cdots, \ y_{a_1}^{(a_2)} a_2), \ S_2 &= (S_2, \ y_1^{(2)} a_3, \ y_2^{(2)} a_3, \ \cdots, \ y_{a_3}^{(2)} a_3), \ \cdots, \ S_t &= (S_{t-1}, \ y_1^{(t-1)} a_t, \ y_2^{(t-1)} a_t, \ \cdots, \ y_{a_t}^{(t-1)} a_t). \end{aligned}$$

Here, the last set S_t constitutes a basis of D over F; the two sets $(y_1, y_2, \cdots, y_{t-1}, y_{t-1}, y_{t-1}, \cdots, y_{t-1})$

228

¹⁾ [n/2] means the largest integer not exceeding n/2.

QUASI-FROBENIUS RINGS

 y_{n-r}) and $(y_1, y_2, \dots, y_{\alpha_1}, y_1^{(1)}, y_2^{(1)}, \dots, y_{\alpha_2}^{(1)}, \dots, y_{\alpha_t}^{(t-1)})$ are linearly dependent over F to each other; $y_{\mu}^{(1)}a_{\nu}$ is dependent to $S_{\nu-1}$ if $\lambda \geq \nu$. Obviously we have only to prove our assertion when $(y_1, y_2, \dots, y_{n-r}) = (y_1, y_2, \dots, y_{\alpha_1}, y_1^{(1)}, y_2^{(1)}, \dots, y_{\alpha_2}^{(1)}, \dots, y_{\alpha_t}^{(1)})$.

Let $(u) = (u_1, u_2, \dots, u_n)$ be a basis of D over F and let the expressions of the elements x_i $(1 \le i \le r)$ and $y_j a_k$ $(1 \le j \le n-r, 1 \le k \le t)$ be

$$x_i = (u)X_i$$
 and $y_j a_k = (u)Y_{jk}$,

respectively, where X_i and Y_{jk} are $(n \times 1)$ matrices with coefficients in F. Now let $\xi_1, \xi_2, \dots, \xi_t$ be t independent variables over F and put $a(\xi) = \sum_{k=1}^t a_k \xi_k$. Then the products $y_j a(\xi)$ are the elements of $D_{F(\xi)} = D_{F(\xi_1, \xi_2, \dots, \xi_t)}$ and we have $y_j a(\xi) = (u) \sum_{k=1}^t Y_{jk} \xi_k$. Consider the derminant

$$d(\xi) = \det \left\| X_1 X_2 \cdots X_r \sum_k Y_{1k} \xi_k \sum_k Y_{2k} \xi_k \cdots \sum_k Y_{n-r,k} \xi_k \right\|;$$

by the definitions, the coefficients of $\xi_1^{r_1} \xi_2^{r_2} \cdots \xi_\ell^{r_\ell}$ of $d(\xi)$ does not vanish, and hence $d(\xi)$ does not vanish identically. But, as F has at least $\lfloor n/2 \rfloor$ elements and as $n-r \leq \lfloor n/2 \rfloor$, there exists at least one set of values $(\gamma) = (\gamma_1, \gamma_2, \cdots, \gamma_\ell)$ of (ξ) in F such that $d(\gamma) \neq 0$. This means that the set of elements $(x_1, x_2, \cdots, x_r, y_1 a(\gamma), y_2 a(\gamma), \cdots, y_{n-r} a(\gamma)$ constitutes a basis of D over F. This completes the proof.

The above prop. 1 will be used in the subsequent section 2. (It should be observed that the same fact as in prop. 1 is also valid for the antistrophic group matrix of a division algebra. Cf. section 2.)

2. Lemmas on simple (A, A) double modules.

Let A be a ring with a unit element and let N be its radical. Let $\overline{A} = A/N = \overline{A}_1 + \overline{A}_2 + \cdots + \overline{A}_k$ be the direct decomposition of \overline{A} into simple twosided ideals. The unit element E of A is expressible as $E = E_1 + E_2 + \cdots + E_k$, $E_{\kappa} = e_{\kappa,1} + e_{\kappa,2} + \cdots + e_{\kappa,f(\kappa)}$ $(1 \leq \kappa \leq k)$, where $e_{\kappa,\iota}$ $(1 \leq \kappa \leq k, 1 \leq i \leq f(\kappa))$ are mutually orthogonal primitive idempotent elements and $Ae_{\kappa,\iota} \cong Ae_{\lambda,j}$ if and only if $\kappa = \lambda$. Moreover, for each κ there exists a system of $f(\kappa)^2$ elements $c_{\kappa,ij}$ $(1 \leq i, j \leq f(\kappa))$ such that $c_{\kappa,ii} = e_{\kappa,\iota}, c_{\kappa,\iota j}c_{\kappa,kl} = \delta_{jk}c_{\kappa,il}$. We set $e_{\kappa,1} = e_{\kappa}$ $(1 \leq \kappa \leq k)$ for the sake of brevity.

Let M be a simple (A, A) double module; moreover we shall always assume that M is finitely generated when it is considered as a left (right) A-module. For some E_{κ} and E_{λ} we have $E_{\kappa}ME_{\lambda}=M$; when that is so, M is called to be of type (κ, λ) . We now introduce the following two conditions corresponding to (a) and (*), respectively:

(a)' Every homomorphism between two left submodules of M is given by the right multiplication of an element of A;

(*)' Every left submodule A-isomorphic to a given left submodule i of M can be expressed as ia by the right multiplication of a regular element of A.

We shall assume in the rest of this section, without loss of generality, that A is semisimple.

LEMMA 1. Let M be a simple (A, A) double module of type (κ, λ) . Then M satisfies (a)' for simple left submodules if and only if $e_{\kappa}M$ is a simple right submodule. Moreover, M satisfies (a)' for every left submodule if and only if $e_{\kappa}M$ and Me_{λ} are simple right and left submodules, respectively.

The first assertion is a restatement of prop. 1 of [1]. The proof for the second assertion is similar to that of Ikeda [3], prop. 2.

LEMMA 2. Let M be a simple (A, A) double module of type (κ, λ) . Let M satisfy (*)' for simple left submodules. Then either $e_{\kappa}M$ is a simple right submodule or we have $f(\lambda) = 1$.

Proof. Assume that $e_{\kappa}M$ is not simple; let m be a non-zero element of $e_{\kappa}Me_{\lambda}$. Then, as $e_{\kappa}Me_{\lambda}$ is a simple $(e_{\kappa}Ae_{\kappa}, e_{\lambda}Ae_{\lambda})$ module, we have $e_{\kappa}Me_{\lambda} = e_{\kappa}Ae_{\kappa} \cdot m \cdot e_{\lambda}Ae_{\lambda}$; but, it follows from our assumption that $m \cdot e_{\lambda}Ae_{\lambda} \subseteq e_{\kappa}Me_{\lambda}$. Therefore we can choose an element x of $e_{\kappa}Ae_{\kappa}$ such that xm does not lie in $m \cdot e_{\lambda}Ae_{\lambda}$. Suppose now that $f(\lambda) > 1$. Put $i = A(m + xmc_{\lambda,12})$; i is a simple left submodule and so A-isomorphic to $i_0 = Am$. Then we have $i = i_0 z$ for a suitable regular element z of $E_{\lambda}AE_{\lambda}$, and hence there exists an element y ($\neq 0$) of A such that $m + xmc_{\lambda,12} = ymz$; here y may be assumed to be contained in $e_{\kappa}Ae_{\kappa}$. This implies $m = ymze_{\lambda}$ and $xm = ymzc_{\lambda,21}$, which show that ym ($\neq 0$) is contained in $m \cdot e_{\lambda}Ae_{\lambda}$ as well as in $xm \cdot e_{\lambda}Ae_{\lambda}$. On the other hand, however, we have by the definition of x that $m \cdot e_{\lambda}Ae_{\lambda} - xm \cdot e_{\lambda}Ae_{\lambda} = 0$. Thus we are led to a contradiction and this completes the proof.

Let the notations and assumptions be as in the above lemma; let $e_{\kappa}M$ be not a simple right submodule. By the lemma we have $f(\lambda) = 1$; $e_{\kappa}M = e_{\kappa}Me_{\lambda}$ is a simple $(e_{\kappa}Ae_{\kappa}, e_{\lambda}Ae_{\lambda})$ double module and satisfies (*)' for simple left submodules. For the sake of brevity we write M, K and L in place of $e_{\kappa}Me_{\lambda}$, $e_{\kappa}Ae_{\kappa}$ and $e_{\lambda}Ae_{\lambda}$, respectively. We now prove the following

LEMMA 3. Let K and L be two (finite dimensional) division algebras over a field F. Let M be a simple (K, L) double module over F and let M satisfy (*), for simple left submodules. Then either M is a simple right Lmodule or M is a simple left K-module.

Proof. We first prove our assertion in the case where the underlying field F is an infinite field. Let m be an arbitrary non-zero element of M. By our assumptions it follows easily that every element z of M is expressible in the form xmy, where $x \in K$ and $y \in L$. Put (M:F) = n, (K:F) = r and (L:F) = s; let (u_1, u_2, \dots, u_n) $[(v_1, v_2, \dots, v_r), (w_1, w_2, \dots, w_s)]$ be a F-basis of M [K, L]. Further we take a system of n + r + s indeterminates (z_i, x_j, y_k) $(1 \le i \le n, 1 \le j \le r, 1 \le k \le s)$. Then a equation $(\sum_j x_j v_j)(\sum_i z_i u_i) = m(\sum_k y_k w_k)$ must have a non-trivial solution in (x_j, y_k) for every values of (z_i) in F. This equation is equivalent to a system of linear equations

(a)
$$\sum_{j=1}^{r} \sum_{i=1}^{n} c_{i,j}^{j} z_{i} x_{j} - \sum_{k=1}^{s} d_{k,j} y_{k} = 0$$
 $(1 \leq \nu \leq n),$

QUASI-FROBENIUS RINGS

where $c_{l_{\nu}}^{i}$ $(1 \leq i, \nu \leq n, 1 \leq j \leq r)$, $d_{k\nu} (1 \leq k \leq s, 1 \leq \nu \leq n)$ are coefficients of multiplication tables: $v_{j}u_{\iota} = \sum_{\nu} c_{l_{\nu}}^{i}u_{\nu}$, $mw_{k} = \sum_{\nu} d_{k\nu}u_{\nu}$. Suppose now that M is not simple as left K-module and (at the same time) as right L-module. Then we have evidently $n \geq r+s$. Let $M = Km\widetilde{w}_{1} + Km\widetilde{w}_{2} + \cdots + Km\widetilde{w}_{\sigma}$, where $\widetilde{w}_{1}, \widetilde{w}_{2}, \cdots$, \widetilde{w}_{σ} are elements of L, be a decomposition of M into direct sum of simple left K-modules; according to the decomposition we take a basis of M: $(v_{1}m\widetilde{w}_{1}, v_{2}m\widetilde{w}_{1}, \cdots, v_{r}m\widetilde{w}_{1}, v_{1}m\widetilde{w}_{2}, \cdots, v_{r}m\widetilde{w}_{2}, \cdots, v_{r}m\widetilde{w}_{\sigma})$, moreover, we write for simplicity $z_{1}^{1}, z_{2}^{1}, \cdots, z_{1}^{1}, z_{2}^{2}, \cdots, z_{r}^{2}, \cdots, z_{r}^{r})$ instead of $(z_{1}, z_{2}, \cdots, z_{n})$. The matrix of the coefficients of (α) is then of the following form:

$$C(z) = \begin{bmatrix} R(z^1) & R(z^2) \cdots R(z^{\sigma}) \\ -D \end{bmatrix},$$

where $R(z^i)$ denotes the first regular representation of the general element $z_1^i v_1 + z_2^i v_2 + \cdots + z_r^i v_r$ of K (i. e. the transposed matrix of the antistrophic group matrix of K with parameters $z_1^i, z_2^i, \cdots, z_r^i$), and $D = ||d_{k\nu}||$. Next we take another basis $(mw_1, mw_2, \cdots, mw_s, *) = (v_1 m \tilde{w}_1, \cdots, v_r m \tilde{w}_1, v_1 m \tilde{w}_2, \cdots, v_r m \tilde{w}_r)T$ of M, and consider the correspondingly transformed matrix C(z)T of C(z); by definitions D is transformed into

$$DT = (E_s \underbrace{0 \cdots 0}_{n-s})$$

where E_s denotes the unit matrix of order s. On the other hand, $(R(z^1) R(z^2) \cdots R(z^{\sigma}))$ is transformed into $(R(z^1) R(z^2) \cdots R(z^{\sigma}))T = (A_1(z) A_2(z) \cdots A_s(z), B_1(z) B_2(z) \cdots B_{n-s}(z))$, say, where $A_i(z)$ $(1 \le i \le s)$ and $B_j(z)$ $(1 \le j \le n-s)$ are $(r \times 1)$ matrices. But, by prop. 1 we can see straightforwardly that for a suitable set of values (γ_i) of (z_i) in F we have rank $(B_1(z) B_2(z) \cdots B_r(z)) = r$ (observe that $n-s \ge r$ and that F is an infinite field); so we must have for the same values of (z_i) that rank $C(z)T = \operatorname{rank} C(z) = r + s$, and hence the sysem of linear equations (α) has no non-trivial solution in (x_j, y_k) for $(z_j) = (\gamma_i)$. This is a contradiction and therefore proves our assertion.

We now consider the second case where the underlying field F is a finite field. The division algebras K and L must be then commutative. Denote by K_0 the set of all x's in K satisfying xm = my for some y in L; similarly denote by L_0 the set of all y's in L satisfying my = xm for some x in K. Since K_0 and L_0 are isomorphic fields, we may identify them and regard K and L as (commutative) division algebras over $K_0 = L_0$. From this point of view we assume without loss of generality that $K_0 = L_0 = F$; moreover, we may set $v_1 = w_1 = \tilde{w}_1 = 1$, the unit element of F (the notations be the same as before). The proof of our assertion in this case is now analogous to the above case; we have only to observe that $Km \cap mL = mF$.

3. Rings with the condition (*).

Let A be a ring and let N be its radical. If A satisfies (*) for simple left ideals, A has a right unit element. (This fact can be proved in the same way as the proof of Ikeda [3], lemma 1.) For a subset S of A we denote by

l(S)[r(S)] the totality of left [right] annihilators of S.

LEMMA 4. Let A have a left unit element and let A satisfy (*) for simple left ideals. Then A has a unit element and there exists a permutation π of $(1, 2, \dots, k)$ such that the largest completely reducible left subideal of Ae_{κ} is a direct sum of simple left ideals which are isomorphic to $Ae_{\pi(\kappa)}/Ne_{\pi(\kappa)}$.

The proof is similar to that of Ikeda [3], lemma 2. If the assumptions of this lemma are satisfied, we have $r(N) \subseteq l(N)$, $E_{\pi(\kappa)}r(N) = r(N)E_{\kappa}$ and that each $r(N)E_{\kappa}$ is a non-zero simple two-sided ideal of A.

THEOREM 1. Let A be a ring satisfying (*) for simple left ideals and for simple right ideals. Then: (i) A has a unit element. (ii) There exists a permutation π of $(1, 2, \dots, k)$ such that for each κ the largest completely reducible left subideal of Ae_{κ} is a sum of simple left subideals of the form [x,where I is an arbitrary simple left subideal of Ae_{κ} and isomorphic to $Ae_{\pi(\kappa)}/Ne_{\pi(\kappa)}$ and x's are suitable units of $e_{\kappa}Ae_{\kappa}$, and the same for $e_{\pi(\kappa)}A$. (iii) $f(\kappa) = 1$ if the largest completely reducible right subideal of $e_{\pi(\kappa)}A$ is not simple, and the same for $f(\pi(\kappa))$ and for Ae_{κ} .

Proof. A has a unit element E by what we have mentioned above. By lemma 4 we have r(N) = l(N), and we denote this by M. There is a permutation π of $(1, 2, \dots, k)$ such that $E_{\pi(\kappa)}M = ME_{\kappa}$ $(1 \leq \kappa \leq k)$; each ME_{κ} is a simple two-sided ideal of A. All of our assertions are now immediate consequences of lemma 2.

COROLLARY. Let A be a primary ring satisfying (*) for simple left ideals as well as for simple right ideals. Then A is either a quasi-Frobenius ring or a completely primary ring.

The following theorem is a direct consequence of lemma 3.

THEOREM 2. Let A be an algebra over a field F satisfying (*) for simple left ideals as well as for simple right ideals. Then besides (i), (ii) and (iii) (in theorem 1), A has the property: (iv) For each κ either Ae_{κ} has a unique simple left subideal, or $e_{\pi(\kappa)}A$ has a unique simple right subideal.

REMARK. If A is an algebra over an algebraically closed field and if A satisfies (*) for simple left ideals, then by lemma 1 A satisfies also (a) for simple left ideals. Therefore by Ikeda [3], prop. 1 A is a quasi-Frobenius algebra whenever A has a left unit element.²⁾

THEOREM 3. Let A be a ring which has the properties (i), (ii), (iii) and (iv). Then A satisfies (*) for simple left ideals as well as for simple right ideals.

232

²⁾ Y. Kawada [4], theorem 3.

QUASI-FROBENIUS RINGS

Proof. Since the largest completely reducible subideal $r(N)e_{\kappa,i}$ of $Ae_{\kappa,i}$ is a direct sum of simple left subideals isomorphic to $Ae_{\pi(\kappa)}/Ne_{\pi(\kappa)}$, we have $r(N)e_{\kappa,\iota} = E_{\pi(\kappa)}r(N)e_{\kappa,\iota}$ and hence $r(N)E_{\kappa} = E_{\pi(\kappa)}r(N)E_{\kappa}$ $(1 \le \kappa \le k)$. From this it follows that $r(N)E_{\kappa} = E_{\pi(\kappa)}r(N)$ and that $r(N)E_{\kappa}$ is a two-sided ideal $(1 \leq \kappa)$ $\leq k$). Similarly, we have that $l(N)E_{\kappa} = E_{\pi(\kappa)}l(N)$ is a two-sided ideal $(1 \leq \kappa)$ $\leq k$). Furthermore, we can see in the same way as the proof of Ikeda [2], theorem 2 that $r(N)E_{\kappa}$ and $l(N)E_{\kappa}$ are both simple two-sided ideals; therefore we must have r(N) = l(N), and we shall denote this by M. Now let i be a simple left ideal which is isomorphic to $Ae_{\pi(\kappa)}/Ne_{\pi(\kappa)}$ and let i' by any left ideal which is isomorphic to i. Both i and i' are contained in the simple twosided ideal $E_{\pi(\kappa)}M = ME_{\kappa}$. If $e_{\pi(\kappa)}M = e_{\pi(\kappa)}ME_{\kappa}$ is a simple right subideal of ME_{κ} , then by lemma 1 i' is written as ia by a regular element a of $E_{\kappa}A_{\kappa}E_{\kappa}$; the element a can be taken to be a regular element of A. If, on the other hand, $e_{\pi(\kappa)}M$ is not simple, then by (iii) and (iv) it follows that $f(\kappa) = 1$ and Me_{κ} is a simple left ideal, i.e. $Me_{\kappa} = ME_{\kappa}$ is itself a simple left subideal. Therefore we have $\mathfrak{l}'=ME_{\mathfrak{s}}=\mathfrak{l}=\mathfrak{l}\cdot E$. Thus A satisfies (*) for simple left ideals. Similarly, we see that A satisfies (*) for simple right iderls.

REMARK. In theorem 3, the assumption (iv) can not be omitted. For example, let A be an algebra of order 9 over the field R of rational numbers with a basis $(1, \omega, \omega^2, m, \omega m, \omega^2 m, m\omega, \omega m\omega, \omega^2 m\omega)$; let the multiplication table be

	1	ω	ω^2	m	ωm	$\omega^2 m$	mω	ωπω	$\omega^2 m \omega$
1	1	ω	ω^2	m	ωm	$\omega^2 m$	mω	ωπω	$\omega^2 m \omega$
ω	ω	ω^2	3	ωm	$\omega^2 m$	3m	$\omega m \omega$	$\omega^2 m \omega$	$3m\omega$
ω^2	ω^2	3	3ω	$\omega^2 m$	3m	$3\omega m$	$\omega^2 m \omega$	$3m\omega$	$3\omega m\omega$
m	m	$m\omega$	$-(\omega^2 m + \omega m \omega)$	0	0	0	0	0	0
ωm	ωm	Omw	$-(3m+\omega^2m\omega)$	0	0	0	0	0	0
$\omega^2 m$	$\omega^2 m$	$\omega^2 m \omega$	$-(3\omega m+3m\omega)$	0	0	0	0	0	0
$m\omega$	$m\omega$	$-\langle \omega^2 m + \omega m \omega \rangle$) 3 <i>m</i>	0	0	0	0	0	0
ωπω	ωπω	$-(3m+\omega^2m\omega)$	$3\omega m$	0	0	0	0	0	0
$\omega^2 m \omega$	$\omega^2 m \omega$	$-(3\omega m+3m\omega)$) $3\omega^2 m$	0	0	0	0	0	0

We can easily see that A satisfies (i), (ii) and (iii), and that A does not satisfy (iv); furthermore A does not satisfy (*) for simple left ideals or for simple right ideals.

4. A remark on the duality relation of two-sided ideals in a ring.

Let A be a ring with radical N satisfying the duality relations $(\gamma_1) l(r(\delta)) = \mathfrak{z}$ and $(\gamma_2) r(l(\mathfrak{z})) = \mathfrak{z}$ for every simple two-sided ideal \mathfrak{z} , for $\mathfrak{z} = 0$ and for $\mathfrak{z} = N$. Then we can verify, in a similar way as the proof of Nakayama [5], theorem 7, that A has a unit element, r(N) = l(N) (we denote this by M) and that $E_{\pi(\mathfrak{s})}M = ME_{\mathfrak{s}} (1 \le \mathfrak{s} \le k)$ are simple two-sided ideals. We now give

THEOREM 4. Let A be a bound ring³⁾ with radical N. Let (γ_1) and (γ_2) be valid for every simple two-sided ideal 3, for 3=0 and for every two-sided ideal 3 which contains M(=r(N)=l(N)). Then (γ_1) and (γ_2) are satisfied by every two-sided ideal 3 of A.

Proof. We have $r(N) = l(N) = M \subseteq N$ by what we have cited and by the definition of a bound ring. $M = \sum E_{\pi(k)}M = \sum ME_{\kappa}$ is the unique decomposition of M into direct sum of simple two-sided ideals. Let \mathfrak{z} be an arbitrary two-sided ideal. Then we can prove (γ_1) and (γ_2) for \mathfrak{z} in an analogous manner as the proof of prop. 6 of [1].

References

- ASANO, S., On the radical of quasi-Frobenius algebras. Kodai Math. Sem. Rep. 13 (1961), 135-151.
- [2] IKEDA, M., Some generalizations of quasi-Frobenius rings. Osaka Math. J. 3 (1951), 227-239.
- [3] IKEDA, M., A characterization of quasi-Frobenius rings. Osaka Math. J. 4 (1952), 203-209.
- [4] KAWADA, Y., On similarities and isomorphisms of ideals in a ring. J. Math. Soc. Japan 9 (1957), 374-380.
- [5] NAKAYAMA, T., On Frobeniusean algebras, I. Ann. Math. 40 (1939), 611-633.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.

234

³⁾ A bound ring is a ring in which every two-sided annihilator of the radical is contained in the radical.