ON THE RADICAL OF QUASI-FROBENIUS ALGEBRAS

By SHIGEMOTO ASANO

Introduction.

Let A be an algebra over a field F.. A is called quasi-Frobenius if it
has a unit element and if every indecomposable direct component of the first
regular representation is equivalent to an indecomposable direct component of
of the second regular representation. If the two regular representations are
equivalent, then A is called a Frobenius algebra. Furthermore, A is called
symmetric if one of the two regular representations can be transformed into
the other by a symmetric non-singular matrix.” The main purpose of the
present work is to study the properties of the radical of these and some other
types of algebras.

The first section is preliminary and we make some remarks on simple
modules with an algebra A as two-sided operator domain. Then in section 2
we deal mainly with nilpotent (left, right and two-sided) ideals of a quasi-
Frobenius algebra. Namely: Let A be a quasi-Frobenius algebra over a field
F and let N be its radical. We may assume, essentially without loss of gene-
rality, that M =I(N) =r(N) is contained in N2, where I(N) [»(N)] denotes the
totality of left [right] annihilators of N (theorem 1). Then we show that a
large part of nilpotent ideals of A can be characterized without considering the
multiplication by elements of A other than those of N; we show in particular
that every nilpotent two-sided ideal of 4 is such. From this and other results
we show in the next section 3 that a quasi-Frobenius algebra is largely deter-
mined by its radical. For instance, if two (bound) quasi-Frobenius algebras A
and A over F' have a same (i.e. isomorphic) radical N, then we have A=A/N
=A/N=A4; we have also n(x) (k) and 2,; =25 for a unique correspondence
k7% of simple constituents A, and A; of A and of A, respectively. Here
M=1y(N)=ry(N) (annihilators taken in N) is assumed to be contained in N?Z
and z,; [257] denote the (two-sided) Cartan invariants of A [A]; (for =(k) [7(%)]
see section 2). Section 4 is concerned with Frobenius algebras and some sup-
plementary remarks are given on such algebras.

Let now N be a nilpotent algebra over a field F' and p be its index:
NDON2D..-DN*'DN*=0. In section 5 we discuss a particular class of nil-
potent algebras with the property ((N):F)=(@rN):F)=(NN*"1:F)=1; here,
I(N) [7(N)] denotes the left [right] annihilators of N. We prove that this
property is equivalent to the property that the algebra F'+ N which is obtained

Received January 16, 1961.
1) For the properties of such algebras, see the papers given in the References
(above all, see Nakayama [10]).
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from N by the adjunction of a unit element is a Frobenius algebra. Several
other characterizations of this class of algebras are obtained. Moreover, we show
that if an algebra A over F' with a unit element has a radical N which itself
is a nilpotent algebra of this type, then A is uniquely determined by N up to
a semi-simple direct summand, except for the case N2=0. Finally, section 6
is a generalization of previous sections (2, 3 and 5) and aims, not only at quasi-
Frobenius algebras, but also at less special class of algebras; we deal there
with a certain class of algebras over a field F' with a given nilpotent algebra
N over F' as the radical.

It should be observed that, although we have restricted ourselves to the
case of algebras, most of our principal results may be generalized to the case
of rings satisfying minimum condition for left and right ideals.

The author wishes to acknowledge his deep indebtedness to Prof. H. Tb6-
yama. He is also grateful to M. Okuzumi and A. Inatomi for their help given
him in the preparation of the work.

1. Some remarks on simple modules with an algebra as two-sided operator
domain.

Let A be an (associative, finite dimensional) algebra over a field _F possess-
ing a unit element; let N be its radical. The residue class algebra A=A/N is
semisimple and is a direct sum of simple two-sided ideals which themselves
are simple algebras:

A=A, +4,+---+A4

the unit elements E, of each A, (1 <« <k) is expressible as a sum of mutually
orthogonal idempotent elements é, i, &z, * -, &, s such that left ideals As, ,
[right ideals é,,A] are simple, and the unit element & of A is the sum of
these &,, 1<k <k, 1=i<f(). This decomposition of E leads to a decompo-
sition of the unit element F of A:

E=E +E;+---+E,

Elc=elc,1+e/c,2+"'+elc,f(li) (1§’6§_k)y

where each e, , lies in the residue class &, (mod N); A is a direct sum of
modules E.AE; 1=<«, A<k). Moreover, there exists for each « a system of
f(k)? elements ¢, ;; 1 <1, j <f(k)) such that c. . =e,, and ¢, ., ni =0inCs, i1, 0
being the Kronecker’s symbol. We call an element & in A is of type® («, 4) if
a lies in E.AE,, i.e., if a satisfies E.aE;=a. The idempotent elements e,,, are
primitive, and the left ideals Ae,,, [right ideals e, ,A] are directly indecompos-
able; for the sake of brevity we set e, 1=¢, 1<k =k).®

Let M be a simple (4, A) two-sided module. Then there are two «, 4 such
that ERE,; =M, E.ME, =0 (k#*«’ or A+ 1’); moreover, as we have NI

2) See Nesbitt [16].
8) For these well known fundamentals of the theory of algebras, see for instance

(1], [5].
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=N =0, we may regard M as a simple (4,, 4;) module. We shall call such
an (A4, A) module to be of type («, ). Then it is obvious that M is decomposed
into a direct sum of isomorphic left [right] A-submodules Me; , 1 <7< F )
ler, MAZSTSSF ()]
M= 93?61,1 + mez,z +oeee mei,f(l) = €y, N+ €, M-+ e/c,f(/c)gﬁ;
Mey, 1 =Mez o=+ =Mey, rar; €r, M= €, M= =g, 50, M.

Furthermore, let ¢ be any primitive idempotent element of A. Then
é el,, for some u (1 < u=<k); we have either Me=0 (u# 1) or Me = Ne; (u=2)
[eM=0(u+#k) or eM=eIM (u=x)]. The left [right] modules Me; , [e,, Nt]
are not simple in general. (If the underlying field F' is algebraically closed,
then these modules are all simple.)

PROPOSITION 1. Let M be a simple (A, A) module of type (k, A); let the
right A-submodules e, M A =1 = f(«)) of M be (all) simple. Let | be a simple
left A-submodule of M. Then every A-homomorphism of | into MM is obtained
by the right multiplication of an element of A. Conversely, let every A-
endomorphism of any simple left A-submodule of M be obtained by the right
multiplication of an element of A. Then e, M 1 <1< f(x) are (all) simple.

Proof. Assume that e, It (<7< f(x) are simple right A-submodules of
M. Let I, be a simple left submodule of Me;. We first prove that any simple
left submodule [ of Mt is obtained from [, by the right multiplication of a regular
element of E;AE,;. In fact, let m, be any non-zero element in e¢., and let m
by any non-zero element in e,f. We now note that e, and e are simple left
e.Ae,-modules and that e, Me; is a simple two-sided (e,Ae., e;Ae;) module as well
as a simple right e;Ae;-module. Then consider the expression

m=mE,=me;,+mey s+ +meyra
=mez, 1+ MCy 216,12+ + + + MCar 162,170

At least one mc;, ;; does not vanish and we have
e.Aes-mce; 1€ Ae; = e Me, = my-e,4ey;

from this it follows that mec; ;1 = ma.e; for some @, in E,AE,; commuting with
every ¢, and hence that m =mg(aics, 11+ ae€s 10+ -+ arnCa172); We can
therefore choose some regular element a of E;AE; such that m =ma, and
we have | =E.AE.m = FE,AE.moa =l,a. We now take the inverse element o’
of a in E;AE;; then (=0 is contained in Ma’e;a, since Ma’ =M. After
operation of a suitable inner automorphism of A we may therefore assume that
[ is contained in Me;. Let now ¢ be any A-endomorphism of {; let m be any
non-zero element in e, as before. Then ¢m is also contained in ¢,l, and hence
we have ¢m =bm for some b in ¢ Ae.; but, as ¢, Me; is a simple right e;A4e;-
module, bm = mb’ for an element b’ of ¢;Ae;. By this fact the endomorphism
¢ of | is obtained by the right multiplication of the element b’ of e;Ae,.

4) Ct. Tkeda [9].
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(Moreover, we see easily that every A-endomorphism of | is given by the right
multiplication of an element of a division subalgebra of e¢;Ae; (mod e;Ne;)
which is isomorphic to ¢,Ae, (mod e¢,Ne,), and conversely; here, the isomorphism
of division algebras is given by ém =mé’.) Our first assertion is now imme-
diate from what we have proved above. Assume now conversely that every
A-endomorphism of any simple left A-submodule of I is given by the right
multiplication of an element of A. Let | be a simple left A-submodule of MNie,.
Then e, is a simple left e,Ae,-module; we take any non-zero element m in e.l;
as e Me, is a simple two-sided (e,Ae,, e;4e;) module, we have e.Ae.-m-¢;Ae;
=e,Me;. Now consider a mapping ¢: xm—xam, where a¢ is an element of
e.Ae, and x is any element of A; this mapping is indeed an A-endomorphism
of I, and hence is given by the right multiplication of an element of ¢;Ae,.
Therefore we have am=ma’, where a is in e,Ae, and a’ is in e;Ae;; this shows
that the module ¢ Me; is simple not only as two-sided (e.4e,, ¢;Ae;) module,
but also as right e;Ae;-module, and hence that ¢, is a simple right A-module.
Our proof is now completed.

The following proposition follows readily from what we have proved:

ProPOSITION 2. Let M be a simple (A, A) module of type (k, A): let the
left A-submodules Me; , L <1< f(A) as well as the right A-submodules e, M
A=Z72f) of M be all simple. Then every simple left [right] A-submodule
of M s written as Me [e/M] where e [e’'] is a primitive idempotent element
of type (4, A) [(x, )], and conversely; and, when that is so, &.A8é, is iso-
morphic to &;Aé; moreover, every A-homomorphism of simple left [right]
A-submodule of MM is given by the right [left] multiplication of an element
of A.

PrROPOSITION 3. Let assumptions and notations be as in prop. 2. Let
M=my+my+ -+ My, be any decomposition of M into direct sum of simple
left A-submodules. Then there exists a system of mutually orthogonal pri-
mitive idempotent elements ¢, (1=<i1=<f(A) of E,AE: such that m,=Me; ..
Similarly for right submodules.

Proof. By prop. 2 we have m,=me’ 1<1=<f(A) for some primitive
idempotent element e,” of E ;AE,. To every e,/ there corresponds a simple left
ideal A;e;/ of A; and, as is easily be seen, we have A;=A4,8/+ A8, 4+
+ A8 (direct sum). Hence there is a system of mutually orthogonal primi-
tive idempotent elements ¢, . (1< < f(1)) such that A;8,’=Aé; .; our assertion
is now evident.

2. Nilpotent ideals of a quasi-Frobenius algebra.

Let A be a quasi-Frobenius algebra over a field F'; let N be its radical.
Let A/N:A—:A1+A2+"'+Ah f(/c), €r,uy € == €51y, Cg gy Ex=ex,1+ex,2+"'
+érrwm and E=E;+E;+---+E; have the same meaning as in the previous
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section. The totalities I(IN) and 7»(N) of left annihilators and of right an-
nihilators of N respectively coincide; we denote this by M. Then we have
E.M=ME,,,, where (z(1), z(2), -+, =(k)) is a (unique) permutation of (1, 2,
coo, k); EEM(1=<x=<k) are non-zero simple two-sided ideals and M=3'E.M
=3ME(s; €, M [Me,,] 1=<«=<k,1<1<f(x) are simple right [left] ideals.
A is uniquely decomposable as the (two-sided) direct sum of a semisimple algebra
and an algebra bound to its radical (for short, bound algebra);” and, from this
point of view, we shall assume in the followings without loss of generality that
A is bound to N, i.e. M is contained in N.

Let [ be a left ideal of N (for short, left N-ideal)® and let M be contained
in I. Then we obtain the following criterion for { to be a left ideal of A (for
short, left A-ideal):

LEMMA 1. Let A be a quasi-Frobenius algebra over a field F; let N be
its radical. Let | be a left N-ideal in N. Then, | contains M and is also
left A-ideal if and only if y(ry() =17 A similar assertion holds for right
ideals.

Proof. Let [ be a left N-ideal in N satisfying Iy(ry()) =1. From the de-
finitions we have ry({) EN, so that [=1y(ry()) 2Ixy(N)=M; to see that [ is a
left A-ideal we need only to observe [=Ily(ry()) =N ~l4(ry()), where N and
Li(ry()) are left A-ideals. As to the converse, assume that [ is a left A-ideal
containing M. Then we have [l (r (1)) =!{ (Nakayama [10], §38); from {2 M
=1[4(N) it follows that r,({) is contained in »,(M)=7r,(4(N)) =N, so that r,(l)
=1ry(l) and [ S Ix(ry() = In(ra)) E (ars()) =1. This shows Ix(ry@))=1.

For each simple two-sided ideal E.M there is a positive integer % such
that EEMSN" and E.M~N""'=0. We then say that E.M belongs to N”.

PrOPOSITION 4. Let E.M belong to N*. Then E..,M also belongs to N".

Proof. We have only to consider the case =n(x) #«. Let E.M belong to
N" and assume that E..,M were contained in N”**!. Then we can choose
h+1 elements xy, %3, -+, 1,1 from N such that each x, is an element of type
(A,-1, 4,) where Ay = (), A1 = 7n%(x) =r(x(x)) and such that x5 %1 (# 0) lies
in B, M; x, is of type (z(x), 4) and zN" 0, i.e. &, is not contained in I(N");
as I(N") =r(N"), we have N"x;#0. There is therefore an element y of type
(*, 7(x)) in N* with yx;#0; as y is not in I(N)=M=7r(N), we can find an
element z in N for which 2y (+#0) lies in M; but, as y is of type (x, n(k)), 2y
is contained in ME,., as well as in N**, i.e. E.M=ME,., contains a non-
zero element of N"*!, This is a contradiction and hence E.,,M must belong

5) An algebra is said to be bound to its radical if the two-sided annihilators of the
radical are contained in the radical. See Hall [8].

6) Here N is considered itself to be a nilpotent algebra; so that, when we speak of
a left N-ideal, we consider only the left operation of the elements of N.

7) 1x(S) [rx{S)] denotes the left [right] annihilators of S in N.
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to N™, m<h. Now let ()=« and let E. M belong to N 2=j<t).
From what we have proved above it follows that Azm=me =+ Zm_ =M
=h; hence h=m and this completes our proof.

The permutation (z(1), =(2), ---, n(k)) of (1,2, ---, k) is expressible as an
irredundant product of cyeclic permutations; let the expression be

(a) (K11k12° + Ky, r ) (Ka1Koz e Kary)+ + (K12 ® + * Qury),

where 7(ki1) = K12, w(k1z) = K13 ete. By prop. 4 it follows that, for a factor
(Kukiz: - Kir,), the two-sided ideals E M (1 <j<7) belong to a same power of
of N; in particular, if some E., M belongs to N', then E., M (1=j=7)
belong to N'. To every such factor there corresponds a block of primitive
idempotents e, (1<Jj =<7, 1<k =< f(x,)) and hence a uniquely determined two-
sided direct summand of A, which itself is a quasi-Frobenius algebra.® (To see
this, we have only to observe that an element of type (x;;, *) is either of type
(3, ;) or of type (k. .,;:1).) We now give the following

THEOREM 1. Let A be a quasi-Frobenius algebra over a field F. Then A
18 uniquely decomposed into a direct sum A,+A; of two-sided ideals Ay and
A;. Here, A, is itself a generalized uni-serial quasi-Frobenius algebra over
F and the square of its radical vanishes; A; is itself a quasi-Frobenius al-
gebra with radical Ny =A;~N and M, =14,(Ny) =r4,(Ny) 1s contained in N

Proof. First we note that two-sided direct summand of a quasi-Frobenius
algebra is also a quasi-Frobenius algebra. Now in the expression (a) of the
permutation (z(1), =(2), ---, n(k)) of (1, 2, ---, k) we assemble all the cyclic
factors (kiit.z--x.r;) belonging to N! (i.e. at least one E,;l./.M belongs to N1Y).
For each of these factors we obtain a two-sided direct summand of A; let A,
be the direct sum of thus obtained two-sided ideals. Then the radical N,
=Ay~N of A, satisfies Ni?=0; A, is moreover a generalized uni-serial al-
gebra. The rest of our assertions is now immediate from the definitions and
from the uniqueness of the decomposition of an algebra into direct sum of
indecomposable two-sided ideals.

By virtue of above theorem 1 we can assume, essentially without loss of
generality, that M =1I[(N)=7(N) is contained in N2. TUnder this assumption
we now consider nilpotent (left, right and two-sided) ideals of A. We have
already noted in lemma 1 that a left N-ideal [ in N containing M is a left A-
ideal if and only if Iy(ry(0)) =1. (Similarly for right ideals.) We shall say such
a left [right] ideal to be a closed left [right] N-ideal.

PROPOSITION 5. Let A be a quasi-Frobenius algebra over a field F; let N
be its radical. Let M be contained in N2. Then every simple left (A-)ideal

8) See Artin-Nesbitt-Thrall [1], Ch. 9, Nakayama [14] and Scott [21]. This direct
summand is moreover a gemeralized umi-serial algebra and the square of its radical
vanishes. For generalized uni-serial algebras see Nakayama [11], [13].
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1s obtained from a closed left N-ideal by the right multiplication of an ele-
ment in N. Similarly for right ideals.

Proof. Let [ be any simple left ideal of A. Then [ is A-isomorphic to
some Ae./Ne,; and, when that is so, [ is contained in the simple two-sided
ideal E.M =ME,,; ! is therefore A-isomorphic to Me.,,. By prop. 3 we may
then assume without loss of generality that { =Me,.,. Me.., contains an ele-
ment of the form xy (#0), where x and ¥y lie in N. In fact, since Me,,
S N2, Me.., contains a non-zero element of the form ,y; + ®2ys+-- -+ :¥s,
where each z; and y; lie in N (1<21=<s); then we can find for some 1 an ele-
ment x of N such that xy,e.., (#0) is contained in M, hence in Me,,. Now
the left ideal Ax~M is a closed left N-ideal in N by lemma 1; Me,,,=Axy
= (Ax~M)y is therefore obtained from a closed left N-ideal Ax~M by the
right multiplication of an element y of N.

It should be observed that in view of the above prop. 5 we can determine
all the left A-ideals contained in M without considering the multiplication by
elements of A other than those of N, i.e. a left N-ideal [ in M s a left A-
ideal if and only if it is expressible as a sum of left N-ideals in M each of
which 1s obtained from a closed left N-ideal by the right multiplication of
an element of N. Similarly for right ideals and hence for two-sided ideals.
Such ideals will be called to be characteristic.

PROPOSITION 6. Let A be a quasi-Frobenius algebra over a field F with
radical N; let M be contained in N2 Let 3 be a two-sided N-ideal. Then 3 is
also a two-sided A-ideal if and only if 3~M is characteristic and 3~M is a
closed two-sided (i.e. closed left as well as closed right) N-ideal.

Proof. Suppose that a two-sided N-ideal 3 satisfies our assumptions and put ;
=Ur@®) (i.e. Lu(r4(3)); then 3~ M = l(r(3))~ U(N) = l(rG) ~N) = l(ry®)) = l(rvG~"M)
=l(r@~M))=3~M.® Furthermore, we have 3~M=3~M. In fact: Let ;~M
=3PV 43P 4 ... +3% be the (unique) decomposition of 3 ~M into the direct sum
of simple two-sided A-ideals; we may then set ME, =3 for 1=1,2, ---,t. From
this it follows that 3 =3E, + 3K+ -+ 3K, (direct sum), since 3£;#0 (A > t) im-
plies 3 ~M)E; # 0 which is impossible and since E; (1 <t < t) are mutually ortho-
gonal. We have therefore rG~M)=1*_,, E.A)~N=r(3"~N, this implies
i~AM=1Ur@) ~IUN)=Ur@ ~N)=lrG~M)=3~M. If, now, we take a suit-
able two-sided A-ideal 3 in M such that M =3+ G~M) (direct sum), we have
3I~M=3~M=3+3=3 +3 (direct sum); observing that <3, this shows 3=3
=1(r@)). Similarly we must have 3=17(3)). Therefore 3 is a two-sided A-ideal.
The converse part of our assertion is trivial.

REMARK. An analogous assertion for a left ideal is not valid. To see this
fact, consider an algebra A consisting of all matrices

9) This formula will remain valid if we replace 3 by a left N-ideal ! such that I™~M
is closed.
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where a’s, #’s and jy’s are arbitrary elements from a field F. A is in fact a
(quasi-)Frobenius algebra possessing the property M SN2 Let [ be a left N-
ideal consisting of all matrices
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where a, b and ¢ are in F. It can be easily verified that [ ~M and [~M are
both left A-ideals, while [ itself is not a left A-ideal.

For left and right ideals we have the following

ProposSITION 7. Let A be a quasi-Frobenius algebra over a field F with
radical N; let M be contained in N2 Let [ be a left N-ideal in N. Assume
that | ~M is characteristic and that [~M is a closed left N-ideal. Then
there exists a left A-ideal Iy in N such that 1y 1s N-isomorphic to I.

Proof. By definition, the characteristic left ideal { ~M is decomposed into
a direct sum of simple left A-ideals: ( ~AM =1L+ (@4 ... [®, We can then
choose, by prop. 3, a system of mutually orthogonal primitive idempotents e,
e®, .., e (m=33%_ f(k)) such that 337 e?=F and Me®=1? for1=1,2, ---,
t; we set Ey=eP+¢e®@+...4+¢® and By =e¢""P4...4+¢™, Now consider a left
N-ideal {, ={E, and a mapping of [ onto [, which is given by the right multi-
plication of E,, i.e., ¢: x—aE, (x =!). The mapping ¢ is an N-isomorphism.
In fact, suppose that for an « (#0) in [ we have xFE,=0; if z is contained in
M, i.e. in | ~M, then we have ¥ =xE, =0, which is a contradiction; if, on the
other hand, # is not contained in M, then we can choose an element y in N
such that yx (#0) lies in [~ M, so that we must have yxE, =yx +# 0, which is
also a contradiction. Furthermore, we have [, =1E;=({(~M)E, since |~M=1
+ME, (direct sum); [, is therefore a left A-ideal.
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3. Quasi-Frobenius algebras with isomorphic radicals.

Let A be again a quasi-Frobenius algebra with a radical N; as we may
assume without essential loss of generality that M =[(N) = r(IN) SN2, we shall
assume throughout this section that a quasi-Frobenius algebra means one which
satisfies this condition. Let now [ be a simple left ideal of A; then by prop. 5
[ is obtained from a closed left N-ideal l;, i.e. {=la for some a in N. The
mapping f: x—2xa (€ €1y) is obviously an A-operator homomorphism of [, onto [;
the element a is uniquely determined modulo 7(lp) = rx(ls). We note that [ can
be written as [ = Me with a primitive idempotent element of A; so that we
may assume that [ =Me; for some A and hence that [ = Ae,/Ne, where x = z7(%).
Now consider an A-endomorphism ¢ of { =Me;,. By prop. 2 ¢ is given by the
right multiplication of an element ¢, in e;4e;'”: y—ya, (y 1). If we combine
¢ with f, we obtain a homorphism ¢f: x—=zaa, (x<l) from [, into [; put
b, = aa,; then evidently Ker(f)=Il(a) ~lo =l (@), Ker(ef) =1;(b,); (@) < Ly, (),
where Ker(f) and Ker(¢f) denote the kernels of these mappings. b, is uni-
quely determined modulo 7(ly) = rx(ly). Conversely take any element ¢ of N
such that l,c S 1 and i (a) S l;(c). Then the mapping g: v —wxc (x 1) gives an
A-homomorphism from 1, into [; as Ker(g) = li,(¢) 2 l;,(a) = Ker(f), the corres-
pondence za (€1)«class [x] (€1,/Ker(f)) —eclass [x] (€1y/Ker(g)) o xec (1)
gives an A-endomorphism of I.

LEMMA 2. Let A be a quasi-F'robenius algebra over a field F; let N be
its radical. Let | be a minimal characteristic left N-ideal in M. Then | is
a stmple left A-ideal; moreover, the A-endomorphism ring of | is completely
determined by the radical N. Similarly for right ideals.

The first assertion is a direct consequence of prop. 5; the second assertion
follows at once from what we have proved above. (Note that M is assumed to
be contained in N?2.)

The next proposition follows easily from what we have discussed:

PROPOSITION 8. Let A be a quasi-Frobenius algebra over a field F; let N
be its radical (and let MS N?). Let | be a minimal characteristic left N-
ideal. Then [ =, where 1y is a closed left N-ideal and a is an element in
N. When that is so, let I’ be another minimal characteristic left N-ideal.
Then both | and [ are simple A-ideals; I! is A-isomorphic to | if and only
if there is an element a’ in N such that '=1a’, [(~1l(a’) =1y ~1l(a). Moreover,
Wf M=+ 1441, s any decomposition of M into direct sum of minimal
characteristic left N-ideals, then [, 1 =1<m) are classified uniquely into
classes, each of which consists of such U's that every pair (1, I,) among them
satisfies above criterion; further, this classification gives the unique decompo-
sttton of M imto the direct sum of simple two-sided A-ideals.

Let A be a quasi-Frobenius algebra over a field F and let N be its radical
10) See also Ikeda [9].
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(M S N?. Consider another (bound) quasi-Frobenius algebra A over F' with a
radical N which is isomorphic to N; the elements of N may be identified with
the elements of N and so we say that A and A have a same radical; then we
have from our asssumption M=13(N)=ra(N)SN® Let E, &, & =21, G,
A<k=<k, 14, j<f), E,=>7%¢,, and 7(x) have the same meaning to A
as E, e, etc. to A. In view of the above prop. 8, we have first of all k=Fk
and ge may set E.M=FE.M (1<« <k); the permutation 7(x) is given by E.M
=MFE; .

We now note: Let 3; D3, be two-sided N-ideals each of which satisfies the
condition of prop. 6 and assume that there is no two-sided N-ideal satisfying
the condition of prop. 6 between 3; and 3, other than themselves. Then these
are two-sided A-ideals as well as two-sided A-ideals; if the type of simple
(A, A) module 3,/3: is (k, 2), then the type of 3,/3, considered as simple (4, A)
module is (k, 1), where 1=7(z'(2)). In fact: The first assertion is immediate
by definition and by prop. 6. Now consider the two-sided ideals 3 ~M and
32~M, which are both characteristic; we have obviously 3 ~M23. ~M. If
3o ~M+#3 ~M, then there exists a minimal characteristic two-sided N-ideal
30 such that 3 ~M= @ ~M)+3 (direct sum); from this and from our as-
sumptions it follows that 3 =3 +3 (direct sum). Therefore 3,/3. is isomor-
phic to 3 as (4, A) module and, at the same time, as (4, A) module; our
assertion follows now easily. If, on the other hand, i ~M=3~M, then by
prop. 6 we must have 3, ~"M 23~ M, and hence ry(3:) & r~v(3:); we take an ele-
ment & of ry(3)—7rx(y), i.e. 32=0, 32 %+0. The mapping 3—3x is a homo-
morphism of 3; into M; 3;x is direct sum of several minimal characteristic left
N-ideals, each of which is isomorphic to Ae,/Ne. as A-ideal and hence also
isomorphic to Aé,/Né, as A-ideal. 3,/3, is therefore of type (x, *) as a two-
sided (4, A) module. Further, a similar consideration shows that 3,/3 is of
type (x, I) as a two-sided (4, A) module, where 1= A(z~1(2)). This completes
the proof.

We consider for some time only the algebra A. Take any A(1=1k);
then we can find two elements of N, z and y, of type (*, 4) and of type (4, *)
respectively such that 2y #0. Among the pairs of elements as this we now
take a particular one: Choose as many elements x;, %3, +--, % (¢ =2) as pos-
sible in N such that each z, (1<1<t) is of type (x., #i11), Z1%2-- 2 # 0 and
such that for some j(2=<j=<t) we have «,=4; then put x=ux2s - 2,4,
Y = X;%;,1° * - &,;; MOreover we may assume that e, xe, =z, eiye,, ,=y. Now we
consider two-sided ideals 3; ==AxA and 3, =AyA of A; put 3/=AxN“~“NzA and
3’=AyN~NyA. Then it follows from our definition of x and y that 33’
=#'32=%'3’=0. From this we conclude that we can not choose complete
system PB; and P. of representatives of residue modules 3,/3’ and of 3./3’ re-
pectively, such that every element of P, annihilates every element of %, from
the left.

Consider again two algebras A and A as before. By what we have noted,

3:/3/ and 3/’ are (A, A) modules of type (x, 1) and of type (4, *), respecti-
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vely. (Observe that, although these two-sided modules 3;/3;’ and 3,/3’ are not
simple in general, the above arguments can be applied to this case with slight
modifications.) Assume now that 4 were different from A; then we can choose
complete systems 9; and £, of representatives of 3 /3 and of 3,/3.’ respecti-
vely, such that every element of £Q; annihilates every element of Q, from the
left; this is a contradiction. We must therefore have 1=2 for each 4, ie.
F(a QA)=4, 7)) ==Q) A K15 E).

THEOREM 2. Let A and A be two quasi-Frobenius algebras over a field
F with o same radical N (and let M=1,N)=14a(N) S N?). Then there exists
a (unique) 1-1 correspondence between simple constituents of A=A/N and of
A=A/N: A, oA, 1<c<k=F) (we may, after a suitable reordering, set
o(k)=k). When that is so, then (a) A, = A, A<k =<k), A= A4; (B) n(k) = 7(x)
A=k £k); () every composition series of N considered as an (A, A) module
is also @ composition series of N considered as an (A, A) module, and con-
versely; moreover, the type of every composition factor module considered as
(4, A) module is the same as that of the factor module considered as (A, A)
module; (0) 2.3 = Z:2 where zg, 22 1<k, A<k) are the (two-sided) Cartan in-
variants;'¥ () the two-sided decomposition of A and of A according to blocks
induce a same two-sided decomposition of N.

Proof. The first assertion and (B) follow from what we have shown abgve.
Consider for a « the minimal characteristic two-sided N-ideal E.M =ME, ,=E.M
=ME,.,; this is decomposed into the direct sum of f(x), as well as of (k) minimal
characteristic right N-ideals; f(x) must therefore be same as f(x). Moreover,
we have from lemma 2 that éxfié,;zaﬁe_?,;, which, combined with the well
known theorem of Wedderburn-Artin, gives A,=A,; thus we have proved (a).
The assertion () is immediate from what we have discussed; the last two
assertions follow readily from the definitions and from (7).

4. Supplementary remarks on Frobenius algebras.

Let A be a Frobenius algebra over a field F' with a radical N, and let A
be bound to N. Let (uy, %z, -+, %,) be a basis for A which is taken according
to ADNDOMDO0; let the multiplication table of A be wu, =37, a;xu,, Where
the coefficients a@.;x 1<%, 7, k<n) lie in F. Then the parastrophic matrix'?
with &, &, ---, &, as the values of parameters is of the form

. Pi(8§) Pu(8) Pu(b)
P(¢) :kZlPkSk = [ Pyy(6) P 0 }
B Psi(8) 0 0

11) If the field F is algebraically closed, then z,; coincide with the ordinary Cartan
invariants c,;. Cf. Nakayama [14].

12) For the fundamental properties of parastrophic matrices see Frobenius [6],
Nakayama [10], Brauer-Nesbitt [4] and Nesbitt [16].
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where Py = (@) Pis(€), Pae(8) and Py(€) are square matrices (observe that
(A/N:F)=(M:F)). Hence |P(§)|+0 if and only if | Pis(6) | Pea(5) ]| Ps:(§) |
#0, and so we may, without giving any change to | P(§)|, put &, =0 for k=1,
2, +++, t, where t=(A/N:F). Now we consider &, (t+1=<k=<n) as indeter-
minates, while we set £ =01 <1<t); then we have, from what we noted,
that each of | Pis(&)], | Pw(€)| and | P (£)| does not identically vanish. Let A
be a second Frobenius (bound) algebra over F with the same (i.e. isomorphie)
radical N as A; we take a basis (%, %, -+, %) for A such that %,=w, for
t+1=<i=<mn. Then, it follows that each one of | Pis(£)], | Ps(&)| and | Ps,(&)]
does not identically vanish, where P5(&) and P; (&) have the same meaning to
A as Pyy(&) and Py (&) (respectively) to A. Therefore we can choose values of
ity Eivzy v+, & from F such that |Piy(€)|-| Poa(€) ]| Psu(&)]| Pia(€) -] Py(8)|
#0;® so that we have |P(€)]|#0, |P(6)|#0. On the other hand, to each
non-singular parastrophic matrix of A there corresponds a mnon-singular
character'¥ of A. From these observations we can easily see the following

PrROPOSITION 9. Let A and A be two Frobenius algebras over a field F'
with a same radical N. Then for a suitable choice of mon-sigular characters
Ax) of A and A(®) of A, A=)=2A(x) holds for every element x of N; and,
when that is so, the (Nakayama’s) automorphisms'® ¢ and ¢ belonging to A(x)
and to /T(w) respectively satisfy x¥ =z (mod M) for every x in N; in parti-
cular, they are tdentical in N2

ProPOSITION 10. Let A be a Frobenius algebra over a field F'; let N be
its radical. Let o be any automorphism of N. Then there exist two mon-
stgular characters A(x) and A'(x) of A such that A'(x)=A(x°) for every x in
N. Moreover, the automorphisms ¢ and ¢’ of A belonging to A(x) and to
A'(x), respectively, satisfy x¥ =x°#°"' (mod M) for every x in N.

Proof. Our first assertion is a direct consequence of prop. 9. The
second assertion follows from A'(yx)=4"(x*"y)=A(y°x’) = Ax’¢y’) = A(x7¢"'7y°)
=A(2°¢°"'y) and from the property of non-singular characters.

5. On a certain class of nilpotent algebras.

Let N be a nilpotent algebra over a field ¥’ and let p be its index, viz.
let NODN2D...DON*1DON*=0. We take a basis (4, Uz, +++, u,) for N and
assume that w,u, =317_, aiue; the matrix P(§) =317, Pi&i, Where Pi = (ayu)i
and &, in' F, is the parastrophic matrix of N with &, as values of parameters;
we have then rank P(§) <n. We now prove

ProPOSITION 11. Let N be a wilpotent algebra of index p over a field F.

13) Here the field F' must be assumed not to have too few elements.
14) See Azumaya [2], §2.
15) Nakayama [11], Azumaya [2], Brauer [3], Osima [19], [20].
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Then the following four conditions are equivalent each other:

(i) The algebra F 4N which is obtained from N by the adjunction of
a unit element is (quasti-)F'robenius;

(ii) Ewvery mon-zero left ideal [ [right ideal t] satisfies Iy(rx(l))=I
[ra{n(r)) =1];

(iii) (ra(N):F)=(ny(N): F)=(N""1:F)=1'®

(iv) The parastrophic matrixz of N has the maximal rank (N:F)—1.

Proof. (i)—(ii) and (ii)—(i). First observe that if the algebra F' 4+ N
is quasi-Frobenius, then it is a Frobenius algebra, and that every left [right]
ideal of N is a nilpotent left [right] ideal of "+ N, and conversely. Our assertions
follow then easily by the well known properties of (quasi-)Frobenius algebras.
(i)—(v). Assume shat F'+N is a Frobenius algebra. Then, for a basis

@1, uy, g, +*+, %,) of FF+N (4, Uz, -+, %,) being a basis of N), we have a
non-singular parastrophic mataix of F 4+ N of the form
& &i- b
P(E):iEkPk: S-l
= P& ’
L En -

where each &, (0<k<n) lies in F and P(&) is the parastrophic matrix of
N with & (1<k<n) as values of parameters. From |P(&)|+#0 it follows
rank P(§)=n —1. (iv)—(iii). Suppose that (I(N):F)>1. Then, by the defini-
tion of parastrophic matrix, we must have rank P(¢) <mn —1. Therefore (iv)
implies (I(N): F)=1. Similarly we have (»(IN): F)=1. (Note that 1< (N°': F)
S(U(N):F).) (iii))—(i). Assume that ((N):F)=@N):F)=(N¢"':F)=1.
Then F +N has a unique simple left (also right) ideal I(N)=»(N)=N*¢"!; for
this ideal we can easily verify I(r(N°™1)) = »({(N*~'))=N°"'. Moreover we have
Wr(N)) =r((N)) =N, I(r©0)) =r((0) =0; F+N is therefore (quasi-)Frobenius.

PROPOSITION 12. Let A be an algebra with the unit element E over
field F'; let N be its radical. Assume that N has the property required in
prop. 11. Then A 13 a (unique) direct sum of a semisimple algebra and «
completely primary algebra which s isomorphic to F + N, provided that
N2£0. If, on the other hand, N?=0, then A is a (unique) direct sum of
a semisimple algebra and an algebra which is either isomorphic to F+N or
to a matrixz algebra comsisting of all matrices

I
rooB8J
where a, B and y are arbitrary elements from F.

Proof. Let E,, e, etc. have the same meaning as in section 1; let o be
the index of N. By our assumptions we can choose two E, and E, among the

16) This characterization was suggested to the author by A. Inatomi.
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E, such that E,Nr1E,=Nr-!. Here we note that f(p)=s(¢)=1 and that
(e,4é,: F)=(8,A8,: F)=1, which follow easily from (N*"!:F)=1. Now take
an arbitrary element a of N. Suppose E.a #0 for some E, different from FE,;
if E.a is contained in I(N)= Nr-!, then E.a =FE,E.a =0, which is impossible;
if, on the other hand, E.a is not contained in N°!, then there exists an
element z in N such that E.ax (#0) is contained in N¢~! and this is also im-
possible. We must therefore have E,N =N, and similarly NE,=N. Assume
now that N?2+#0. Then E, must be the same as E,, i.e. E,NE,=N; hence A
is a direct sum of a semisimple algebra and E,AE,, which is isomorphic to
F+N. Next assume that N>=0. In this case £, and E, may or may not
coincide. If E,=F,, the above consideration is also available; while if £, #FE,,
then A is a direct sum of a semisimple algebra and E,AE,+E,AE,+E,AE,.
It is easy to see that the latter algebra is isomorphic to the matrix algebra
of our proposition. The uniqueness of the decomposition is immediate. (See
Hall [8].)

6. On a class of algebras with isomorphic radicals.

Let N be a nilpotent algebra over a field F' satisfying Iy(N)=7ryN)EN?;
we write If{(N)=1ry(N)=M as before. Let A be an algebra with a unit ele-
ment over F'; let its radical be isomorphic to N; we shall, as before, identify
the radical of A with N and say that A has N as its radical. Further, we
require A to satisfy Lu(N)=7r4(N)EN, ie., l(N)=7rN)=MZSN2 In this
section we consider, for a given N, all algebras as this; throughout the section,
by an algebra we shall always understand an algebra as above, possessing the
given N as its radical. At the outset we introduce the following partial order-
ing of the class of algebras (with given radical N): We write A> B for two
algebras A and B when (1) every mwilpotent left [right] A-ideal containing
M or contained in M is a left [right] B-ideal and (ii) every mnilpotent two-
sided A-ideal is a two-sided B-ideal. It is easy to see that the relation > is
in fact a partial ordering. We call A and B equivalent if both A< B and
B> A; then > gives a lattice Ay of classes of equivalent algebras.

PROPOSITION 13. Ewvery Ay has a (untque) minitmal element. All algebras
in the minimal class are isomorphic each other.

Proof. First of all, we should observe that an algebra Ay=F+N ob-
tained from N by the adjunction of a unit element is minimal; i.e. for any
algebra A we have in fact A > A,. The first assertion is now evident. The
proof for the second assertion is similar to that of prop. 12.

The class of nilpotent algebras discussed in the previous section gives a
class of examples of Ay which has only one element. Another example of such
Ay is obtained by taking N as a free nilpotent algebra'™ of index p>1 over

17) TI.e., a nilpotent algebra generated by = bases ui, us, * -, Un over F' satisfying
only the relations u;us,- i, =0. This example is due to M. Okuzumi,
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an algebraically closed field Z.

We now consider the relation between two equivalent algebras A and A.
As (N)=r(N), it follows I(N*) =7r(N*). Most of the discussions made in sec-
tions 2—38 can be applied, under some additional assumptions, to our case with
slight modifications. Let E, e. ., etc. have the same meaning as before.

(1) For every «k 1<k =<k) there is at least one simple left A-ideal [ in
M such that E.l=I. [ must be also a simple A-ideal; hence E =1 for some u.
M is uniquely determined by «. In fact, let I’ be a simple left A-ideal (also an
A-ideal) such that El'=1, E‘#/I’zl’. Assume ' # u; if we take any two non-
zero element a =1 and a’/l’, it follows then A(a +a’)=1+41’; hence A(a+a’)
=E,AE(a+a’)=1+1/, which is impossible in general. « and u are thus in
1-1 correspondence and so we identity them: ko« 1<« <k=k). For right
ideals a similar 1-1 correspondence can be obtained: Aol (1<A1<k). We have
further that these two correspondences coincide: 2 =1. To see this, we note:
Let z be an element of N—M satisfying e.ze;==z. Then the two-sided ideal
3=AzA~M contains a two-sided subideal 3 =AzN~NzA~M. When that is
so, 3/3 1s an (A, A) module of type (k, A) and at the same time it is an
(A, &) module of type (x, 2). In fact: From assuptions it follows immediately
that the factor module 3/3’ is an (A4, A) module of type (k, ). As z is not
contained in M, we can take a suitable element a of N such that za lies in M
and 3’a =0; then the mapping f: x—2za (x €3) is obviously an A-homomorphism
of 3 into M; since f3 =0, f3 is a direct sum of several left simple A-ideals and
satisfies E.f3=f3 But, the mapping f is at the same time an A-homomor-
phism of 3 into M; moreover, we have F.f3=f3 since E.f3=f3. Therefore,
3/3 must be of type (k, ) as an (A4, A) module; similarly we see that 3/ is
of type (x, 1) as an (4, A) module. This completes our proof. The proof of
n(x) = 7#(x) made in section 3 can be now applied to our case and so we have
A=A

(2) As to the type of simple two-sided factor module in N, we can say
in our case as following: If A has a simple two-sided module 3,/3’ of type
(¢, 1), then A has at least one 3,/3’ of the same type; moreover, when that
is so, we can choose a common factor module 3,/3’ of type («, 1) for both A
and A. From this we see that A and A have corresponding blocks.

(8) To obtain f(k)=f(k) and &.Aé, =é.A¢, we need some additional
assumption; viz., if for every « there exists a simple two-sided A-ideal 3 of
type («, *) or of type (x, ) such that

(a) 3 contains an element of the form xzy where 2 and y are in N and

(b) 3 satisfles the condition required in prop. 2,
then we have f(k)=f(k), é.Aé, = é,A4é,. The proof for this fact is parallel to
that of theorem 2. (Note that from the above assumption it follows that the
condition (b) is satisfied by 3 even when it is regarded as a two-sided A-ideal.)
We have thus proved the next theorem:

THEOREM 3. Let both A=A and A~A. Then there exists a (unique) 1-1
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correspondence between simple constituents of A and those of A: A, —4,.
(so we set o(k) =«). Further, when that is so, A and A have corresponding
blocks. If moreover for every r there exists a simple two-sided A-ideal of
type (k, ) or of type (x, k) satisfying the above conditions (a) and (b), then
A=A, (A<sk<k=Ek) and A=A.

As to the radical N of a quasi-Frobenius algebra A (M SN2 being as-
sumed), we have the following

ProPOSITION 14. Let A be a quasi-Frobenius algebra over a field F with
a radical N (and let MSN?). Then Ay has a (unique) maximal class I and
A is an element of I'; further, when that is so, I" consists of all quasi-Fro-
benius algebras with radical N. If A is moreover a Frobenius [weakly
symmetric] algebra, then every algebra in I' is also a Frobenius [weakly
symmetric] algebra.

Our assertions follow from prop. 5, from prop. 6, from the well known pro-
perties of quasi-Frobenius algebras and from the definitions.
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