
NOTE ON SOME GENERALIZATIONS OF

QUASI-FROBENIUS RINGS

BY SHIGEMOTO ASANO

Let A be a ring satisfying the minimum condition for right and left ideals
(by a ring we shall always understand such one). Let A have a unit element.
Then owing to Ikeda [3] we know that A is a quasi-Frobenius ring if and
only if it satisfies the following condition:

(a) Every homomorphism between two left (right) ideals of A is given
by the right (left) multiplication of an element of A.

Recently Kawada [4] discussed the following condition which is a weaker
one than the above:

(*) Every left (right) ideal A-isomorphic to a given left ideal I (right
ideal t) can be expressed as la (αr) by the right (left) multiplication of a regular
element of A.

In the present note we shall deal with rings (and algebras) which satisfy
the condition (*) for simple left (and right) ideals. Besides, we shall give a
remark on the duality relations of two-sided ideals in a ring.

1. Remarks on division algebras.

Let D be a (finite dimensional) division algebra over a field F; let (uίf u2,
• , uΏ) be a basis of D over F. Let ξlf £2, •» ζn be n independent variables
and put

t=l ' kjt

where aijk (1 <̂  i, j , k^ri) are the coefficients of the multiplication table
n

UίUj - ^ a i j k u k .

The matrix S(ξ) is called the group matrix of D with parameters ξu 62, , ξn

(defined by the basis (uu u2, •••, un)). In this section we shall prove the fol-
lowing proposition.

PROPOSITION 1. Let D be a division algebra over a field F; let S(ξ) be
the group matrix of D, defined by a basis (uu u2, , un) of D over F, with
parameters ξl9 ξ2, , ξn. Then any minor determinant of S($) does not
vanish identically. More generally, let P and Q be two non-singular (n X n)
matrices with coefficients in F. Then any minor determinant ofPS(ξ)Q does
not vanish identically.
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For the proof of this proposition, we have only to consider the case where
F is an infinite field. In fact, assume that our assertion is valid for a infinite
underlying field. Let η be a variable over F and consider DFcv; as is well
known, this algebra is a division algebra over F(ή). The group matrix S(ξ) of
D may be regarded also as the group matrix of DFCV, defined by the basis
(ui, u2, , un). Our assumption will imply then, since F(ή) is an infinite field,
that the proposition is valid for any F.

We can see now straightforwardly that the above prop. 1 is equivalent to
the following one, to which we shall give a proof.

PROPOSITION 2. Let D be a division algebra over a field F with finite
rank n; let F have at least [n/2] elements.1^ Let (xlt x2, •••, xr) and (ylf y2,
• , Vn-r) be two sets of elements of D and let the elements of each set be
linearly independent over F. Then there exists at least one element a in
D such that the set (xίf %2, •••, %r, Via, VΦ, •••, Vn-rO) constitutes a basis of
D over F.

Proof. At the outset we may assume, without loss of generality, that
r ^ n/2. For the sake of brevity we write

So = (Xi, X2f ••', X r ) .

As D is a division algebra, we can take an element e&i of D such t h a t (So,
2/iαi) is a set of linearly independent elements over F; then we choose as many
elements yi2, yί3, •••, yiaχ as possible from (y2, y*, ••-, yn-r) for which the ele-
ments of the set (So, yiau yhau , yiβla,ι) are linearly independent over F.
After suitable reordering, we may set ί2 = 2, •••, iai = ai; we write

Si = (So, yiau y2alf , yapύ-

By the definition of Si the elements yai+i<ii, yaι+2du * * *» yn-rQ>i are linearly
dependent over F to Si; therefore, if we put

with suitably chosen coefficients γi5 (l<*i^n — (r + aθ, l ^ i ^ ^ i ) in F, the
elements y^a^ (l^i^n-(r-\-aθ) are linearly dependent over F to So. The
two sets (yu 2/2, , yn-r) and (yu y2f , ^ , 2/(i1}, 2/î , , ^-V+αp) are linearly
dependent over F to each other. Similarly proceeding, we obtain the sets of
linearly independent elements over F:

S 2 = (Si, y{Όa2, yψa2, , y%a2),

S2 = ( S 2 , ^ 2 ) α 3 , 2 / ( 2 2 ) α 3 , , ^ 2 > 3 ) ,

St - (S t.i, yί '- 1^, yit-1)α ί, , yί^at).

Here, the last set St constitutes a basis of D over F ; the two sets (yu y2,

1) [>/2] means the largest integer not exceeding n/2.
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yn-r) and (yu y2, , yai, yγ\ y$\ , #£>, , y^~ly) are linearly dependent over

F to each other; yc

μ

Όav is dependent to £ y_i if λ ^ v. Obviously we have only

to prove our assertion when (yu y2, •••> yn-r) = (Vu V2, , K^, 2/cΛ ^ υ , yi\\

Let (%) = (%!, u2, •• , wn) be a basis of D over F and let the expressions
of the elements xh (l^i^r) and yjdk (1 ̂  j ^ n — rf 1 ̂  k ^ t) be

x% = (u)Xτ and yjak = (u) Yjk,

respectively, where Xz and Yjk are (n X1) matrices with coefficients in F.
Now let fi, ξ2, , ξt be t independent variables over F and put a(ξ) = Y]l=ιakξk.
Then the products yja(ξ) are the elements of DF& =DFCξuξ2)...}ξt) and we have

Consider the derminant

by the definitions, the coefficients of ξlιξlz ξt* of d(ξ) does not vanish, and
hence d(ξ) does not vanish identically. But, as F has at least [>/2] elements
and as n — r ^ O/2], there exists at least one set of values (γ) = fri, ^2, # , ft)
of (?) in i*7 such that d(γ) Φ 0. This means that the set of elements (xu #2, ,
#r, yia(r)> V2d(ϊ)f •••, yn-rd(γ) constitutes a basis of D over i*7. This completes
the proof.

The above prop. 1 will be used in the subsequent section 2. (It should be
observed that the same fact as in prop. 1 is also valid for the antistrophic
group matrix of a division algebra. Cf. section 2.)

2. Lemmas on simple (A, A) double modules.

Let A be a ring with a unit element and let N be its radical. Let
A=A/N = Ai+A2-\ \-Ak be the direct decomposition of A into simple two-
sided ideals. The unit element E of A is expressible as E=E1+E2-\ \-Ek,
Eκ = eκ> 1 + eK} 2 H h eκjw (1 ̂  K ̂  &), where e*^ (1 ̂  tc ^ &, 1 ^ i ^f(κ)) are
mutually orthogonal primitive idempotent elements and AeK}l=Aeχ}J if and
only if κ = λ. Moreover, for each K there exists a system of f(μf elements
cκ> ij (1 ̂  if 3 ^/(«)) such that cΛ>« = eΛ) 7, cΛ} tyĈ , fcz = dJkcκ> u. We set eκ, i = eκ(l^κ
^ /c) for the sake of brevity.

Let M be a simple (A, A) double module; moreover we shall always assume
that M is finitely generated when it is considered as a left (right) A-module.
For some Eκ and Eλ we have EκMEχ=M; when that is so, M is called to be
of type (Λ, Λ). We now introduce the following two conditions corresponding to
(a) and (*), respectively:

(a y Every homomorphism between two left submodules of M is given by
the right multiplication of an element of A;

(* )f Every left submodule A-isomorphic to a given left submodule ί of M
can be expressed as ίa by the right multiplication of a regular element of A.

We shall assume in the rest of this section, without loss of generality, that
A is semisimple.
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LEMMA 1. Let M be a simple (A, A) double module of type (K, λ). Then
M satisfies (a)' for simple left submodules if and only if eκM is a simple
right submodule. Moreover, M satisfies (a)' for every left submodule if and
only if eκM and Meχ are simple right and left submodules, respectively.

The first assertion is a restatement of prop. 1 of [1]. The proof for the
second assertion is similar to that of Ikeda [3], prop. 2.

LEMMA 2. Let M be a simple (A, A) double module of type (K, λ). Let
M satisfy (*)' for simple left submodules. Then either eκM is a simple right
submodule or we have f(λ) = 1.

Proof. Assume that eκM is not simple; let m be a non-zero element of
eκMeχ. Then, as eκMeχ is a simple (eκAeκ, eχAeχ) module, we have eκMeχ
= eκAeκ-m eλAeλ\ but, it follows from our assumption that m-eλAeλξ±eκMeλ.
Therefore we can choose an element x of eκAeκ such that xm does not lie in
m-eλAeλ. Suppose now that f(λ)>l. Put ΐ=A(m-{-xmcχ)12); ί is a simple left
submodule and so A-isomorphic to lo=Am. Then we have i = Uz for a suitable
regular element z of EχAEχ, and hence there exists an element y (Φ0) of A
such that m + xmcχΛ2 = ymz; here y may be assumed to be contained in eκAeκ.
This implies m = ymzeλ and xm = ymzcχ>2U which show that ym {Φ 0) is contained
in m eλAeλ as well as in xm-eχAeχ. On the other hand, however, we have
by the definition of x that m eχAeχ r^xm- eχAeχ = 0. Thus we are led to a con-
tradiction and this completes the proof.

Let the notations and assumptions be as in the above lemma; let eκM be
not a simple right submodule. By the lemma we have /(/?) = 1; eκM = eκMeλ is
a simple (eκAeκ, eχAeχ) double "module and satisfies (*)' for simple left sub-
modules. For the sake of brevity we write M, K and L in place of eκMβχ,
eκAeκ and eχAeχ, respectively. We now prove the following

LEMMA 3. Let K and L be two {finite dimensional) division algebras
over a field F. Let M be a simple (K, L) double module over F and let M
satisfy (*)7 for simple left submodules. Then either M is a simple right L-
module or M is a simple left K-module.

Proof. We first prove our assertion in the case where the underlying field
F is an infinite field. Let m be an arbitrary non-zero element of M. By our
assumptions it follows easily that every element z of M is expressible in the
form xmy, where x^K and Ϊ / G L . Put (M:F) = n, (K:F) = r and (L:F) = s;
let (ui, u2, "-, un) [(^1, v2, - - , vr), (wu w2, , ws)2 be a .F-basis of M IK, L ] ,
Further we take a system of n + r + s indeterminates {zx, xJf yk) (l^i^n,
1 ^ j^r, l^k^s). Then a equation (ΣίjXJVJX^ztu%) = m(Σ&ykwk) must have
a non-trivial solution in (xJf yk) for every values of (zt) in F. This equation
is equivalent to a system of linear equations

{a) ϋ f]clZiXj - Sd k v y k = 0 (l^v^n),
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where c\v (1 ̂  i, v ^ n, 1 ̂  j ^ r), dΛv (1 ̂  ^ ^ s, 1 ̂  y ̂  n) are coefficients of
multiplication tables: VjUt = ̂ vclvuvt mwk = ^vdkvuv. Suppose now that M is
not simple as left iΓ-module and (at the same time) as right L-module. Then we
have evidently n ^ r + s. Let M=Kmwι +Kmw2 -\ \-Kmwσ, where wίf w2f ,
wσ are elements of L, be a decomposition of M into direct sum of simple left
ίf-modules; according to the decomposition we take a basis of M: (vimwi, v2mwu

•••, VrWiWu Vιmw2y v2mϊb2, •••, vrmwz, •••, vrmS f f), moreover, we write for sim-
plicity 2i, 22, , z\y 2i, 2|, , 2?, 2?) instead of (zu z2t- , 2W). The matrix
of the coefficients of (a) is then of the following form:

C(z) =

where R(zl) denotes the first regular representation of the general element
zϊvi -f z\v2 -\ 1- zlvr of K (i. e. the transposed matrix of the antistrophic
group matrix of K with parameters z\, z\, , zί), and D = \\dkv\\. Next we
t a k e a n o t h e r b a s i s ( m w u m w 2 , •••, m w s , *) = ( v 1 m w ί f •••, v r m w u V i m w 2 , ••*,
vrmwσ)T of M, and consider the correspondingly transformed matrix C(z)T of
C(2); by definitions D is transformed into

DT=(ES OO O)
n-s

where Es denotes the unit matrix of order s. On the other hand, (R(z^)R(z2)-
R(zσ)) is transformed into (R{zι) R(z2) R(zσ))T= (Ai(z) A2(z) * - - As(z), B^z) B2{z)
• Bns(z)), say, where At(z) (l^i^s) and Bj(z) (l^j^n — s) are (r x 1) mat-
rices. But, by prop. 1 we can see straightforwardly that for a suitable set of
values fa) of (zt) in F we have rank(Z?i(z) B2(z) Br(z)) = r (observe that n — s
^ r and that F is an infinite field); so we must have for the same values of
(Zi) that rank C(z)T= rank C{z) = r + s, and hence the sysem of linear equations
(a) has no non-trivial solution in (xJf yk) for (zj) = (JΊ). This is a contradiction
and therefore proves our assertion.

We now consider the second case where the underlying field F is a finite field.
The division algebras K and L must be then commutative. Denote by Ko the
set of all x's in K satisfying xm = my for some y in L; similarly denote by Lo

the set of all y's in L satisfying my = xm for some x in iΓ. Since i£o and Lo

are isomorphic fields, we may identify them and regard K and L as (commuta-
tive) division algebras over Ko=Lo. From this point of view we assume with-
out loss of generality that K0=L0=F; moreover, we may set v1 = w1 = wί=lf

the unit element of F (the notations be the same as before). The proof of our
assertion in this case is now analogous to the above case; we have only to
observe that Km^mL — mF.

3. Rings with the condition (*).

Let A be a ring and let N be its radical. If A satisfies (*) for simple left
ideals, A has a right unit element. (This fact can be proved in the same way
as the proof of Ikeda [3], lemma 1.) For a subset S of A we denote by
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l(S) [r(S)~] the totality of left [right] annihilators of S.

LEMMA 4. Let A have a left unit element and let A satisfy (*) for
simple left ideals. Then A has a unit element and there exists a permuta-
tion π of (1, 2, , k) such that the largest completely reducible left sub-
ideal of Aeκ is a direct sum of simple left ideals which are isomorphic to

The proof is similar to that of Ikeda [3], lemma 2. If the assumptions of
this lemma are satisfied, we have r(N) £ l(N), EπOor(N) = r(N)Eκ and that each
r(N)Eκ is a non-zero simple two-sided ideal of A.

THEOREM 1. Let A be a ring satisfying (*) for simple left ideals and
for simple right ideals. Then: ( i ) A has a unit element, (ii) There exists
a permutation π of (1, 2, •••, k) such that for each K the largest completely
reducible left subideal of Aeκ is a sum of simple left subideals of the form lxr

where ί is an arbitrary simple left subideal of Aeκ and isomorphic to
Aeπoo/Neπw and x's are suitable units of eκAeκ, and the same for eπ^A.
(iii) f(κ) = 1 if the largest completely reducible right subideal of eπwA is not
simple, and the same for f(π(κ)) and for Aeκ.

Proof. A has a unit element E by what we have mentioned above. By
lemma 4 we have r(N) = l(N), and we denote this by M. There is a permuta-
tion π of (1, 2, , k) such that EπwM=MEκ (1 ̂  tc ̂  k); each MEK is a simple
two-sided ideal of A. All of our assertions are now immediate consequences of
lemma 2.

COROLLARY. Let A be a primary ring satisfying (*) for simple left
ideals as well as for simple right ideals. Then A is either a quasi-Frobe-
nius ring or a completely primary ring.

The following theorem is a direct consequence of lemma 3.

THEOREM 2. Let A be an algebra over a field F satisfying (*) for simple
left ideals as well as for simple right ideals. Then besides (i), (ii) and (iii)
(in theorem 1), A has the property: (iv) For each K either Aeκ has a unique
simple left subideal, or eπooA has a unique simple right subideal.

REMARK. If A is an algebra over an algebraically closed field and if A
satisfies (*) for simple left ideals, then by lemma 1 A satisfies also (a) for
simple left ideals. Therefore by Ikeda [3], prop. 1 A is a quasi-Frobenius
algebra whenever A has a left unit element.25

THEOREM 3. Let A be a ring which has the properties ( i ) , (ii), (iii) and
(iv). Then A satisfies (*) for simple left ideals as well as for simple right
ideals.

2) Y. Kawada [4], theorem 3.
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Proof, Since the largest completely reducible subideal r(N)eK)Z of Aeκ>ι is
a direct sum of simple left subideals isomorphic to Aeπw/NeπOC)f we have
r(N)eK)l=EπOor(N)eκ>ι and hence r(N)Eκ=Exwr(N)Eκ (l^κ^k\. From this
it follows that r(N)Eκ=EπWr(N) and that r(N)Eκ is a two-sided ideal (1^/e
5Ξ&). Similarly, we have that l(N)Eκ=EπCκyl(N) is a two-sided ideal (1^/e
^&). Furthermore, we can see in the same way as the proof of Ikeda [2],
theorem 2 that r(N)Eκ and l(N)Eκ are both simple two-sided ideals; therefore
we must have r(N) = £(A0> a n d we shall denote this by M. Now let ί be a
simple left ideal which is isomorphic to Aeπcιo/Neπθo and let V by any left
ideal which is isomorphic to ί. Both ί and V are contained in the simple two-
sided ideal EπOOM=MEκ. If eπwM = eπwMEκ is a simple right subideal of MEK,
then by lemma 1 V is written as ίa by a regular element α of EKAKEK; the
element α can be taken to be a regular element of A. If, on the other hand,
eπooM is not simple, then by (iii) and (iv) it follows that f(κ) = 1 and Meκ is a
simple left ideal, i.e. Meκ=MEκ is itself a simple left subideal. Therefore we
have V=MEκ = ί = ί E. Thus A satisfies (*) for simple left ideals. Similarly,
we see that A satisfies (*) for simple right iderls.

REMARK. In theorem 3, the assumption (iv) can not be omitted. For ex-
ample, let A be an algebra of order 9 over the field R of rational numbers
with a basis (1, ω, ω2, m, ωm, ω2m, mω, ωmω, ω2mω); let the multiplication
table be

1

ω

ω2

m

ωm

ω2m

mω

ωmω

ω2mω

1

1

ω

ω2

m

ωm

ω2m

mω

ωmω

ω2mω

ω

ω

ω2

3

mω

o?mω

ω2mω

— (ω2m-\-ωmω)

~(3m+ω2mω)

~(Sωm+Smω)

ω2

ω2

3

Sω

—(ω2m+ωmω)

—(3m+ω2mω)

—(Bωm+Bmω)

3m

Bωm

Sω2m

m

m

ωm

ω2m

0

0

0

0

0

0

ωm

ωm

ω2m

3m

0

0

0

0

0

0

ω2m

ω2m

3m

3ωm

0

0

0

0

0

0

mω

mω

ωmω

ω2mω

0

0

0

0

0

0

ωmω

ωmω

ω2mω

3mω

0

0

0

0

0

0

ω2mω

ω2mω

3mω

Sωmω

0

0

0

0

0

0

We can easily see that A satisfies ( i ) , (ii) and (iii), and that A does not
satisfy (iv); furthermore A does not satisfy (*) for simple left ideals or for
simple right ideals.

4. A remark on the duality relation of two-sided ideals in a ring.

Let A be a ring with radical N satisfying the duality relations (fi) l(r($))
= 3 and (γ2) f(£(3)) = 3 for every simple two-sided ideal a, for 3 = 0 and for %=N.
Then we can verify, in a similar way as the proof of Nakayama [5], theorem
7, that A has a unit element, r(N) = l(N) (we denote this by M) and that

l^/c^k) are simple two-sided ideals. We now give
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THEOREM 4. Let A be a bound ring^ with radical N. Let (?Ί) and {γ2)
be valid for every simple two-sided ideal 3, for 3 = 0 and for every two-sided
ideal 3 which contains M(=r(N) = l(N)). Then (JΊ) and (γ2) are satisfied by
every two-sided ideal 3 of A.

Proof. We have r(N) = l(N)=:M^N by what we have cited and by the
definition of a bound ring. M=nΣίEπwM=ΣMEκ is the unique decomposition
of M into direct sum of simple two-sided ideals. Let 3 be an arbitrary two-
sided ideal. Then we can prove (TΊ) and (γ2) for 3 in an analogous manner as
the proof of prop. 6 of [1].
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