
ON THE RADICAL OF QUASI-FROBENIUS ALGEBRAS

BY SHIGEMOTO ASANO

Introduction.

Let A be an algebra over a field F. A is called quasi-Frobenίus if it
has a unit element and if every indecomposable direct component of the first
regular representation is equivalent to an indecomposable direct component of
of the second regular representation. If the two regular representations are
equivalent, then A is called a Frobenius algebra. Furthermore, A is called
symmetric if one of the two regular representations can be transformed into
the other by a symmetric non-singular matrix.Ώ The main purpose of the
present work is to study the properties of the radical of these and some other
types of algebras.

The first section is preliminary and we make some remarks on simple
modules with an algebra A as two-sided operator domain. Then in section 2
we deal mainly with nilpotent (left, right and two-sided) ideals of a quasi-
Frobenius algebra. Namely: Let A be a quasi-Frobenius algebra over a field
F and let N be its radical. We may assume, essentially without loss of gene-
rality, that M—l(N) = r(N) is contained in AT2, where l(N) [r(JV)] denotes the
totality of left [right] annihilators of N (theorem 1). Then we show that a
large part of nilpotent ideals of A can be characterized without considering the
multiplication by elements of A other than those of ΛΓ; we show in particular
that every nilpotent two-sided ideal of A is such. From this and other results
we show in the next section 3 that a quasi-Frobenius algebra is largely deter-
mined by its radical. For instance, if two (bound) quasi-Frobenius algebras A
and A over F have a same (i.e. isomorphic) radical N, then we have A=A/N

~A/N=A'f we have also π(κ)+->π(κ) and zκλ = zΓλ for a unique correspondence
κ<-+ϊϊ of simple constituents Aκ and A"κ of A and of A, respectively. Here
M=lN(N)=rN(N) (annihilators taken in N) is assumed to be contained in N2

and zκλ [έπ] denote the (two-sided) Cartan invariants of A [A]; (for π(κ) [£(£)]
see section 2). Section 4 is concerned with Frobenius algebras and some sup-
plementary remarks are given on such algebras.

Let now N be a nilpotent algebra over a field F and p be its index:
N^>N2 ID ^)NP~1^NP = 0. In section 5 we discuss a particular class of nil-
potent algebras with the property (l(N): F) = (r(N): F) = (N^1 :F) = 1; here,
l(N) [r(ΛΓ)] denotes the left [right] annihilators of N. We prove that this
property is equivalent to the property that the algebra F+N which is obtained

Received January 16, 1961.
1) For the properties of such algebras, see the papers given in the References

(above all, see Nakayama [10]).
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from N by the adjunction of a unit element is a Frobenius algebra. Several
other characterizations of this class of algebras are obtained. Moreover, we show
that if an algebra A over F with a unit element has a radical N which itself
is a nilpotent algebra of this type, then A is uniquely determined by N up to
a semi-simple direct summand, except for the case N2 = 0. Finally, section 6
is a generalization of previous sections (2, 3 and 5) and aims, not only at quasi-
Frobenius algebras, but also at less special class of algebras; we deal there
with a certain class of algebras over a field F with a given nilpotent algebra
N over F as the radical.

It should be observed that, although we have restricted ourselves to the
case of algebras, most of our principal results may be generalized to the case
of rings satisfying minimum condition for left and right ideals.

The author wishes to acknowledge his deep indebtedness to Prof. H. Tό-
yama. He is also grateful to M. Okuzumi and A. Inatomi for their help given
him in the preparation of the work.

1. Some remarks on simple modules with an algebra as two-sided operator
domain.

Let A be an (associative, finite dimensional) algebra over a field F possess-
ing a unit element; let N be its radical. The residue class algebra A = A/N is
semisimple and is a direct sum of simple two-sided ideals which themselves
are simple algebras:

the unit elements Eκ of each Aκ (1 ̂  K ^ k) is expressible as a sum of mutually
orthogonal idempotent elements eK}ί, eκ>2, •••, eκ>fw such that left ideals AeK)l

[right ideals eKt%A~\ are simple, and the unit element E of A is the sum of
these eKiϊ (l^κ<^k, l^i^/(/c)) This decomposition of E leads to a decompo-
sition of the unit element E of A:

E =Eι -\-E2 -}-

Eκ = eκ>ι + eKί2 + ---- h eκ> /(AO (1 ̂  K ̂  fc),

where each eκ>l lies in the residue class eκ,τ (moάN); A is a direct sum of
modules EκAEλ (1 ̂ K, λ <Ξ k). Moreover, there exists for each K a system of
f(κ)2 elements cK)ij (l^i, j ^ /(/<;)) such that cK)ίί = eK)l and cΛ > l t/cΛ,τ lί = ̂ /ΛcΛ, ίz, d
being the Kronecker's symbol. We call an element a in A is of type2) (K, X) if
a lies in EκAEχ, i.e., if a satisfies EκaE^ = a. The idempotent elements eK)Z are
primitive, and the left ideals Aeκ>l [right ideals eK)lA~\ are directly indecompos-
able; for the sake of brevity we set eK)1 = eκ (l<ίκ<^k).^

Let yn be a simple (A, A) two-sided module. Then there are two K, λ such
that EMEλ = ?ΰl, EκMEλ> = 0 (κ^κf or λφλ'); moreover, as we have

2) See Nesbitt [16].
3) For these well known fundamentals of the theory of algebras, see for instance

[1], [5].
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= yftN=(), we may regard 9ft as a simple (Aκ, Aλ) module. We shall call such
an (A, A) module to be of type (K, λ). Then it is obvious that 9ft is decomposed
into a direct sum of isomorphic left [right] A-submodules yReλ)l (l^i

le^ma^j^fdcm:

Furthermore, let e be any primitive idempotent element of A. Then
e e Aμ for some μ (1 ̂  μ ̂  &); we have either 9fte = 0 (μ ̂  Λ) or 9fte = 9^ O — Λ)
[e2R = 0 (μ =£ *) or eWl = eM (μ = «)]. The left [right] modules 9fte^ [e^SK]
are not simple in general. (If the underlying field F is algebraically closed,
then these modules are all simple.)

PROPOSITION 1.4) Let 9ft be a simple (A, A) module of type (/e, Λ); ieί ίAe
right A-submodules eK)$fl (l^i^f(κ)) of %R be (all) simple. Let I be a simple
left A-submodule of 9ft. Then every A-homomorphism of i into 9ft is obtained
by the right multiplication of an element of A. Conversely, let every A-
endomorphism of any simple left A-submodule of 9ft be obtained by the right
multiplication of an element of A. Then eΛ ) l2ft (l<£i^/(/c)) are (all) simple.

Proof. Assume that eKt$Jl (l<Ξ,i<>f(κ)) are simple right ^4.-submodules of
9ft. Let ί0 be a simple left submodule of 3Reλ. We first prove that any simple
left submodule ί of 9ft is obtained from ί0 by the right multiplication of a regular
element of EλAEλ. In fact, let m0 be any non-zero element in eκi0 and let m
by any non-zero element in eκί. We now note that eκlo and eκi are simple left
e^Ae^-modules and that e$Reχ is a simple two-sided (eκAeκ, e^Ae,) module as well
as a simple right eM^-rnodule. Then consider the expression

m - mEλ - meλ} i -f meλ) 2 H ----- h meλja^

— met, i + mcλ, 2ιc^, 12 -1 ----- h

At least one mc^ii does not vanish and we have

eκAeκ me;, a e^Ae^ = eκ%Reχ =

from this it follows that mcχ)il = m()aίeλ for some aτ in EλAEλ commuting with
every c λ ) j f t , and hence that m = m0(a1C2, n + a2cλ, 12 H ----- hα/^c^i/^); we can
therefore choose some regular element a of E^AEχ such that m = m0α, and
we have i=EKAEKm = EKAEKmoa = l<)a. We now take the inverse element α/
of a in EχAEχ\ then ί = ί0α is contained in Wa'e^a, since 9ftαr = 9ft. After
operation of a suitable inner automorphism of A we may therefore assume that
ί is contained in 9ft^. Let now ψ be any A-endomorphism of ί; let m be any
non-zero element in eκl, as before. Then φm is also contained in eκ\, and hence
we have φm — bm for some b in eκAeκ; but, as eκyjle^ is a simple right e*Aer

module, bm — mb' for an element 6X of e^Aeχ. By this fact the endomorphism
ψ of ί is obtained by the right multiplication of the element b' of eλAeλ.

4) Cf. Ikeda [9].
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(Moreover, we see easily that every A-endomorphism of I is given by the right
multiplication of an element of a division subalgebra of e^Aβχ (mod e^Nβχ)
which is isomorphic to eκAeκ (mod eκNeκ), and conversely; here, the isomorphism
of division algebras is given by cm = me'.) Our first assertion is now imme-
diate from what we have proved above. Assume now conversely that every
A-endomorphism of any simple left A-submodule of 9ft is given by the right
multiplication of an element of A. Let ί be a simple left A-submodule of yjle*.
Then eκί is a simple left e^A^-module; we take any non-zero element m in eκi',
as eκWeχ is a simple two-sided (eκAeκ, e^Aeχ) module, we have eκAeκ m-e^Aeχ
=eκWeλ. Now consider a mapping φ: xm—*xam, where a is an element of
eκAeκ and x is any element of A] this mapping is indeed an A-endomorphism
of ί, and hence is given by the right multiplication of an element of e^Ae^.
Therefore we have am— ma', where a is in eκAeκ and a' is in eλAeλ\ this shows
that the module ejΰlez is simple not only as two-sided (eκAeκ, eλAeλ) module,
but also as right ^Aermodule, and hence that effi is a simple right A-module.
Our proof is now completed.

The following proposition follows readily from what we have proved:

PROPOSITION 2. Let 9ft be a simple (A, A) module of type (K, λ): let the
left A-submodules 9fte^ (1 ίgΪ!g/(Λ)) as well as the right A-submodules eκ>$R
(1^^'^/M) of 9ft be all simple. Then every simple left [right] A-submodule
of 9ft is written as 9fte [e'9ft] where e [ef] is a primitive idempotent element
of type (/ί, λ) [(K, K)], and conversely; and, when that is so, eκAeκ is iso-
morphic to eχΆeύ moreover, every A-homomorphism of simple left [right]
A-submodule of 9ft is given by the right [left] multiplication of an element
of A.

PROPOSITION 3. Let assumptions and notations be as in prop. 2. Let
9ft — ttti + m2 H ----- h tn/U) be any decomposition of 9ft into direct sum of simple
left A-submodules. Then there exists a system of mutually orthogonal pri-
mitive idempotent elements eλίl(\^i<ίf(λ}) of EλAEλ such ί/£a£ m, = 9fte^.
Similarly for right submodules.

Proof. By prop. 2 we have mt — me/ (1 ̂ ΐ^/(Λ)) for some primitive
idempotent element eτ

f of EχAEχ. To every eτ

r there corresponds a simple left
ideal Ά&i' of Aχ , and, as is easily be seen, we have Aλ= A^e^ -{- Aλe2

f -\ ----
-^Άλe

f

faϊ (direct sum). Hence there is a system of mutually orthogonal primi-

tive idempotent elements eχ^(\^i^f(λ)) such that A^ei

f = A^e^l] our assertion
is now evident.

2. Nilpotent ideals of a quasi-Frobenius algebra.

Let A be a quasi-Frobenius algebra over a field F; let N be its radical.
Let A/N = A=Ai+A2-\ ----- \-Ak, f(κ), eκ>l, ef = ef,ι, CK}IJ, Eκ = eK)1 + eκ>2-\ ----
+ e*,/oo and E=Eι+E2-i ----- \-Ek have the same meaning as in the previous
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section. The totalities l(N) and r(N) of left annihilators and of right an-
nihilators of N respectively coincide; we denote this by M. Then we have
EκM=MEπw, where (ττ(l), π(2), ••, ττ(fc)) is a (unique) permutation of (1,2,
• ••,&); EKM(l^fc^k) are non-zero simple two-sided ideals and M—^EKM
= *ΣMEπw , eκ>iM\_MeK}%~\ (1^/e^fc, l^ί^/(«)) are simple right [left] ideals.
A is uniquely decomposable as the (two-sided) direct sum of a semisimple algebra
and an algebra bound to its radical (for short, bound algebra);5) and, from this
point of view, we shall assume in the followings without loss of generality that
A is bound to N, i.e. M is contained in N.

Let ί be a left ideal of N (for short, left AMdeal)6) and let M be contained
in ί. Then we obtain the following criterion for I to be a left ideal of A (for
short, left A-ideal):

LEMMA 1. Let A be a quasί-Frobenίus algebra over a field F\ let N be
its radical. Let i be a left N-ideal in N. Then, I contains M and is also a
left A-ideal if and only if ίXr,γ(ί)) — ί.7) A similar assertion holds for right
ideals.

Proof. Let ί be a left ΛMdeal in N satisfying lN(rN(ff) = ί. From the de-
finitions we have rN(ΐ)^N, so that i = lN(rN(i))^lN(N)=M; to see that ί is a
left A-ideal we need only to observe i = ijv(r^(I)) =AΓ^ZX?v(OX where N and
ZX?v(0) are left A-ideals. As to the converse, assume that ί is a left A-ideal
containing M. Then we have lA(rA(i)) = i (Nakayama [10], §3); from I Ξ> M"
= 1A(N) it follows that rA(ΐ) is contained in rA(M) = rA(lA(N)) =N, so that rA(l)
= rN(ί) and ί £ lN(rN(ί)) = lN(rA(i)} g (lArA(ί)) = i. This shows lN(rN(ί)) = ί.

For each simple two-sided ideal EKM there is a positive integer h such
that EKM^N'1 and EKM^Nh^ -0. We then say that EKM belongs to N!l.

PROPOSITION 4. Let EKM belong to Nh. Then EπwM also belongs to N!i.

Proof. We have only to consider the case π ( κ ) Φ κ . Let EKM belong to
N!l and assume that Eπ(i^M were contained in Nh+1. Then we can choose
h -r 1 elements xί9 xz, , Xh+i from N such that each xl is an element of type
(Λ-i, λt) where /ί0 — π(κ), λh+ι = ττ2(/c) — π(π(κ)) and such that XιX2 α;Λ+ι (^ 0) lies
in EπWM; Xι is of type (ττ(/c), ^) and XiN^^O, i.e. α?ι is not contained in l(N'L);
as Z(^Λ) = rC/V71), we have AΓ^^i ̂  0. There is therefore an element y of type
(*, π(/c)) in Nh with yxi^Q; as # is not in l(N)=M=r(N), we can find an
element z in N for which £# (Φ 0) lies in M"; but, as y is of type (*, π(κ)), zy
is contained in MEπw as well as in JVΛ + 1, i.e. EκM=MEπ^ contains a non-
zero element of Nh+ί. This is a contradiction and hence EπwM must belong

5) An algebra is said to be bound to its radical if the two-sided annihilators of the
radical are contained in the radical. See Hall [8].

6) Here N is considered itself to be a nilpotent algebra; so that, when we speak of
a left ΛΓ-ideal, we consider only the left operation of the elements of N.

7) ljf(S) [rN(Sy] denotes the left [right] annihilators of S in N.
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to Nm, m^h. Now let πl(κ) = κ and let EπjίκyM belong to Nmj (2^j^t).
From what we have proved above it follows that h ^> m ;> m2 ̂  ^ mt-ι ̂  mt

= h; hence h—-m and this completes our proof.

The permutation (ττ(l), π(2), •••, π(k)) of (1, 2, •••, k) is expressible as an
irredundant product of cyclic permutations; let the expression be

where τr(tfn) = /ci2, π(/cι2) = #13 etc. By prop. 4 it follows that, for a factor
(iCiiKiz KtrJ, the two-sided ideals EKijM (1^'^n) belong to a same power of
of N', in particular, if some EKimM belongs to N1, then EKijM (l^j^ n)
belong to N1. To every such factor there corresponds a block of primitive
idempotents eκίj>h (1 ̂  j ^rz, 1 5j & ^f(fclj)) and hence a uniquely determined two-
sided direct summand of A, which itself is a quasi-Frobenius algebra.8) (To see
this, we have only to observe that an element of type (κijt *) is either of type
(fey, Ktj) or of type (κΪJ9 /clij+i).) We now give the following

THEOREM 1. Let A be a quasi-Frobenius algebra over a field F. Then A
is uniquely decomposed into a direct sum A0+Aι of two-sided ideals A0 and
AI. Here, AQ is itself a generalized uni-serial quasi-Frobenius algebra over
F and the square of its radical vanishes; AI is itself a quasi-Frobenius al-
gebra with radical Nι=Aί^N and Mί — lAί(Nί) = rAl(Nί) is contained in Ni2.

Proof. First we note that two-sided direct summand of a quasi-Frobenius
algebra is also a quasi-Frobenius algebra. Now in the expression (a) of the
permutation (π (l), π(2), •••, π(k)) of (1, 2, •••, k) we assemble all the cyclic
factors (fcilκl2 tcιr^ belonging to N1 (i.e. at least one EKiJM belongs to N1).
For each of these factors we obtain a two-sided direct summand of A; let AQ

be the direct sum of thus obtained two-sided ideals. Then the radical NQ

= A0^N of AQ satisfies NQ

2 = Q; AQ is moreover a generalized uni-serial al-
gebra. The rest of our assertions is now immediate from the definitions and
from the uniqueness of the decomposition of an algebra into direct sum of
indecomposable two-sided ideals.

By virtue of above theorem 1 we can assume, essentially without loss of
generality, that M—l(N)=r(N) is contained in N2. Under this assumption
we now consider nilpotent (left, right and two-sided) ideals of A. We have
already noted in lemma 1 that a left ΛMdeal ί in N containing M is a left A-
ideal if and only if Z#0v(i)) — I. (Similarly for right ideals.) We shall say such
a left [right] ideal to be a closed left [right] iV-ideal.

PROPOSITION 5. Let A be a quasi-Frobenius algebra over a field F\ let N
be its radical. Let M be contained in N2. Then every simple left (A-)ideal

8) See Artin-Nesbitt-Thrall [1], Ch. 9, Nakayama [14] and Scott [21]. This direct
summand is moreover a generalized uni-serial algebra and the square of its radical
vanishes. For generalized uni-serial algebras see Nakayama [11], [13].
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is obtained from a closed left N-ideal by the right multiplication of an ele-
ment in N. Similarly for right ideals.

Proof. Let I be any simple left ideal of A. Then ί is A-isomorphic to
some Aeκ/Neκ; and, when that is so, ί is contained in the simple two-sided
ideal EκM = MEπw', ί is therefore A-isomorphic to Λfe f f O C ). By prop. 3 we may
then assume without loss of generality that i=Meπw. Meπw contains an ele-
ment of the form xy (=£ 0), where x and y lie in N. In fact, since Meπw

£ N2, Meπw contains a non-zero element of the form Xtfji + #2^/2 H h xsys,
where each Xχ and y* lie in N(l^λ^s); then we can find for some λ an ele-
ment x of N such that xy*enw (^0) is contained in M, hence in Meπw. Now
the left ideal Ax^M is a closed left jV-ideal in N by lemma 1; Meπw = Axy
= (Ax^M)y is therefore obtained from a closed left N-iάeal Ax^M by the
right multiplication of an element y of N.

It should be observed that in view of the above prop. 5 we can determine
all the left A-ideals contained in M without considering the multiplication by
elements of A other than those of N, i.e. a left N-ideal i in M is a left A-
ideal if and only if it is expressible as a sum of left N-ideals in M each of
which is obtained from a closed left N-ideal by the right multiplication of
an element of N. Similarly for right ideals and hence for two-sided ideals.
Such ideals will be called to be characteristic.

PROPOSITION 6. Let A be a quasi-Frobenius algebra over a field F with
radical N; let M be contained in N2. Let a be a two-sided N-ideal. Then $ is
also a two-sided A-ideal if and only if ^^M is characteristic and ^M is a
closed two-sided (i.e. closed left as well as closed right) N-ideal.

Proof. Suppose that a two-sided TV-ideal a satisfies our assumptions and put 3
- Z(r(a)) (i.e. lA(rAm; then ~^M= l(r(i))^ l(N) = l(r(t)^N) = l(rN®) = l(rN(^M)
= l(r(t^M))=z^M.^ Furthermore, we have 3^Jlf=§^Af. In fact: Let i^M
= 3α) + 3<2M h3α ) be the (unique) decomposition of ar\M into the direct sum
of simple two-sided A-ideals; we may then set MEl = aα) for i — 1, 2, , t. From
this it follows that a = gEΊ + tE2 H h 3-K (direct sum), since %Eλ Φ 0 (λ > t) im-
plies (%s^M)Eλ -φ 0 which is impossible and since Et(l^i^t) are mutually ortho-
gonal. We have therefore r(z^M) = (Σί

k

κ=ί+1EκA)^/N=r(t)^N; this implies
Ϊ^M= Z(r(3))πl(N) = Z(r(g)^N) = Z(r(g^Λf)) = g^M. If, now, we take a suit-
able two-sided A-ideal a0 in M such that M=fo + (%s^M) (direct sum), we have
8^M=3^M= go 4-a = 30 +a (direct sum); observing that a ϋ a , this shows a = 3
— ί(r(a)). Similarly we must have 3 = r(i(3)). Therefore a is a two-sided A-ideal.
The converse part of our assertion is trivial.

REMARK. An analogous assertion for a left ideal is not valid. To see this
fact, consider an algebra A consisting of all matrices

9) This formula will remain valid if we replace 5 by a left ΛMdeal I such that
is closed.
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where α's, β's and f's are arbitrary elements from a field F. A is in fact a
(quasi-)Frobenius algebra possessing the property M<Ξ=N2. Let ί be a left ΛΓ-
ideal consisting of all matrices

/ 0 0 0 0 0 0 0 0 ^

α O O O O O O O

6 0 0 0 0 0 0 0

c - 6 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

b a\ 0 0 0 0 0 0

^M and arewhere α, b and c are in F. It can be easily verified that ί,
both left A-ideals, while ί itself is not a left A-ideal.

For left and right ideals we have the following

PROPOSITION 7. Let A be a quasi-Frobenius algebra over a field F with
radical N; let M be contained in N2. Let ί be a left N-ideal in N. Assume
that i^\M is characteristic and that l^M is a closed left N-ideal. Then
there exists a left A-ideal ί0 in N such that ί0 is N-isomorphic to ί.

Proof. By definition, the characteristic left ideal i^M is decomposed into
a direct sum of simple left A-ideals: l/-NM"=ία)-f ί ( 2 ) H ---- + ίco. We can then
choose, by prop. 3, a system of mutually orthogonal primitive idempotents e(1),
e(2), . . , e™ (m = Σί=ι/W) such that Σ?=1e^=E and Me(ί) = ί(i) for i = 1, 2, ,
ί; we set£Ό=eα ) + e(2)-f + e(0 and EΊ = e(ί+1) + + eC f f l ). Now consider a left
Λf-ideal ίo = ί-EΌ and a mapping of ί onto ί0 which is given by the right multi-
plication of EO, i.e., φ: x—>xE0(x^i). The mapping φ is an ^V-isomorphism.
In fact, suppose that for an x (=£0) in ί we have xE0 = Q; if x is contained in
M, i.e. in l^M, then we have x = xE0 = Q, which is a contradiction; if, on the
other hand, x is not contained in M, then we can choose an element y in N
such that yx (^0) lies in ί^\M, so that we must have yxE0 = yx^Q, which is
also a contradiction. Furthermore, we have io = lEo = (i^M)E0 since ί^M~i
+MEι (direct sum); ί0 is therefore a left A-ideal.
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3. Quasi-Frobenius algebras with isomorphic radicals.

Let A be again a quasi-Frobenius algebra with a radical N', as we may
assume without essential loss of generality that M= l(N) = r(N) SAT2, we shall
assume throughout this section that a quasi-Frobenius algebra means one which
satisfies this condition. Let now ί be a simple left ideal of A\ then by prop. 5
ί is obtained from a closed left ΛMdeal ί0, i.e. ί = I0a for some a in N. The
mapping /: x—>xa (x e 10) is obviously an A-operator homomorphism of ί0 onto ί;
the element a is uniquely determined modulo r(ί0) = rN(i0). We note that ί can
be written as ί = Me with a primitive idempotent element of A; so that we
may assume that ί =Meλ for some λ and hence that ί = Aeκ/Neκ where K — π~l(λ}.
Now consider an A-endomorphism φ of 1= Meλ. By prop. 2 φ is given by the
right multiplication of an element aφ in eλAeλ^\ y—>yaφ (y^ϊ). If we combine
φ with /, we obtain a homorphism φf: x—>xaaf (x <Ξl0) from ί0 into ί; put
bφ = aaφ; then evidently Ker(/) = l(a)^ίQ = Zϊo(α), Ker(y/) = lιQ(bψ}\ lΪQ(a) £ Iι0(bφ),
where Ker(/) and Ker(φf) denote the kernels of these mappings. bφ is uni-
quely determined modulo r(ί0) = r^(ί0). Conversely take any element c of N
such that ίoC^Ξί and Zι0(α) £ IIQ(C). Then the mapping </: x—>xc (α?eίo) gives an
A-homomorphism from 10 into ί; as Ker(#) = lΐo(c) 2 ϊίo(α) — Ker(/), the corres-
pondence xa (eί)<->class [x] (<Ξί0/Ker (/))—> class [>] (ei0/Ker(#)) <-»#c (eί)
gives an A-endomorphism of ί.

LEMMA 2. Let A be a quasi-Frobenius algebra over a field F; let N be
its radical. Let ί be a minimal characteristic left N-ideal in M. Then 1 is
a simple left A-ideal', moreover, the A-endomorphism ring of ί is completely
determined by the radical N. Similarly for right ideals.

The first assertion is a direct consequence of prop. 5; the second assertion
follows at once from what we have proved above. (Note that M is assumed to
be contained in N2.)

The next proposition follows easily from what we have discussed:

PROPOSITION 8. Let A be a quasi-Frobenius algebra over a field F\ let N
be its radical (and let M^N2). Let ί be a minimal characteristic left N-
ideal. Then ί = I0α, where 10 is a closed left N-ideal and a is an element in
N. When that is so, let V be another minimal characteristic left N-ideal.
Then both ί and {' are simple A-ideals', ίf is A-isomorphic to ί if and only
if there is an element ar in N such that ί'= ί0α', ίo/-^(α/) = I0/^£(α). Moreover,
if M— ίi + ί2 H h im is any decomposition of M into direct sum of minimal
characteristic left N-ideals, then ίί (1 ̂  ΐ <^ ra) are classified uniquely into
classes, each of which consists of such Vs that every pair (ljf ίh) among them
satisfies above criterion] further, this classification gives the unique decompo-
sition of M into the direct sum of simple two-sided A-ideals.

Let A be a quasi-Frobenius algebra over a field F and let N be its radical

10) See also Ikeda [9].
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Consider another (bound) quasi-Frobenius algebra A over F with a
radical N which is isomorphic to N', the elements of N may be identified with
the elements of N and so we say that A and A have a same radical; then we
have from our asssumption M=l2(N) = rA(N)^N2. Let E, eK)l, eκ = e K ) 1 , CK]IJ

(l<^κ<^k, l^if j^f(κ)), Eκ = *Σιf^eS)l and π(κ) have the same meaning to A

as E, eK)l etc. to A. In view of the above prop. 8, we have first of all k — k
and we may set EKM=EKM (l<^κ<ίk)', the permutation π(κ) is given by EKM

We now note: Let fa z> fa be two-sided N-ideals each of which satisfies the
condition of prop. 6 and assume that there is no two-sided N-ideal satisfying
the condition of prop. 6 between fa and fa other than themselves. Then these
are two-sided A-ideals as well as two-sided A-ideals', if the type of simple
(A, A) module fa/ fa is (/c, λ), then the type of fa/ fa, considered as simple (A, A)

module is (K, I), where 1= T^TT'^)). In fact: The first assertion is immediate
by definition and by prop. 6. Now consider the two-sided ideals fa^M and
fa^M, which are both characteristic; we have obviously fa ̂  M Ξ> fa ̂  M. If
fa^M^fa^M, then there exists a minimal characteristic two-sided ΛΓ-ideal
Bo such that fa^M= (fa^M) + $Q (direct sum); from this and from our as-
sumptions it follows that fa — fa + fa (direct sum). Therefore fa/ fa is isomor-
phic to BO as (A, A) module and, at the same time, as (A, A) module; our
assertion follows now easily. If, on the other hand, fa^M— fas^M, then by
prop. 6 we must have fa^M^fa^M, and hence rN(fa) §Ξ rN(fa)\ we take an ele-
ment x of rN(fa)— rN(fa), i.e. fax= Q, fax^Q. The mapping fa-* fax is a homo-
morphism of fa into M; fax is direct sum of several minimal characteristic left
.ΛΓ-ideals, each of which is isomorphic to Aeκ/Neκ as A-ideal and hence also
isomorphic to Aeκ/Neκ as A-ideal. fa/ fa is therefore of type (K, *) as a two-
sided (A, A) module. Further, a similar consideration shows that fa/ fa is of
type (*, λ) as a two-sided (A, A) module, where λ = n(π~1(X)). This completes
the proof.

We consider for some time only the algebra A. Take any λ(\^λ^k)\
then we can find two elements of N, x and y, of type (*, λ) and of type (/?, *)
respectively such that xy Φ 0. Among the pairs of elements as this we now
take a particular one: Choose as many elements xίt xz, •••, %t(t^2) as pos-
sible in N such that each # t ( l ^ ΐ ^ £ ) is of type (̂ , /cl+ι), #ι#2 #ί ̂  0 and
such that for some j (2^j<^ t) we have κ,3 — λ\ then put x — XίX2 - Xj-ι,
y = XjXJ+1 xt; moreover we may assume that eκίxeχ = x, e^yeκt+l — y. Now we
consider two-sided ideals fa~AxA and fa=AyA of A; put fa'=AxN^NxA and
fa'=AyN^NyA. Then it follows from our definition of x and y that fafa'
= fa'fa = fa'fa'=Q From this we conclude that we can not choose complete
system $ι and φ2 of representatives of residue modules fa /fa' and of fa/fa' re-
pectively, such that every element of tyi annihilates every element of $2 from
the left.

Consider again two algebras A and A as before. By what we have noted,

fa/ fa' and 82/82' are (A, A) modules of type (*, X) and of type (Λ, *), respecti-
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vely. (Observe that, although these two-sided modules Bι/3/ and &>/£/ are not
simple in general, the above arguments can be applied to this case with slight

modifications.) Assume now that λ were different from λ\ then we can choose
complete systems d and O2 of representatives of 3ι/g/ and of 82/32' respecti-
vely, such that every element of Oi annihilates every element of O2 from the
left; this is a contradiction. We must therefore have λ = λ for each Λ, i.e.
π(π-1(λ))=λ, π(λ) - π(Λ) (1 ̂  λ ̂  k).

THEOREM 2. Let A and A be two quasi-Frobenius algebras over a field
F with a same radical N (and let M=lA(N) = lA(N)^N2). Then there exists
a (unique) 1-1 correspondence between simple constituents of A = A /N and of

A = A/N: Άκ*->Άσw (l ^κ^k = k) (we may,_after a suitable reordering, set

σ(κ) — K). When that is so, then (a) Aκ ~ Aκ (1 ̂  K ̂  k), A~ A', (β) π(κ) — π(κ)
(1^/c^A;); (γ) every composition series of N considered as an (A, A) module
is also a composition series of N considered as an (A, A) module, and con-
versely; moreover, the type of every composition factor module considered as
(A, A) module is the same as that of the factor module considered as (A, A)
module; (δ) zκλ = zκλ where zκλ, zκ^(l^κ, λ^k) are the (two-sided) Cartan in-
variants;11^ (β) the two-sided decomposition of A and of A according to blocks
induce a same two-sided decomposition of N.

Proof. The first assertion and (β) follow from what we have shown above.
Consider for a ιc the minimal characteristic two-sided JV-ideal EκM—MEπ^~EκM
=MEπw; this is decomposed into the direct sum of f(κ), as well as of /(/c) minimal

characteristic right ^-ideals; f(κ) must therefore be same as /(«;). Moreover,

we have from lemma 2 that eκAeκ = eκAeκ, which, combined with the well

known theorem of Wedderburn-Artin, gives AK = AK; thus we have proved (a).
The assertion (γ) is immediate from what we have discussed; the last two
assertions follow readily from the definitions and from (γ).

4. Supplementary remarks on Frobenius algebras.

Let A be a Frobenius algebra over a field F with a radical N, and let A
be bound to N. Let (uίt u2, , un) be a basis for A which is taken according
to AnN^MnQ; let the multiplication table of A be UiUj=^^==laijkuί,J where
the coefficients aτjk (1 ̂  i, j, k^n) lie in F. Then the parastrophic matrix12)

with fi, £2, •••, ξn as the values of parameters is of the form

P2i(€) P22(f) 0
L P81(£) 0 0

11) If the field F is algebraically closed, then zκλ coincide with the ordinary Cartan
invariants cκλ. Cf. Nakayama [14].

12) For the fundamental properties of parastrophic matrices see Frobenius [6],
Nakayama [10], Brauer-Nesbitt [4] and Nesbitt [16].
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where Pk = (a^μk)λμ\ Pι3(f), Pm(ξ) and P3ι(£) are square matrices (observe that
(A/N:F) = (M: F)). Hence | P(ξ) \ Φ 0 if and only if | P18(£) | - 1 P22(ς) - 1 P81(£) |
^ 0, and so we may, without giving any change to | P(ς) |, put ξk = 0 for k — 1,
2, , t, where t — (A/N: F). Now we consider ξk (t +1 ̂  k ̂  n) as indeter-
minates, while we set ft = 0 (l^ΐ^ί); then we have, from what we noted,
that each of Pι3(f) , | P22(£) I and P3ι(ςO I does not identically vanish. Let A
be a second Frobenius (bound) algebra over F with the same (i.e. isomorphic)
radical N as A; we take a basis (ult u2, •••, Sn) for A such that uL~ul for

ί + l^ i^w. Then, it follows that each one of |Pι3(f)|, \Pz?(ς)\ and |P8ι(f)|
does not identically vanish, where Pι3(f) and P3ι(f) have the same meaning to
A as Pιa(£) and P3ι(f) (respectively) to A. Therefore wτe can choose values of

ft+ι, £+2, , ft, from JP such that | P18(£) | - 1 P22(£) | - 1 P81(£) | - P18(£) | - 1 P31(Θ |
^0;13) so that we have |P(f) |=£0, |P(f) |=£0. On the other hand, to each
non-singular parastrophic matrix of A there corresponds a non-singular
character^ of A. From these observations we can easily see the following

PROPOSITION 9. Let A and A be two Frobenius algebras over a field F
with a same radical N. Then for a suitable choice of non-sigular characters

λ(x) of A and \x) of A, λ(x) — λ(x) holds for every element x of N', and,
when that is so, the (Nakayama's) automorphisms^ φ and φ belonging to λ(x)

and to λ(x) respectively satisfy x? ~ xψ (mod M) for every x in N', in parti-
cular, they are identical in N2.

PROPOSITION 10. Let A be a Frobenius algebra over a field F\ let N be
its radical. Let σ be any automorphism of N. Then there exist two non-
sigular characters λ(x) and λ'(x) of A such that λf(x) — λ(x°) for every x in
N. Moreover, the automorphisms φ and φ' of A belonging to λ(x] and to
λf(x), respectively, satisfy x^'^x0?0^ (modM) for every x in N.

Proof. Our first assertion is a direct consequence of prop. 9. The
second assertion follows from λ'(yx) = λf(xφ'y) = λ(yσxσ) = λ(xσvyσ) = λ(xσ(fσ~'σya)
=λ'(xσ(?σ~ly) and from the property of non-singular characters.

5. On a certain class of nilpotent algebras.

Let N be a nilpotent algebra over a field F and let p be its index, viz.
let NuN2 ID--- ^NP-^NO = 0. We take a basis (ult u2, --, un) for N and
assume that utUj = Ύ^=laijhuk] the matrix P(ξ) = *Σ£=lPkξk, where Pk = (aλμk)λμ

and ξic in F, is the parastrophic matrix of N with ξk as values of parameters;
we have then rank P(ξ) < n. We now prove

PROPOSITION 11. Let N be a nilpotent algebra of index p over a field F.

13) Here the field F must be assumed not to have too few elements.
14) See Azumaya [2], §2.
15) Nakayama [11], Azumaya [2], Brauer [3], Osima [19], [20].
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Then the following four conditions are equivalent each other:
(i) The algebra F+N which is obtained from N by the adjunction of

a unit element is (quasi-)Frobenius-,
(ii) Every non-zero left ideal ί [right ideal r] satisfies ^Ov(ί)) = ί

[rXWr)) = r]J
(iii) (rN(N): F) - (1N(N): F) = (N^ : F) = !;">
(iv) The parastrophic matrix of N has the maximal rank (N:F) — l.

Proof. ( i ) — > ( i i ) and (ii)—>( i) . First observe that if the algebra F+N
is quasi-Frobenius, then it is a Frobenius algebra, and that every left [right]
ideal of N is a nilpotent left [right] ideal of F+N, and conversely. Our assertions
follow then easily by the well known properties of (quasi-)Frobenius algebras,
(i)—>(iv). Assume shat F+N is a Frobenius algebra. Then, for a basis
(1, ulf u2, •••, un) of F+N((ult u2, •••, un) being a basis of N), we have a
non-singular parastrophic mataix of F+N of the form

fl

~ ζn

where each ξk (0<Lk^n) lies in F and P(ξ) is the parastrophic matrix of
N with ξk (l^k^n) as values of parameters. From | P ( ξ ) Φ 0 it follows
rankP(£) = n-l. (iv)->(iii). Suppose that (l(N) :F)>1. Then, by the defini-
tion of parastrophic matrix, we must have rankP(f) <w —1. Therefore (iv)
implies (l(N): F) = 1. Similarly we have (r(N) :F) = l. (Note that 1 g (N^1: F)
5Ξ (Z(^): F).) (Hi) — » ( i ) . Assume that (l(N): F) — (τ(N): F) = (N^1 :F) — l.
Then F+N has a unique simple left (also right) ideal l(N) — r(N)— N?'1; for
this ideal we can easily verify l(r(Nf>~1)) = r(l(Np~1))=Np~1. Moreover we have

) = r(l(N))=N, Z(r(0)) = r(Z(0)) = 0; F+AΓ is therefore (quasi-)Frobenius.

PROPOSITION 12. Let A be an algebra with the unit element E over a
field F; let N be its radical. Assume that N has the property required in
prop. 11. Then A is a (unique) direct sum of a semisimple algebra and a
completely primary algebra which is isomorphic to F+N, provided that
N2 Φ 0. //, on the other hand, N2 = 0, then A is a (unique) direct sum of
a semisimple algebra and an algebra which is either isomorphic to F+N or
to a matrix algebra consisting of all matrices

Γ a 0

L r β
where a, β and γ are arbitrary elements from F.

Proof. Let Eκ, eκ>l etc. have the same meaning as in section 1; let p be
the index of N. By our assumptions we can choose two Ep and Eq among the

16) This characterization was suggested to the author by A. Inatomi,
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Eκ such that EpNp~1Eq=Nf)-1. Here we note that f ( p ) = f ( q ) = l and that
(epAep : F) = (eQAeq :F) = 1, which follow easily from (N?'1 :F) = l. Now take
an arbitrary element a of N. Suppose Eκa Φ 0 for some Eκ different from Ep\
if Eκa is contained in l(N) = Nf)~1, then Eκa=EpEκa = Q, which is impossible;
if, on the other hand, Eκa is not contained in A^'1, then there exists an
element x in N such that Eκax (=£()) is contained in N^1 and this is also im-
possible. We must therefore have EPN=N, and similarly NEq=N. Assume
now that N2^0. Then Ep must be the same as Eq, i.e. EPNEP—N\ hence A
is a direct sum of a semisimple algebra and EPAEP, which is isomorphic to
F+N. Next assume that N2 = 0. In this case Ep and Eq may or may not
coincide. If Ep— Eq, the above consideration is also available; while i f E p = £ E q ,
then A is a direct sum of a semisimple algebra and EpAEp+EpAEq+EqAEq.
It is easy to see that the latter algebra is isomorphic to the matrix algebra
of our proposition. The uniqueness of the decomposition is immediate. (See
Hall [8].)

6. On a class of algebras with isomorphic radicals.

Let N be a nilpotent algebra over a field F satisfying lN(N) = rN(N)^N2-,
we write l#( N) = rN(N) = M as before. Let A be an algebra with a unit ele-
ment over F; let its radical be isomorphic to N; we shall, as before, identify
the radical of A with N and say that A has N as its radical. Further, we
require A to satisfy 1A(N) = rA(N) £ N, i.e., 1A(N) ^rA(N) = M^N2. In this
section we consider, for a given JV, all algebras as this; throughout the section,
by an algebra we shall always understand an algebra as above, possessing the
given N as its radical. At the outset we introduce the following partial order-
ing of the class of algebras (with given radical N): We write A >~ B for two
algebras A and B when ( i ) every nilpotent left [right] A-ideal containing
M or contained in M is a left [right] B-ideal and ( ii ) every nilpotent two-
sided A-ideal is a two-sided B-ideal. It is easy to see that the relation >- is
in fact a partial ordering. We call A and B equivalent if both A ~< B and

then >~ gives a lattice ΛN of classes of equivalent algebras.

PROPOSITION 13. Every ΛN has a (unique) minimal element. All algebras
in the minimal class are isomorphic each other.

Proof. First of all, we should observe that an algebra AQ=F+N ob-
tained from N by the adjunction of a unit element is minimal; i.e. for any
algebra A we have in fact A>- A0. The first assertion is now evident. The
proof for the second assertion is similar to that of prop. 12.

The class of nilpotent algebras discussed in the previous section gives a
class of examples of ΛN which has only one element. Another example of such
AN is obtained by taking N as a free nilpotent algebra™ of index p>l over

17) I.e., a nilpotent algebra generated by n bases ui, Uz, — y U n over F satisfying
only the relations UiίUiZ tLip = Q. This example is due to M. Okusumi,
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an algebraically closed field F.

We now consider the relation between two equivalent algebras A and A.
As l(N) = r(N), it follows l(Nv) = r(Nv). Most of the discussions made in sec-
tions 2 — 3 can be applied, under some additional assumptions, to our case with
slight modifications. Let E, eκ>ϊ, etc. have the same meaning as before.

(1) For every K (1 <; /c <^ k) there is at least one simple left A-ideal ί in
M such that Eκ\ = ί. ί must be also a simple A-ideal; hence Eμi = ί for some μ.
μ is uniquely determined by AC. In fact, let ί' be a simple left A-ideal (also an
Jί-ideal) such that Eκί

f—ίf

t EμΛ'=l'. Assume μ' Φμ\ if we take any two non-
zero element αeί and α'eί', it follows then A(a + a') = i + V; hence A(α + α')
=EKAEK(a-t-a,') = l + l', which is impossible in general. K and μ are thus in
1-1 correspondence and so we identity them: κ++κ (1 ̂ K^k— k). For right

ideals a similar 1-1 correspondence can be obtained: Λ<-»Λ ( l ^ Λ ^ f e ) We have
further that these two correspondences coincide: λ = /?. To see this, we note:
Let z be an element of N—M satisfying eκzeχ — z. Then the two-sided ideal
l~AzA^M contains a two-sided subideal $'=AzN^NzA^M. When that is
so, ill' is an (A, A) module of type («;, λ) and at the same time it is an
(A, A) module of type («, I). In fact: From assuptions it follows immediately
that the factor module 3/3' is an (A, A) module of type (/c, λ). As z is not
contained in M, we can take a suitable element a of N such that za lies in M
and 3'α = 0; then the mapping /: x-^xa (x e 3) is obviously an A-homomorphism
of 3 into M; since /3' — 0, /3 is a direct sum of several left simple A-ίdeals and
satisfies Eκf%=f%. But, the mapping / is at the same time an A-homomor-
phism of 3 into M\ moreover, we have ^/3~/3 since E κ f $ = f $ . Therefore,
3/3' must be of type (K, *) as an (A, A) module; similarly we see that 3/3' is
of type (*, Λ) as an (A, A) module. This completes our proof. The proof of
π(κ) ~- π(κ) made in section 3 can be now applied to our case and so we have
λ = λ.

(2) As to the type of simple two-sided factor module in AT, we can say
in our case as following: If A has a simple two-sided module 3ι/3ι' of type
(tc, λ), then A has at least one 32/32' of the same type; moreover, when that
is so, we can choose a common factor module 3o/3o' of type (tc, /ί) for both A
and A. From this we see that A and A have corresponding blocks.

(3) To obtain fW=f(κ) and eκAeκ~ eκΆeκ, we need some additional
assumption; viz., if for every K there exists a simple two-sided A-ideal 3 of
type (K, *) or of type (*, K) such that

(a) 3 contains an element of the form xy where x and y are in N and
(b) 3 satisfies the condition required in prop. 2,

then we have /(#)— f(κ\ eκAeκ~eκAeκ. The proof for this fact is parallel to
that of theorem 2. (Note that from the above assumption it follows that the
condition (b) is satisfied by 3 even when it is regarded as a two-sided A-ideal.)
We have thus proved the next theorem:

THEOREM 3. Let both A^ A and A^A. Then there exists a (unique) 1-1
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correspondence between simple constituents of A and those of A: Άκ<->Aσw

(so we set σ(κ) = K). Further, when that is so, A and A have corresponding
blocks. If moreover for every K there exists a simple two-sided A-ideal of
type (K, *) or of type (*, K) satisfying the above conditions (a) and (b), then

Aκ~Aκ(l^κ^k = k) and A—A.

As to the radical AT of a quasi-Frobenius algebra A (M^N2 being as-
sumed), we have the following

PROPOSITION 14. Let A be a quasi-Frobenius algebra over a field F with
a radical N (and let M^N2). Then AN has a (unique] maximal class Γ and
A is an element of Γ; further, when that is so, Γ consists of all quasi-Fro-
benius algebras with radical N. If A is moreover a Frobenius Iweakly
symmetric'] algebra, then every algebra in Γ is also a Frobenius Iweakly
symmetric^ algebra.

Our assertions follow from prop. 5, from prop. 6, from the well known pro-
perties of quasi-Frobenius algebras and from the definitions.
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