
ON ANGULAR DERIVATIVE

BY YUSAKU KOMATU

1. Introduction.

In order to investigate analytic functions regular in a circle, a representa-
tion by means of Poisson-Stieltjes integral due to Herglotz [3] is often useful;
cf., for instance, [6], [7], [8], [9]. Let Φ(z) be an analytic function regular
and with positive real part in the unit circle. Then it admits the Herglotz
representation

where ρ(t) is a real-valued increasing function defined for — π ̂  t ̂  π. It is
further shown that p(t) is substantially unique, i. e. it is uniquely determined
under the normalization p(— π) — 0 and p(t) = (p(t — 0) + p(t + 0))/2 for —π<t
< π, and it is explicitly given in terms of the referring function by the limit
relation

the limit process depending on the continuous parameter r; cf. [9]. The total
variation of p(f) is evidently equal to

Γ
J-

It will be often convenient that p(t) is supposed to be continued beyond its
original interval of definition by the condition that ρ(t) — $tΦ(tyt/2π has 2π as
its period. Then the interval of integration may be replaced by any interval
with the length 2π.

Analogue of this representation will plausibly play corresponding roles for
studying functions in any other basic domain. For functions harmonic in a
half -plane a representation of this sort was really derived by Dinghas [2]. In
fact, any function u(z) harmonic and positive in the half-plane x = %tz > 0 is
representable by the integral formula

dθ(s)x Γ00 dθ(s)
= — ^— + ex

π J-co \z-is 2

where c is a non-negative real constant and θ(s) an increasing function of s
which may be, of course, normalized by #(0) = 0. Subsequently, Tsuji [12]
gave a simple proof of this representation theorem and further showed that
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θ(s) is unique for every u(z) under the normalization θ(s — 0) = θ(s). A cor-
responding result was established also by Verblunsky [14] and Loomis and
Widder [11] for the half-plane y = 3z > 0.

As shown in these papers [2] and [12], this representation formula offers
a simple way to prove the classical Julia-Caratheodory's theorem on the angular
derivative. In the form originally obtained by Julia [5] and later refined by
Wolff [15], Landau and Valiron [10] etc., it is stated as follows:

Let f(z) be an analytic function regular and with positive real part in the
half-plane $tz > 0. Then there exists a non-negative real constant c such that
it satisfies ffifW^cffiz for 3te >0, and f ( z ) / z - + c and f'(z)-+c uniformly as
z tends to co through any angular region arg z \ ̂  a < π/2.

The Julia-Caratheodory's theorem just mentioned concerns not only on
harmonic but analytic functions. Accordingly, Tsuji [12] completed in the way
of his proof the representation for the former to that for the latter. In fact,
he used the relation of the complex form

in which the second term of the integrand is inserted in order to ensure the
convergence of the infinite integral. Now, corresponding to the Herglotz
representation for the case of a circular disc, it seems natural and useful to
derive a clearer formula in the complex form valid for the case of a half -plane.
The latter will play a role similar to the former which was used by Herzig [4]
in discussing the angular derivative of a function regular in a circle.

In the present paper we shall derive a representation formula for analytic
functions regular in a half-plane. It is essentially a simple transform of the
Herglotz representation but the result obtained will be somewhat neater than
the previous Tsuji's one. We shall then try to make some applications of these
representation formulas to the angular derivative.

2. Integral representation.

We begin with the following representation theorem:

THEOREM 1. Let f(z) be an analytic function regular and with
positive real part in the half-plane ΐftz > 0. Then it admits the integral
representation

= Γ ±
J —CO Z I

f(z) = dλ(s) + cz + iSf(ΐ)

where c is a real constant with 0 ̂  c ̂  9ΐ/(l) and A(s) a real-valued in-
creasing function defined in — oo < s < oo and satisfying

Γ *!(«) - 5R/(1) - c.
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Proof. By means of the linear transformation z = (1 + Z)/(l — Z), i. e.
=(z — ΐ)/(z + ϊ), the function f(z) becomes an analytic function

regular and with positive real part in the unit circle \Z\<1. Hence it is
represented by means of the Herglotz formula

Φ(Z) = - dp(ΐ) + »3<J>(0)
—

where p(t) is a real- valued increasing function defined for 0 ̂  t ̂  2π and with
the total variation equal to SftΦ(O). Substituting Z = (z — l)/(z + l) and accord-
ingly changing the integration variable by means of

. . t

it readily becomes the desired formula in which λ(s) is a real-valued increasing
function defined by

Λ(s) = /?(2π - 0) - /o(2 arccot β)

with 7r > arccot s > 0. The constant c is evidently given by

c = P(+ 0) - p(ΰ) + p(2π) - p(2π - 0),

or c = p(+ty — 10(— 0) in view of the periodic continuation of ρ(t) — $tΦ(Q)t/2π.
Finally, we have the relation

= dλ(a)

which implies, in paticular, 0 ̂  c <Ξ

By the way, it is remarked that the formula used by Tsuji may be written
in the form

dθ(s)1 Γ00 fl-ίsz
= vj ..(î ϊΓ"

Hence, by putting

it is further transformed into

ί
θO I _ nay C OO

-̂̂  c«(β) + c^ +/(!) - c -
-oo Z — IS J-

The formula established in theorem 1 shows moreover that the additional con-
stant terms in the right-hand member must actually reduce to i3/(l).

The uniqueness assertion of λ(s) is an immediate consequence from that of
p(t); cf. [9]. It may be stated as follows:
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THEOREM 2. The function λ(s) involved in the representation formula of
theorem 1 is substantially unique. Namely, it is uniquely determined for
every f(z) under consideration, provided it is normalized by

Λ(s)-»0 as s-> —oo and λ(s) = — (λ(s — 0) -f λ(s 4- 0)) for — cx><s<oo.

Moreover, it is explicitly expressed by the limit relation

1 r2π / 1 4- rpiθ \
λ(s) = lim ̂  8t/( : ίθ }dθ

r >l-θ 27Γ J 2 arccotβ \ 1 ~ rβl* /

with π > arccot s > 0.

3. Fundamental theorems on angular derivative.

Now, the representation formula for f(z) having been established, the
Julia-Caratheodory's theorem in the form stated by Landau and Valiron will
be readily derived. While this theorem concerns a function itself and its
derivative of the first order, analogous behavior of derivative of any higher
order can be also obtained. Thus we shall give here a proof of the theorem
which is supplemented by the behaviors of derivatives of higher order. The
original part was proved also by Tsuji [12] in a similar way.

THEOREM 3. Let f(z) be an analytic function regular and with positive
real part in the half-plane $tz > 0. Then there exists a non-negative real
constant c for which we have ?ftf(z)^c?ftz for 9te>0, or more precisely

The equality $tf(z) = c ?ftz holds at a point if and only if
Moreover, for the constant c thus determined, the function f(z) and its suc-
cessive derivatives satisfy the limit relations

(n = 2, 3, •••)

valid uniformly as z tends to oo through any angular region \ arg z \ 5Ξ a
<π/2.

Proof. The representation formula in theorem 1 yields, after separating
the real part,

31/00 = 3
-co \Z — IS\Δ

The first half of the theorem is an immediate consequence of the last relation;
in particular, if the equality $tf(z) = c$tz holds at a point, λ(s) must remain
constant and hence /(z) = cz + i3/(l).

Now, since | z — is \ :> | s \ cos a holds for | arg z \ ̂  a < π/2, the formula in
theorem 1 yields the estimation
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3/(D I<g 1 f λ—^ M(s) + 2 sec a- f Ai(«) +
|z| J i β ^s z-^s Jiβ>s

provided S | 2 1 ̂  1. Hence, taking S large enough and then letting z tend to
oo, we see that f ( z ) / z tends to c uniformly. Similarly, from the derived
formula

J _oo (Z — IS)

we get the estimation

\f'(z) -c\^{ . 1 + f 2 dΛ(s) + 2sec2<* f dλ(s),
J \8}£S \Z — IS\ J \8]>s

provided S Ξ> 1. It follows that /'(«) tends to c uniformly.
For any integer n^2, we have

and hence

zn-ίf^(z) = (-ιrmΓ / + f' ιsYn"1N)f-^T-V^(s).
J_oo(2; —is)^ v = o \ ^ /\z — ιs/

Consequently, we get similarly as above the estimation

> - l ( l _ j _ S 2 ) Λ

— iβ|n + 1 J j 5 j >

U(β) + 2 sec2^ (1 + sec a)n~l dλ(s)
J\S]>S

provided S^l. This shows, based on the argument employed above, that
zn'lfίn\z) tends to 0 uniformly as 2->-oo along any Stolz path through the
angular region.

It is noted that the branch of f(z) = zm with 0 < m < 1 determined by
/(!) = ! satisfies the condition imposed in theorem 3 and its derivative /Cn)(z)
is equal to a non-zero constant multiple of zm~n. Since m may be taken arbi-
trarily near the unity, the power n — l of z in the expression zn~1fw(z) cannot
be ameliorated.

In case of a circular disc as the basic domain, the fundamental theorem
takes the form mentioned by Caratheodory [1], For deriving this, it will be
in principle only necessary to transform theorem 3 by means of linear func-
tions. But in transferring the proposition on the derivatives of higher order, the
actual computation together with necessary estimations will be perhaps some-
what troublesome. Accordingly, by making use of the Herglotz representation,
we shall give here a direct proof of the theorem which is supplemented by
the behaviors of derivatives of higher order. Though the original part men-
tioned by Caratheodory was already proved also by Herzig [4] in a similar
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way, we reproduce it here briefly for the sake of completeness.

THEOREM 4. Let F(z) be an analytic function regular and satisfying
F(z)I < 1 in the unit circle \z|< 1. Then there exists a positive real con-

stant D, eventually equal to + °°, i.e. the so-called angular derivative of F(z)
at z = 1, for which we have

for \z\<l,
\l-F(z)\* = D l l-z

D being understood as the least possible constant satisfying this inequality.
Here the equality holds at a point if and only if F(z) is a linear function
defined by

/3=3((l+ί'(0))/(l— f(0))) being a real constant; in this case, D is necessarily
finite. In general, the function satisfies the limit relation

and, if D is supposed finite, its successive derivatives satisfy the limit re-
lations

Ff(z)-+D and (1 - z)n-lF™(z) -» 0 (n = 2, 3, •),

every relation holding uniformly as z tends to 1 along any path through a
Stolz angle in \ z |< 1 with the vertex at z = l.

Proof. Since (L+F(z))/(l—F(z)) is regular and with positive real part in
I z I < 1, the Herglotz representation yields

1 +*'(*)

p(t) being a real-valued increasing function defined for 0 sΞ t S 2π with the total
variation equal to 9ί((l+ίτ(0))/(l—F(0))). By separating the real part, we get

I-\F(z) |2

where D is given by

•β

in view of the continuation of p(t) mentioned before. In particular, we have
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The equality in the above inequality holds if and only if p(t) remains constant
in the interval 0 < t < 2π. Hence the extremal function must be a linear iiinc-
tion given in the theorem.

Next, for any F(z) under consideration, it holds

ι-F(6)
For 2 tending to 1 along a Stolz path, an estimation of the form |1 — 2|/(1
— I z I) g ίί< + oo holds. Therefore, for any d with 0 < 3 < π, we obtain

l-z 1
1 -F(z) D

U S p,r-0\ /f2π-3 1

+ dtfί) +11 - z I ( — -̂r dtfί) +
+o hπ-δ/ \jδ \etc — z\

Consequently, taking (5 small enough and then letting z tend to 1, it follows
that the limit relation (l-z)/(l-F(z))-^l/D, i.e. (l-F(z))/(I-z)->D holds
uniformly. In quite a similar way, it follows from the derived formula

that the limit relation

holds uniformly. Hence, by combining with the relation established above, we
obtain the relation Ff(z)-*D provided Z)< + °°, valid uniformly.

Finally, suppose n ̂  2 and D < + oo. The Herglotz representation for (1
+F(z))/(l—F(z)) or equivalently for l / ( l — F ( z ) ) becomes after differentiating
n time

dn 1

nl

Hence we conclude by means of a similar argument as above that the limit
relation

-
dzn l-F(z) D

holds uniformly for Stolz approach. Now, it is readily verified by induction
that the nth derivative of l/(l—F(z)) with respect to z is a polynomial of n
arguments ωv=F^(z)/(l-F(z)) (y = 1, - - , w ) multiplied by 1/(1-^)), the
coefficients of the polynomial being numerical constants independent of F(z).
Further, if ωv is regarded as a quantity of degree v respectively, then this
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polynomial is homogeneous with the degree n. In other words, the nth deriva-
tive in question is of the form

__ _ _
dzn l-F(z) l-F(z) vlf..ti**ι VΓ"Vkll-F(zY

vί + + v%.=n

the γ's being numerical constants independent of F(z). Evidently, we obtain,
in particular,

γ™=l and γ^Λ = n\.

In order to prove the last part of the theorem by induction, we first deal
with the case n — 2 directly. For this case we have

1 F/f(z) 2Ff(z)2

_
dz2 l-F(z) ~~ (l

Consequently, in view of the limit relation established above for general n ̂  2,
it follows that

2 . d2 1
JD* .£VA ' dz2 l-

= £?
= ~Hm

i. e.

holds uniformly for Stolz approach. Suppose now

z)v-lF^(z) = $ for y =

uniformly for Stolz approach. Then, we obtain

- lim -(l - Zγ-W»
U z+i

This shows that the desired relation (1 — z)n~1F<in:>(z)—*Q holds uniformly in
general for n ̂  2 as z tends to 1 along any Stolz path.

It is noted that the branch of F(z) = 1 - 4/(C + C™ + 2) with C - (1 + z)/(l
— 2;) and 0 < m < 1 determined by (̂0) = 0 satisfies the condition imposed in
theorem 4. Its angular derivative at z = 1 has a finite value D = 2. On the
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other hand, it is verified that its nth derivative F™(z) grows near z = 1 with
the order of (1 — z)~n+2~m. Since m can be taken arbitrarily near the unity,
the exponent of 1 — 2 in the expression (l — z)n~1F^n\z') cannot be ameliorated.

4. Estimation of angular derivative.

In theorem 4, if F(z) is subject to the condition F(Q) = 0, it follows that
its angular derivative D at z — 1 satisfies D ̂  1 and the equality here holds if
and only if F(z) = z. Under an additional condition that F'(0) has a preas-
signed value, a more precise estimation was derived by Unkelbach [13] and
soon later re-proved by Herzig [4], Since by Schwarz's lemma we have always
1^(0)1^1 with the equality valid for F(z)=F'(ΰ)z alone, the case |F'(0)|<1
only is essential. The result of Unkelbach states that

and that the equality holds if and only if

Now, we shall show that this result can be generalized as in the following
manner.

THEOREM 5. Let F(z) be an analytic function regular and satisfying
\F(z) |< 1 in I z |< 1. Then we have an inequality

F'(z) 1 1
(l-F(z))2 D (1-2

valid for any z in \ z \< 1. At any assigned ZQ=\ZO\ eίθQ in \ z \< 1, the equa-
lity holds if and only if F(z) is a rational function satisfying

1\ eiffo F(0)__
l-F(z) D l-z l \l-F(Q)

When the value of Ff(z0)/(l — F0(z))2 is ^reassigned, the value of D for the
extremal function may be determined by the equation

(1 -F(zQ))2 D (I-z0)
2 ^ V 1 -F(0) D) (e«*-z0)

2'

Proof. From a relation used in the proof of theorem 4 we get

TΐSw = i 7Γ-̂ F + ί I Ίef^Wdp(t}'
Thus, evident relations

e" ι

imply immediately the desired results.
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Unkelbach's estimation of D is regarded as a particular case of the theo-
rem. We have only to put F(Q) — 0 and z = 0. In fact, we then obtain

~D = ~~Z)' L e* = 1- \F'(ΰ) | 2 '

For preassigned value of F'(ΰ), the extremal function is defined by

1 1 1

with F7(0) —

1

l-F(z) D l - z ^ V " D)eίθ*-z

+ (1 — \/D)e~ίθ*. Hence, inserting the values

^(0) F'(fl) — l/D l-P(O)-;^77xΓ and βl(?o
ί-l/D"

we really obtain

In a similar way, we can derive an inequality involving higher derivatives.

THEOREM 6. For F(z) considered in theorem 5, we have, for any integer
,^ 1, an inequality

[ dn I 1 1
nl dzn l- D (l-z)n4 <

Aί an?/ assigned ZQ= \ZQ\ eίθ® in \ z |< 1, the equality holds if and only if
F(z) satisfies

^

eiθo -z 1 -

while it satisfies

0 = 0 where ί0 is a^τ/ reaί number and the p's denote arbitrary real
numbers subject to the conditions

n-i
^ 0 0 / = 0, ,tt-l) and Σ > = ft

Proof. We can proceed similarly as for theorem 5. In fact, we have
only to remember

- _ - _L .̂ .J __ f]n(+\

nl dzn 1 -F(z) D (I- z)n+1 J +0 (eu - z)n+1 l

It would be remarked here by the way that, by means of the notations
used in the proof of theorem 4, we have
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Ί-o

l-F(O)
Cf0
υ "

On the other hand, if ^(z) vanishes at the origin, we may replace l/(l—F(z))
in the left-hand member by ^Σ^=QF(z)v. Thus, in this case, we obtain an
alternative relation generating the p's:

Since the last identity remains valid for any analytic function F(z) vanishing
at the origin, it will serve the actual determination of the values of the γ's.

Corresponding to theorem 5 or 6, similar and essentially equivalent in-
equalities are derived more readily for the case of a half -plane. For the sake
of brevity, we restrict ourselves to formulate an estimation corresponding to
Unkelbach's.

THEOREM 7. Let f(z) be an analytic function regular and with positive
real part in $iz > 0. Then we have an estimation

1 (%/(!))* - |/'(1) I 2

~ 2

provided f(z)^cz + ί!$f (I). The equality holds here if and only if f(z) is a
rational function of the form

f(z) = CR/(1) - c ) " " + cz +
Z — ISo

SQ being any real constant. In particular, if f(z) is subject to the condition
/(I) = 1 and the value o//x(l) necessarily satisfying I /'(I) |< 1 is preassignedf

the estimation becomes

- ' 2

- Δί 1 ιJ\.J \\

ana the extremal function is of the form

^_. 11-/'(D I s

Proof. The representation formula established in theorem 1 yields, after
differentiation with respect to z followed by putting 2 = 1, the relation

Hence it follows readily that

l/'(D-c|

Since this implies, in particular, the inequality Uΐ/'(l) ̂  |/x(l)| ^5R/(1) with
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the last equality only for f(z) = cz + i3/(l), we obtain the desired estimation.
Extremal function appears if and only if λ(s) jumps at a single point, s0 say,
and hence it is of the form stated in the theorem. If f(z) satisfies /(I) = 1
and the value of /'(I) is preassigned, then the values of c and s0 for the ex-
tremal function are determined by the equations

1 1- l/'d) I 2

Inserting the values thus determined, we obtain the last mentioned form
of /(«).

In a similar way, we can derive for any n^2 an analogous estimation
involving /Cn)(l). For instance, if f(z) satisfies the condition at the beginning
of theorem 7 together with 9Ϊ/(1) = 1, we obtain

here the equality holds if and only if f(z) is a rational function of the form
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