NOTE ON SOME GENERALIZATIONS OF QUASI-FROBENIUS RINGS

BY SHIGEMOTO ASANO

Let A be a ring satisfying the minimum condition for right and left ideals (by a ring we shall always understand such one). Let *A* have a unit element. Then owing to Ikeda [3] we know that *A* is a quasi-Frobenius ring if and only if it satisfies the following condition:

(a) Every homomorphism between two left (right) ideals of *A* is given by the right (left) multiplication of an element of *A.*

Recently Kawada [4] discussed the following condition which is a weaker one than the above:

(*) Every left (right) ideal A-isomorphic to a given left ideal I (right ideal t) can be expressed as *la* (αr) by the right (left) multiplication of a regular element of *A.*

In the present note we shall deal with rings (and algebras) which satisfy the condition (*) for simple left (and right) ideals. Besides, we shall give a remark on the duality relations of two-sided ideals in a ring.

1. Remarks on division algebras.

Let *D* be a (finite dimensional) division algebra over a field F ; let $(u_1, u_2,$ \cdots , u_n) be a basis of *D* over *F*. Let $\xi_1, \xi_2, \cdots, \xi_n$ be *n* independent variables and put

$$
S(\xi)=\biggl\|\sum_{i=1}^n a_{ijk}\xi_i\biggr\|_{kj},
$$

where a_{ijk} $(1 \leq i, j, k \leq n)$ are the coefficients of the multiplication table

$$
u_iu_j=\sum_{k=1}^n a_{ijk}u_k.
$$

The matrix $S(\xi)$ is called the group matrix of D with parameters $\xi_1, \xi_2, \dots, \xi_n$ (defined by the basis (u_1, u_2, \dots, u_n)). In this section we shall prove the fol lowing proposition.

PROPOSITION 1. *Let D be a division algebra over a field F; let S(ξ) be the group matrix of D, defined by a basis* (u_1, u_2, \dots, u_n) of D over F, with *parameters ξl9 ξ² ,* , *ξⁿ . Then any minor determinant of S(\$) does not vanish identically. More generally, let P and Q be two non-singular* $(n \times n)$ *matrices with coefficients in F. Then any minor determinant ofPS(ξ)Q does not vanish identically.*

Received June 19, 1961.

For the proof of this proposition, we have only to consider the case where *F* is an infinite field. In fact, assume that our assertion is valid for a infinite underlying field. Let η be a variable over *F* and consider $D_{F(\eta)}$; as is well known, this algebra is a division algebra over $F(\gamma)$. The group matrix $S(\xi)$ of *D* may be regarded also as the group matrix of $D_{F(y)}$, defined by the basis (u_1, u_2, \dots, u_n) . Our assumption will imply then, since $F(\gamma)$ is an infinite field, that the proposition is valid for any *F.*

We can see now straightforwardly that the above prop. 1 is equivalent to the following one, to which we shall give a proof.

PROPOSITION 2. *Let D be a division algebra over a field F with finite rank n; let F have at least* $\lceil n/2 \rceil$ *elements.*¹ Let (x_1, x_2, \dots, x_r) and (y_1, y_2, \dots, y_r) \cdots , y_{n-r}) be two sets of elements of D and let the elements of each set be *linearly independent over F. Then there exists at least one element a in D* such that the set $(x_1, x_2, \dots, x_r, y_1a, y_2a, \dots, y_{n-r}a)$ constitutes a basis of *D over F.*

Proof. At the outset we may assume, without loss of generality, that $r \ge n/2$. For the sake of brevity we write

$$
S_0=(x_1, x_2, \cdots, x_r).
$$

As D is a division algebra, we can take an element a_1 of D such that $(S_0,$ y_1a_1) is a set of linearly independent elements over F; then we choose as many elements $y_{i_2}, y_{i_3}, \dots, y_{i_{\alpha_1}}$ as possible from $(y_2, y_3, \dots, y_{n-r})$ for which the ele ments of the set $(S_0, y_1a_1, y_{i_2}a_1, \dots, y_{i_{\alpha_1}}a_1)$ are linearly independent over *F*. After suitable reordering, we may set $i_2 = 2, \dots, i_{\alpha_1} = \alpha_1$; we write

$$
S_1=(S_0, y_1a_1, y_2a_1, \cdots, y_{\alpha_1}a_1).
$$

By the definition of S_1 the elements $y_{\alpha_1+1}a_1, y_{\alpha_1+2}a_1, \cdots, y_{n-r}a_1$ are linearly dependent over F to S_1 ; therefore, if we put

$$
y_i^{(1)}=y_{\alpha_1+i}-\textstyle{\sum\limits_{j=1}^{\alpha_1}}\gamma_{ij}y_j
$$

with suitably chosen coefficients γ_{ij} ($1 \leq i \leq n - (r + \alpha_i)$, $1 \leq j \leq \alpha_i$) in *F*, the elements $y_i^{(1)}a_1$ ($1 \le i \le n-(r+\alpha_1)$) are linearly dependent over *F* to S₀. The two sets $(y_1, y_2, \dots, y_{n-r})$ and $(y_1, y_2, \dots, y_{\alpha_1}, y_1^{(1)}, y_2^{(1)}, \dots, y_{n-(r+\alpha_1)}^{(1)})$ are linearly dependent over F to each other. Similarly proceeding, we obtain the sets of linearly independent elements over *F:*

S2 = (Si, *y{ a² , yψa² ,* , *y%a²), S2* = (S ² , ^ 2) 3 ,2/ (2 2) 3 , , ^ ² > ³) , *St* - (S^t .i, yί'- ¹ ^, yi^t 1) , , *yί^at).*

Here, the last set S_t constitutes a basis of D over F ; the two sets $(y_1, y_2,$

¹⁾ $\lceil n/2 \rceil$ means the largest integer not exceeding $n/2$.

QUASI-FROBENIUS RINGS 229

 y_{n-r}) and $(y_1, y_2, \, \cdots, \, y_{a_1}, \, y^{(1)}_1, \, y^{(1)}_2, \, \cdots, \, y^{(1)}_{a_2}, \, \cdots, \, y^{(t-1)}_{a_t})$ are linearly dependent over *F* to each other; $y_{\mu}^{(\lambda)}a_{\nu}$ is dependent to $S_{\nu-1}$ if $\lambda \geq \nu$. Obviously we have only to prove our assertion when $(y_1, y_2, \dots, y_{n-r}) = (y_1, y_2, \dots, y_{\alpha_1}, y_1^{(1)}, y_2^{(1)}, \dots, y_{\alpha_2}^{(1)},$

Let $(u) = (u_1, u_2, \dots, u_n)$ be a basis of D over F and let the expressions of the elements x_i $(1 \leq i \leq r)$ and y_ja_k $(1 \leq j \leq n-r, 1 \leq k \leq t)$ be

$$
x_i = (u)X_i \qquad \text{and} \qquad y_j a_k = (u)Y_{jk},
$$

respectively, where X_i and Y_{jk} are $(n \times 1)$ matrices with coefficients in F . Now let $\xi_1, \xi_2, \dots, \xi_t$ be *t* independent variables over *F* and put $a(\xi) = \sum_{k=1}^t a_k \xi_k$. Then the products $y_j a(\xi)$ are the elements of $D_{F(\xi)} = D_{F(\xi_1, \xi_2, \dots, \xi_{\ell})}$ and we have $y_j a(\xi) = (u) \sum_{k=1}^t Y_{jk} \xi_k$. Consider the derminant

$$
d(\xi) = \det \Bigg\| X_1 X_2 \cdots X_r \sum_k Y_{1k} \xi_k \sum_k Y_{2k} \xi_k \cdots \sum_k Y_{n-r,k} \xi_k \Bigg\|;
$$

by the definitions, the coefficients of $\xi_1^{\alpha_1}\xi_2^{\alpha_2}\cdots\xi_\ell^{\alpha_\ell}$ of $d(\xi)$ does not vanish, and hence $d(\xi)$ does not vanish identically. But, as F has at least $\lfloor n/2 \rfloor$ elements and as $n - r \leq [n/2]$, there exists at least one set of values $(\gamma) = (\gamma_1, \gamma_2, \dots, \gamma_t)$ of (ξ) in F such that $d(\gamma) \neq 0$. This means that the set of elements (x_1, x_2, \dots, x_n) $x_r, y_1a(\gamma), y_2a(\gamma), \cdots, y_{n-r}a(\gamma)$ constitutes a basis of D over F. This completes the proof.

The above prop. 1 will be used in the subsequent section 2. (It should be observed that the same fact as in prop. 1 is also valid for the antistrophic group matrix of a division algebra. Cf. section 2.)

2. Lemmas on simple *(A, A)* **double modules.**

Let *A* be a ring with a unit element and let *N* be its radical. Let $\bar{A} = A/N = \bar{A}_1 + \bar{A}_2 + \dots + \bar{A}_k$ be the direct decomposition of \bar{A} into simple two sided ideals. The unit element E of A is expressible as $E = E_1 + E_2 + \cdots + E_k$, $E_{\kappa} = e_{\kappa, 1} + e_{\kappa, 2} + \cdots + e_{\kappa, f(\kappa)}$ (1 $\leq \kappa \leq k$), where $e_{\kappa, \kappa}$ (1 $\leq \kappa \leq k$, 1 $\leq i \leq f(\kappa)$) are mutually orthogonal primitive idempotent elements and $Ae_{k} \equiv Ae_{\lambda}$ if and only if $\kappa = \lambda$. Moreover, for each κ there exists a system of $f(\kappa)^2$ elements $c_{\kappa, ij}$ ($1 \leq i, j \leq f(\kappa)$) such that $c_{\kappa, ii} = e_{\kappa, i}, c_{\kappa, ij}c_{\kappa, kl} = \delta_{jk}c_{\kappa, ii}$. We set $e_{\kappa, 1} = e_{\kappa}$ ($1 \leq \kappa$ $\leq k$ for the sake of brevity.

Let *M* be a simple (A, A) double module; moreover we shall always assume that *M* is finitely generated when it is considered as a left (right) A-module. For some E_k and E_k we have $E_k M E_k = M$; when that is so, M is called to be of type (κ, λ) . We now introduce the following two conditions corresponding to (a) and (*), respectively:

(a *y* Every homomorphism between two left submodules of *M* is given by the right multiplication of an element of *A;*

(* *)^f* Every left submodule A-isomorphic to a given left submodule ί of *M* can be expressed as *ίa* by the right multiplication of a regular element of *A.*

We shall assume in the rest of this section, without loss of generality, that *A* is semisimple.

LEMMA 1. Let M be a simple (A, A) double module of type (κ, λ) . Then *M satisfies* (a)' *for simple left submodules if and only if e M is a simple right submodule. Moreover, M satisfies* (a)' *for every left submodule if and only if e M and Meχ are simple right and left submodules, respectively.*

The first assertion is a restatement of prop. 1 of $[1]$. The proof for the second assertion is similar to that of Ikeda [3], prop. 2.

LEMMA 2. Let M be a simple (A, A) double module of type (κ, λ) . Let *M satisfy* (*)' *for simple left submodules. Then either e M is a simple right submodule or we have* $f(\lambda) = 1$.

Proof. Assume that $e_k M$ is not simple; let m be a non-zero element of $e_k M e_\lambda$. Then, as $e_k M e_\lambda$ is a simple $(e_k A e_k, e_\lambda A e_\lambda)$ module, we have $e_k M e_\lambda$ $= e_{\kappa} A e_{\kappa} \cdot m \cdot e_{\lambda} A e_{\lambda}$; but, it follows from our assumption that $m \cdot e_{\lambda} A e_{\lambda} \equiv e_{\kappa} M e_{\lambda}$. Therefore we can choose an element x of $e_{k}Ae_{k}$ such that xm does not lie in *m* \cdot *e*_{λ}*Ae*_{λ}. Suppose now that $f(\lambda) > 1$. Put $i = A(m + xmc_{\lambda, 12})$; i is a simple left submodule and so A-isomorphic to $I_0 = Am$. Then we have $I = I_0z$ for a suitable regular element z of $E_{\lambda}AE_{\lambda}$, and hence there exists an element $y \neq 0$ of A such that $m + xmc_{\lambda_1}2 = ymz$; here y may be assumed to be contained in e_kAe_k . This implies $m = ymze_2$ and $xm = ymze_{2,21}$, which show that $ym \neq 0$ is contained in $m \cdot e_{\lambda} A e_{\lambda}$ as well as in $xm \cdot e_{\lambda} A e_{\lambda}$. On the other hand, however, we have by the definition of x that $m \cdot e_{\lambda} A e_{\lambda} \sim x m \cdot e_{\lambda} A e_{\lambda} = 0$. Thus we are led to a contradiction and this completes the proof.

Let the notations and assumptions be as in the above lemma; let $e_k M$ be not a simple right submodule. By the lemma we have $f(\lambda) = 1$; $e_k M = e_k M e_\lambda$ is a simple $(e_{\epsilon}Ae_{\epsilon}, e_{\epsilon}Ae_{\epsilon})$ double module and satisfies (*)' for simple left submodules. For the sake of brevity we write M, K and L in place of $e_k M e_\lambda$, $e_{k}Ae_{k}$ and $e_{k}Ae_{k}$, respectively. We now prove the following

LEMMA 3. *Let K and L be two {finite dimensional) division algebras over a field F. Let M be a simple (K, L) double module over F and let M* satisfy $(*)$, for simple left submodules. Then either M is a simple right L*module or M is a simple left K-module.*

Proof. We first prove our assertion in the case where the underlying field *F* is an infinite field. Let *m* be an arbitrary non-zero element of *M.* By our assumptions it follows easily that every element *z* of M is expressible in the form xmy , where $x \in K$ and $y \in L$. Put $(M:F) = n$, $(K:F) = r$ and $(L:F) = s$; let (u_1, u_2, \dots, u_n) $[(v_1, v_2, \dots, v_r), (w_1, w_2, \dots, w_s)]$ be a *F*-basis of *M* [*K*, *L*]. Further we take a system of $n + r + s$ indeterminates (z_i, x_j, y_k) $(1 \leq i \leq n,$ $1 \leq j \leq r, 1 \leq k \leq s$. Then a equation $(\sum_j x_j v_j)(\sum_i z_i u_i) = m(\sum_k y_k w_k)$ must have a non-trivial solution in (x_j, y_k) for every values of (z_i) in F. This equation is equivalent to a system of linear equations

(a)
$$
\sum_{j=1}^r \sum_{i=1}^n c_i^j z_i x_j - \sum_{k=1}^s d_{k\nu} y_k = 0 \qquad (1 \leq \nu \leq n),
$$

QUASI-FROBENIUS RINGS 231

where c_{i}^{\prime} , $(1 \leq i, \nu \leq n, 1 \leq j \leq r)$, $d_{k\nu}$ $(1 \leq k \leq s, 1 \leq \nu \leq n)$ are coefficients of multiplication tables: $v_j u_i = \sum_{\nu} c_i^j u_{\nu}$, $m w_k = \sum_{\nu} d_{k\nu} u_{\nu}$. Suppose now that M is not simple as left K -module and (at the same time) as right L -module. Then we \limsup have evidently $n \ge r + s$. Let $M = Km\widetilde{w}_1 + Km\widetilde{w}_2 + \cdots + Km\widetilde{w}_s$, where $\widetilde{w}_1, \widetilde{w}_2, \cdots$, \widetilde{w}_q are elements of L, be a decomposition of M into direct sum of simple left K-modules; according to the decomposition we take a basis of M: $(v_1m\widetilde{w}_1, v_2m\widetilde{w}_1,$ \cdots , $v_r m \widetilde{w}_1$, $v_1 m \widetilde{w}_2$, $v_2 m \widetilde{w}_2$, \cdots , $v_r m \widetilde{w}_2$, \cdots , $v_r m \widetilde{w}_s$), moreover, we write for simplicity $z_1^1, z_2^1, \dots, z_r^1, z_1^2, z_2^2, \dots, z_r^2, \dots z_r^r$ instead of (z_1, z_2, \dots, z_n) . The matrix of the coefficients of (α) is then of the following form:

$$
C(z) = \left[\begin{array}{c} R(z^1) \, R(z^2) \cdots R(z^{\sigma}) \\ -D \end{array} \right],
$$

where $R(z^i)$ denotes the first regular representation of the general element $z_1 v_1 + z_2 v_2 + \cdots + z_r v_r$ of *K* (i. e. the transposed matrix of the antistrophic group matrix of K with parameters $z_1^*, z_2^*, \dots, z_r^*$, and $D = ||d_{k\nu}||$. Next we take another basis $(mw_1, mw_2, \dots, mw_s, *) = (v_1m\widetilde{w}_1, \dots, v_r m\widetilde{w}_1, v_1 m\widetilde{w}_2, \dots,$ $v_r m \tilde{w}_r$ *T* of *M*, and consider the correspondingly transformed matrix $C(z)T$ of $C(z)$; by definitions D is transformed into

$$
DT=(E_s \ \underbrace{0 \ 0 \ \cdots \ 0}_{n-s})
$$

where E_s denotes the unit matrix of order *s*. On the other hand, $(R(z^1)R(z^2))$ $R(z^{\sigma}))$ is transformed into $(R(z^1) R(z^2) \cdots R(z^{\sigma})) T = (A_1(z) A_2(z) \cdots A_s(z), B_1(z) B_2(z)$ \cdots $B_{n-s}(z)$), say, where $A_i(z)$ $(1 \leq i \leq s)$ and $B_j(z)$ $(1 \leq j \leq n - s)$ are $(r \times 1)$ mat rices. But, by prop. 1 we can see straightforwardly that for a suitable set of values (r_i) of (z_i) in *F* we have rank $(B_1(z)B_2(z)\cdots B_r(z))=r$ (observe that $n-s$ $\geq r$ and that F is an infinite field); so we must have for the same values of (z_i) that rank $C(z)T = \text{rank } C(z) = r + s$, and hence the sysem of linear equations (*a*) has no non-trivial solution in (x_j, y_k) for $(z_j) = (y_i)$. This is a contradiction and therefore proves our assertion.

We now consider the second case where the underlying field *F* is a finite field. The division algebras K and L must be then commutative. Denote by K_0 the set of all x's in K satisfying $xm = my$ for some y in L; similarly denote by L_0 the set of all y's in L satisfying $my = xm$ for some x in K. Since K_0 and L_0 are isomorphic fields, we may identify them and regard *K* and L as (commuta tive) division algebras over $K_0 = L_0$. From this point of view we assume with out loss of generality that $K_0 = L_0 = F$; moreover, we may set $v_1 = w_1 = \widetilde{w}_1 = 1$ the unit element of *F* (the notations be the same as before). The proof of our assertion in this case is now analogous to the above case; we have only to observe that $Km_{mL = mF$.

3. Rings with the condition (*).

Let A be a ring and let *N* be its radical. If *A* satisfies (*) for simple left ideals, *A* has a right unit element. (This fact can be proved in the same way as the proof of Ikeda [3], lemma 1.) For a subset *S* of *A* we denote by

 $l(S)$ [$r(S)$] the totality of left [right] annihilators of *S*.

LEMMA 4. *Let A have a left unit element and let A satisfy* (*) *for simple left ideals. Then A has a unit element and there exists a permutation* π of $(1, 2, \dots, k)$ such that the largest completely reducible left subideal of Ae_k is a direct sum of simple left ideals which are isomorphic to $Ae_{\pi(k)}/Ne_{\pi(k)}$.

The proof is similar to that of Ikeda [3], lemma 2. If the assumptions of this lemma are satisfied, we have $r(N) \subseteq l(N)$, $E_{\pi(k)} r(N) = r(N)E_{\pi}$ and that each $r(N)E_k$ is a non-zero simple two-sided ideal of A.

THEOREM 1. *Let A be a ring satisfying* (*) *for simple left ideals and for simple right ideals. Then:* (i) *A has a unit element,* (ii) *There exists a permutation* π *of* (1, 2, \cdots , k) such that for each κ the largest completely *reducible left subideal of* Ae_k *is a sum of simple left subideals of the form* α *^{<i>r*}, where *l* is an arbitrary simple left subideal of Ae_k and isomorphic to $Ae_{\pi(k)}/Ne_{\pi(k)}$ and x's are suitable units of $e_{k}Ae_{k}$, and the same for $e_{\pi(k)}A$. (iii) $f(\kappa) = 1$ if the largest completely reducible right subideal of $e_{\pi(\kappa)}A$ is not *simple, and the same for* $f(\pi(\kappa))$ *and for* Ae_{κ} *.*

Proof. A has a unit element *E* by what we have mentioned above. By lemma 4 we have $r(N) = l(N)$, and we denote this by M. There is a permutation *π* of $(1, 2, \dots, k)$ such that $E_{\pi(k)}M = ME_k$ $(1 \leq \kappa \leq k)$; each ME_k is a simple two-sided ideal of *A.* All of our assertions are now immediate consequences of lemma 2.

COROLLARY. *Let A be a primary ring satisfying* (*) *for simple left ideals as well as for simple right ideals. Then A is either a quasi-Frobenius ring or a completely primary ring.*

The following theorem is a direct consequence of lemma 3.

THEOREM 2. *Let A be an algebra over a field F satisfying* (*) *for simple left ideals as well as for simple right ideals. Then besides* (i), (ii) *and* (iii) *(in theorem 1), A has the property: (iv) For each* κ *either* Ae_{κ} *has a unique simple left subideal, or* $e_{\pi(x)}A$ *has a unique simple right subideal.*

REMARK. If *A* is an algebra over an algebraically closed field and if *A* satisfies (*) for simple left ideals, then by lemma 1 *A* satisfies also (a) for simple left ideals. Therefore by Ikeda $[3]$, prop. 1 A is a quasi-Frobenius algebra whenever A has a left unit element.²⁾

THEOREM 3. *Let A be a ring which has the properties* (i), (ii), (iii) *and* (iv). *Then A satisfies* (*) *for simple left ideals as well as for simple right ideals.*

²⁾ Y. Kawada [4], theorem 3.

QUASI-FROBENIUS RINGS 233

Proof. Since the largest completely reducible subideal $r(N)e_{k}$, of Ae_{k} , is a direct sum of simple left subideals isomorphic to $Ae_{\pi(x)}/Ne_{\pi(x)}$, we have $r(N)e_{\kappa,\iota} = E_{\pi(\kappa)}r(N)e_{\kappa,\iota}$ and hence $r(N)E_{\kappa} = E_{\pi(\kappa)}r(N)E_{\kappa}$ ($1 \leq \kappa \leq k$). From this it follows that $r(N)E_k = E_{\pi(k)}r(N)$ and that $r(N)E_k$ is a two-sided ideal (1 $\leq \kappa$) $\leq k$). Similarly, we have that $l(N)E_k = E_{\pi(k)}l(N)$ is a two-sided ideal $(1 \leq \kappa)$ $\leq k$). Furthermore, we can see in the same way as the proof of Ikeda [2], theorem 2 that $r(N)E_k$ and $l(N)E_k$ are both simple two-sided ideals; therefore we must have $r(N) = l(N)$, and we shall denote this by M. Now let *l* be a simple left ideal which is isomorphic to $Ae_{\pi(k)}/Ne_{\pi(k)}$ and let *V* by any left ideal which is isomorphic to ί. Both ί and *V* are contained in the simple two sided ideal $E_{\pi(k)}M = ME_k$. If $e_{\pi(k)}M = e_{\pi(k)}ME_k$ is a simple right subideal of ME_k , then by lemma 1 *V* is written as *la* by a regular element *a* of $E_k A_k E_k$; the element α can be taken to be a regular element of *A.* If, on the other hand, $e_{\pi(k)}M$ is not simple, then by (iii) and (iv) it follows that $f(k) = 1$ and Me_k is a simple left ideal, i.e. $Me_{\kappa} = ME_{\kappa}$ is itself a simple left subideal. Therefore we have $V=ME_k=1=1 \cdot E$. Thus A satisfies (*) for simple left ideals. Similarly, we see that *A* satisfies (*) for simple right iderls.

REMARK. In theorem 3, the assumption (iv) can not be omitted. For ex ample, let *A* be an algebra of order 9 over the field *R* of rational numbers with a basis $(1, \omega, \omega^2, m, \omega^2, m, m\omega, \omega^2, m\omega, \omega^2, m\omega)$; let the multiplication table be

We can easily see that *A* satisfies (i), (ii) and (iii), and that *A* does not satisfy (iv); furthermore *A* does not satisfy (*) for simple left ideals or for simple right ideals.

4. A remark on the duality relation of two-sided ideals in a ring.

Let *A* be a ring with radical *N* satisfying the duality relations (r_1) $l(r_3)$ $=$ 3 and (γ_2) $r(l(3)) =$ 3 for every simple two-sided ideal 3, for $3 = 0$ and for $3 = N$. Then we can verify, in a similar way as the proof of Nakayama [5], theorem 7, that A has a unit element, $r(N) = l(N)$ (we denote this by M) and that $E_{\pi(k)} M = M E_k$ ($1 \leq k \leq k$) are simple two-sided ideals. We now give

THEOREM 4. Let A be a bound ring³ with radical N. Let (γ_1) and (γ_2) *be valid for every simple two-sided ideal* 3, *for* 3 = 0 *and for every two-sided ideal* 3 which contains $M (= r(N) = l(N))$. Then (γ_1) and (γ_2) are satisfied by *every two-sided ideal* 3 *of A.*

Proof. We have $r(N) = l(N) = M \subseteq N$ by what we have cited and by the definition of a bound ring. $M = \sum E_{\pi(k)} M = \sum ME_k$ is the unique decomposition of M into direct sum of simple two-sided ideals. Let δ be an arbitrary twosided ideal. Then we can prove (γ_1) and (γ_2) for δ in an analogous manner as the proof of prop. 6 of [1].

REFERENBES

- [1] ASANO, S., On the radical of quasi-Frobenius algebras. Kōdai Math. Sem. Rep. 13 (1961), 135-151.
- [2] IKEDA, M., Some generalizations of quasi-Frobenius rings. Osaka Math. J. 3 (1951), 227-239.
- [3] IKEDA, M., A characterization of quasi-Frobenius rings. Osaka Math. J. 4 (1952), 203-209.
- [4] KAWADA, Y., On similarities and isomorphisms of ideals in a ring. J. Math. Soc. Japan 9 (1957), 374-380.
- [5] NAKAYAMA, T., On Frobeniusean algebras, I. Ann. Math. 40 (1939), 611-633.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.

³⁾ A bound ring is a ring in which every two-sided annihilator of the radical is con tained in the radical.