ON A SYSTEM OF NON-LINEAR ORDINARY DIFFERENTIAL
EQUATIONS CONTAINING A PARAMETER

By MasAHIRO IWANO AND ToSIYA SAITO

1. Statement of the problem. In this note, we consider a system of =

equations of the type
dy

(1.1) ed—d?j=2j(w’ e)y]--f-é"lgajk(w, E)yk+80f‘]~(x, Y1y Yny 8)’ j=17 e, M,

where we suppose that
1) o is a positive integer;
2) ¢ is a complex parameter;
3) x is a complex variable;
4) 2Ai(x, €) are of the form

Mo, =S4V @e, =1 -m,
where
4,"(x) =0, h=0,1,-+,0—0,—1;
4,997 (x) = 0; 4,977°0) %0 if o,>0;
and 4,”(x) are holomorphic for |z | <7;
5) a;(x, €) are holomorphic functions of # and ¢ for
lz| <, eeD@., 0., 9),
where D(4_, 0., 0) denotes an angular domain
0_-<arge<d,, 0<]e| <8
6) fi®, Y1, -+, Yn, €) are of the form

f}'(xv Y1y = Yny 8) = E j.‘fkl'"kn(xx é‘)ylkl' * 'ynk"v j = 1: e, M,
#y P

Foeeet
where the power series in the right-hand members are uniformly conver-
gent for

le<,"v m}flx|y1c[<77, SE@(ﬁ—y 0+y 6);

and the coefficients fjx,...x,(%, €) are holomorphic functions of « and & for
el <7, e€®@_, 4., 0);

7) when & tends to zero in D(_, 0., ), au(x, &) and fix...x, (%, &) admit
asymptotic expansions in powers of & valid uniformly for |z| <.

Our aim is to establish the existence of the solution of (1.1) containing
several arbitrary constants and converging to 0 as & tends to 0 in D@, 6., 9).

Our proof is essentially similar to that given by one of the authors in his
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recent paper [4].
2. Theorem of existence. We consider a slightly modified system

Ev%& =2, &)y; + 8"<dj(90, &+ > a;u(®@, &)Yk
2.1) &L =
+ i@, Y1, s Yns e)), i=1 .-+, m,

where a;(x, ¢) are functions satisfying the conditions 5) and 7).
This section will be devoted to the proof of the following existence
theorem.

THEOREM 1. If the system (2.1) possesses a formal solution
(2.2) uE NP, =1 m,
=0

such that the coefficients p;®(x) are holomorphic functions of x for |x| <’
and p;0)=0, then there exists a solution y; = ¢;(x, &) holomorphic in (x, &) for

le| <7, e=D@.",86.",7),

which admits an asymptotic expansion (2.2) (valid for |x|<r'") as & tends
to 0 in D@G_", 0.”, 6) where v, 8", 8., 3" are suitably chosen constants.

First we put
N+4o—1
Y, =2,+ Qin(x, &), Qin(x, &) = z‘?‘(‘) ;P (x)e,

then (2.1) will be transformed into

@5 SG% =@, &2, + e hy®, 21, 00y 2y 8, J=L ceem,
where
hi(®, 21, -+, 2n, ) = s“lglajk(w, &)z + Qen(w, ) + &%a;(x, &)

+ 24, & Qu(®, &)+ (@, 2+ Qu(®, &) — s@d—(;”i)

Obviously, if the positive constants 7y, 7o', 0o’ are suitably chosen, &z, 2, ¢) are
holomorphic in (x, 2, ¢) and satisfy the inequalities
(2'4) lhj(xrzye)léAJmkaxlzk|+BN[8|Ny j=1;"'7n
in the domain

[z <rd, max [zl <n'y, €e€D@., 0., ),
where A, and By are positive constants. Putting

z, =u, exp A,(x, ¢), Az, €) =j Az, &) e du,

:cjo

(2.3) will be transformed into

(2.5) % = hj(x, urexp 4s(x, €), + -+, Un exp A,(%, &), &) exp(—4,(x, &)).
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Here the values of z,° and the paths of integration will be determined later. If

(26) {0']:0, ").:n/‘l‘l,“‘,’n/’—l,
6,>0,  otherwise,

we may suppose, without loss of generality, that there exists a real number £
(0< 2 < =/2) such that

mzl(a—al)(o) e iR - mln’("_gnl)((&e:m
v T T e

; % Xn”“’_"n")(()) 6—i!)

=t>0>—1
2.7 )
@D L O

ea"// 80,,,
for arge =0, (- <@y <4.), where r is a small positive number. Then we have
;=2 =afo|> 2 (G=n) o= 8—ofh—n| <o (jzn")

where w;=argl,“ °’(0). So, if ¢, a, 7 (>0) are chosen sufficiently small,
we have

@8  maxlo—(@x)—a, (hra)|S -1, G=1 -,
J

and

(2.9) mzxxlwk—(ﬂi-go)—dk(O’oia)—ﬂlg—g——r, k=n", -, n.

Denote by E(p, ¢, £) an inner part of the lozenge whose four vertices are
a(l) — Pe—‘i!), a(2)= ia(l) tan SDI a(3) —_ — a(l)’ a(4) [ a(2)’

respectively. Then, for the proof of the theorem, it is sufficient to prove the
existence of a solution wu;(x, ¢) of (2.5) such that
1) w(x, €) are holomorphic functions of (x, &) for

2100 z€E@ ¢ 8, DO, 0,7,8"), 0.=0—a, 0,”=0+a,

2) uj(xlo’ E) = u]O’ j = 1, e, M,

3) wu, satisfy the following inequalities in (2.10) if Ky >0 is chosen suffi-
ciently large:

2.11) luy(x, &)| < Ky|e|¥ exp(— R4z, ¢).

Let %, be an arbitrary point in E(p, ¢, 2) and [;., be a segment joining
x,° and @,. I, is clearly contained in E(p, ¢, £). Any point z on this seg-
ment can be represented as

x =2+ se¥

where s is the length of the segment x,% and ¢ =arg(z®—,°). Now we shall
prove the following

LEMMA 1. Let j be the number for which a,>0, then, on I;.,, we have

@12 L oexp(— 0w, 9) 2 BTTOUSNT oyp g, o)
ds 2] ¢&l%
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for any e€®@.", 0., ).

Proof. Since 4,77”(0) =0, we have

—d%m(x, &)= _ifo’(‘))+0< v )

&% &%

Hence

%[_E)Mj(x, &)] =—5R[W] +0< : >

&% &%
If <n’, we have, by (2.8),

so—*27r—+7’§argif"“’j’(O)—!)—aJargeg—¢+%—r.
Since —¢=<¢—rn+ 2= ¢, we obtain

| <z](a-aj)(0)ez¢>_ . 1

arg
1 &%

IIA

T
2 £
whence follows that
i[_ R (e, &)]= MM)J_W+O<L>2 [_mnl.
ds | &]os &% 2]el%
Multiplying exp (—%A4;) on both sides of the above inequality, we obtain (2.12).

For j=n'/, proof can be carried out quite similarly.

Let & be the family of the systems {u;, :--, u,} of the functions u;(x, ),
holomorphic in (x, &) for (2.10) and satisfying the inequality (2.11) with
Ky« 770/.

Let ¥ be the mapping which maps the system {uy, ---, u,} to the system
{Uy, -+, U,} where U, are defined by

(2.13) Uiz, &) =u,+ r h(x, w(x, ) exp A(x, &), €) exp(— A1z, &))dx.
zj"

Here the integration is to be carried out along the path I;,, and |u,°]
= (Ky/2)|e|".

Since {0, ---, 0} g, & is not empty, and moreover, ¥ is evidently closed,
convex and normal. So, to complete the proof, we have only to show that:

1°. F

2°, ¥ is a continuous mapping;

3°. under the condition (2.11), the solution of (2.5) such that wuix,, &)
=u,° is unique.

Indeed, by a well-known fixed-point theorem, we can conclude, from 1°
and 2°, that there exists an element of ¥ such that

{'Ilq, M) un} ={Uly ] Uu}

which is clearly a solution of (2.5) with desired properties. We denote this
solution by u;x(x, ). Then

Sin(x, &)= Q;n(®, &)+ u;n(x, €) exp 4z, €)
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is the solution of (2.1) whose asymptotic expansion naturally coincides with
(2.2). To show that S;y(x, ¢) does not depend on N, it suffices to prove that

Uiy = {Qjnr + ujn- €xp 4, — Qjn} exp(— 4;)
which is an immediate consequence of 3°.
Proof of 1°. The integrand of (2.13) being bounded, it is clear that Uiz, ¢)

are holomorphic for (2.10). So we have only to prove the inequality (2.11).
Now, by (2.4), we have

ijx.nhj((w; u(x, &) exp A(x, €, e} exp(— Az, 3))dxl

J

< j”(AjKN + Byl e|¥ exp(— RAy(w, &) ds,
0

where s, is the length of the segment I7.,. As u,° have been so chosen that
|0 < (Kn/2)| €)%, (2.11) would follow if we could show

AR +Ble 17 exp (o, ) ds | < T 1Y exn(— R (o, )
1JOo

For ¢, =0, this inequality is reduced to

(A;Ky+ By)so = %,

since, in this case, we have A;(x, ¢)=0. As s,<20, this inequality is im-
plied by
40(A;Ky+ By) = Ky
which is always satisfied if p is taken sufficiently small.
If 0,>0, it suffices to show

(4,Ky+By)| ¢|¥ exp(— R (@, &) < KT %EI £ 1Y exp(— RAy(z, )]

which follows immediately from Lemma 1 if, as is always possible, ¢’/ and
Ky! are chosen so small that we have

4e|%(A;Ky+By) < |2,<-7(0) | sin 7 K.
2° is almost evident since the integral in (2.13) converges absolutely and
uniformly.

Proof of 8°. Assume the contrary, and let ux(z, &) and vn(x, &) be two
solutions of (2.5). Then the difference w;=u;y— v,y satisfles the differential
inequality

a | wy|
ds

w;(x,°, &) =0.

<4, max | wi(x, &) exp Ax(x, )| exp(— RAy(x, ¢)),

Taking the inequality (2.12) into account, we integrate the above inequality
along I;.,, and obtain
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|wi(w, &) exp A, &) | = a, max | wi(x, &) exp Az, &),

Tk
where

S()A], (0' 7= 0) y
;= 2| e|9iA;
—e T A 0).
ooy smy 770
So, if we choose p and ¢’/ sufficiently small, we have a,<1/2 and the above
inequality can be replaced by

:wJ (x, &) exp A,(z, e) < %;nax wi(x, &) exp Ax(x, &)
Ic:co 1

which shows that |w(x, ) exp Aj(x, &)| must vanish identically.
Therefore we have w; =0 which is the required result.

3. Reduction of the linear part. Here we assert that, without loss of
generality, we may suppose the coefficients a;i(x, ¢) in (1.1) satisfy the con-
dition
8.1) a;i(x, ) =0 if 2x“7%%0)x0 or o;=0,
where we used the notation

A, &) — Az, &) = A, €) = Ay 0w () %k + A0 Tikt V(@) Skt 4 - - o,

This assertion is based on the following

THEOREM 2. The system

d
3.2) U= U, U+ & 3 ane, O
can be transformed into the system
. a
(3.3) d:: Az, &)z, +so; b, ) 2
with the property
38.1) bi(w, ©)=0  if 2 ®0)%0 or agx=0
by a linear substitution
(3.4) U= 2+ ¢ 3 pule, Oz,

where pi(x, &) are holomorphic in the domain
(8.5) 2| <ri(<7), e€DEO’,0,,0), (0-<0-'<0./<0.,0<5,<3).?

Proof. For (3.2) to be transformed into (8.3) by (3.4), we must have

(3.6 ddZZ = AP + (@ — bjr) + & )2 [ajnDrr — Dinbaz].

1) Our proof is essentially similar to Sibuya [5].
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We put here bjk =0 if jjk(”“’jk)(()) =0 and pjk‘—_"O if ij(a_”fk)(()) =0. Then 3.6)
will be reduced to
ap

ik
B.7) e—=E=upit 0+ D amPrue—e 2y Diburs A =0,
dx 2nk0 0 25500, 24050

3.8) 0=¢(a;—bu) -+ 8'72 > @jnDus Aixo =0,

hk0F0
where the notation 4, =4;2 %% (0) is adopted for simplicity’s sake.
From (8.8) we immediately have

3.9) bix=ajx+ >} 0D Ajro=0.
Ank0+F0

Substituting the expression (3.9) into the right-hand member of (3.7), we have

d v
% = AuDjx+ &+ S“ZMZo*oajhmk

(3.10) &

+ &% > pjh[ahlc+ > anzpzk], Asko ¥ 0.
2nk0F0 27500
By assumption, a;(z, &) admits an asymptotic expansion
(3.11) a;i(x, &) = 3 au”(x)er.
=0

Now we put formally

3.12) D, €) sz Dr P (x)e?,
=0jk

and substitute (3.11) and (3.12) into the equation (3.10). Comparing the terms
of the same degree in ¢ on both sides of the equation, we can determine the
coefficients p;;” step by step.

Suppose that p;;”(x) (p < N) have been determined as holomorphic fune-
tions of #. Then the coefficients p;:¥’(x) will be determined from

zjk(a'-o'jk)(o) pjk(N) = ij<prs(h)’ dLs(h)’ ars(m)>
dx
where the right-hand member is a linear form of a,;” (0 <m <N — o,;) whose
coefficients are polynomials of p,;> and dp,;/dx (0 <h <N). Hence Q;. are
known holomorphic functions of 2. Since 2,5, 9#(0) %0, p;¥’(x) can be de-
termined as a holomorphic function of . Thus (3.10) admits a formal solution
of the type (3.12).

Since the system (3.10) can be regarded as a special form of the system
(2.1), the conclusion of Theorem 1 is applicable. Hence (3.10) has a holomorphic
solution p;x(x, &) whose asymptotic expansion coincides with (3.12). Therefore
there exists a substitution (8.4) such that the transformed system is of the
form (8.8) and b;, =0 if 2;,“ /% (0) % 0.

This transformation having been done, we consider the equations of (3.3)
for which ¢;,=0. As ;=0 means d;,(x, ) =0, we have either

Az, &y =iz, &) =0 (Le. o,=0,=0)
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or
lj(x’ 8) = lk(xy 8) =0.
For the first case, (3.3) will be written as
dz;
3.13) 73‘ =0§0b;’k(ﬂ’/’, &) 2 (e;=0).

It is well known that there exists a linear substitution with holomorphic
coefficients

(3.14) z] = u] + EOij(x, 8) U
o=
which transforms the system (3.13) into
duj _
dr = 0.
Next we consider the second case: A,(x, &) = Ax(x, &) 0.
Let
de
(3.15) & =iz, &)z, +¢& D bz, &)z
dx =2y

be the equations of (8.3) for 4, =4,x0. Putting
2, =usexp Ay, &), A, &)= jzxw, §)e da,

(38.15) will become
du,-
dx

which is of the same form as (8.13). Therefore we can find a linear substitu-
tion with holomorphic coefficients

u, =0, + > Qu(®, &)vs

such that (3.16) will be reduced to dv,/dx=0.
Consequently, by composing these transformations, i.e.

(3.16) =>1bu(x, Sux

Yy—z—ouU, Or Y—2—U—,

we arrive at the required result.

4. Formal transformation. Having finished the reduction of the linear
part of the system (1.1) in the preceding section, our next step is to transform
its non-linear part into a possibly simple form. For that purpose, we begin
with the utterly formal construction of such transformation. Discussions con-
cerning its convergence will be postponed to the latter sections.

Let us consider a formal transformation

4.1 Y= U+ D P, Uy
Byt F 22

where we used a symbol f to represent the arrangement of 7 non-negative
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integers (k;, « -+, k,). We impose upon the coefficients p;¢ following two con-
ditions:
1) pje(x, €) are holomorphic functions of (x, &) in the domain
(4.2)f le] <7y, EE @(0—’5; 0., Bf)’
where the constants 7y, 0_¢, 0.¢, 0¢x may generally depend upon f;
2) every p;i(x, ¢) admits an asymptotic expansion valid for |z| <7
p;¥(, &) zﬁ;f?’j!m(x)fh

as ¢ tends to 0 in D(A_y, 0.%, 6¢r) where the symbol ;¢ is defined by a following
formula:

Le(, &) = 4w, &) — 3 IeoA(x, &) = 4,070 (2)er 5t -+ O(e7 73t 1),
v=1

Applying (4.1) to the system (1.1), it will be transformed into a formal
system

4.3) s"@—"l = Ai(x, &)u, + & iajk(xy Qur+ X cie(w, &u-- 'unk":(-
dx k=1 ky+ k22
The aim of this section is to establish the following

THEOREM 8. There exists a formal transformation (4.1) such that c;e(x, €
are all holomorphic in (x, &) in the domain (4.2)r and )

(4.4) (@ =0 if A P0)%0 or a=0.

COROLLARY. The system (2.1) admits a formal solution of the type (2.2)
iof ,°792(0) %0 for a,>0.

Proof. We define the order of arrangements (J, ki, +-+, k,) of the non-
negative integers 7, ki, -+ -, k» in the following way.
If

kit otk <gi+-+qn
or
kit o+kn=qi+---+¢,. and k;=¢q, 6 <s=n), k. <qi

we shall call that (i, ---, k.) precedes (qi, - --, ¢») and denote it by (ki, - -+, k»)
<(q1, ***, ¢qz). Then we define that (7, ks ---, k,) precedes (k, q; ---, q,) or,
in symbols,

(jv kly ] kn)'<(kv q1y =y qn)y

lf (kly ct kn)'<(q1; tt 0y Qn)y or (kly Tty kn)=(¢Z1, “tty qn) and J>k-

Suppose that p;e(x, &) and c;¢(x, &) have been determined for k;+:--+k,
<N. The inverse transformation of (4.1) be written as
(4.9 Uy = Y+ 21y - Yalny

where ¢;¢ =— ;¢ + Q;x(pyy), Q(pw) being polynomials of py (By+-+++ h, >N) of
degree <2N —1. Differentiating (4.4) term by term, and substituting (4.1) and
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(4.3) into it, we obtain a formal equality between formal power series of wui,
«v+, U,. Equating the coefficients of u;*1---u,*» on both sides, we can easily
derive the following relations:

8"% = 24, &)pye + &7 3 amn(®, &) Prr — 5”(2 krann(z, 5)) V2
X 25R0=0 =1

- Eaij - Sagl[(kl + 1)1 Eok#lalk(w, 8) Dy, f+tl—ek:| + Sij!(x, Duy, A1y, 8)!

7£0=0,

4.5)

where
1) e denotes (01, - -, Onx) (0;: the Kronecker’s symbol);
2) ¥+4e¢, —e. denotes (ky4 01— 0wy =y K+ Oni — Ous);
3) Q¢ is a linear form of ay(x, €), (I, ) <(J, ), whose coefficients are poly-

nomials of py, hi+--+ ks <N.

Hence Q¢ are known holomorphic functions of (z, &) asymptotically develop-
pable in powers of «.

Let (4, H» be the totality of the arrangements (7, f) such that 1=<j=<n
and k;+---+k,=N. We divide (7, f)» into classes (7, Hs', - -+, (4, DY accord-
ing to the values of A;:“~7#(0), i.e. (4, %) and (j/, ¥) belong to the same class
if and only if ;¢ 7#(0) =2,¢“97t°(0). Then we must notice that, in the
system (4.5), the indices of undetermined p’s appearing on both sides of the
equation all belong to the same class. Indeed, such undetermined p’s are di-
vided into following three groups:

(1) Dj%,
(2) ot in the term & 3'a;u(x, €) Py,
(3) i tses-er in the term 3 aw(®, &) pj, trep—ese
To the group (2) belong pnt’s such that a;u(x, €)= 0. Since, according to Theo-

rem 2, we may suppose that linear parts of (4.5) are in a reduced form, i.e.
a;n(%, &) =0 implies ¢;, >0 and 4;,° 9»(0) =0, we have

lj:(""’jf’(O) —_ lhx“’"’ﬁ’(O) — }jh,(a—ajh)(()) =0.

Therefore, every (h, ¥) in the group (2) belong to the same class as (7, ¥).
To compare the index (7, f+¢,—e¢) and (7, f) in the group (8), we notice
that
2.], freg-ex — zk = zk - Zt = zkl-
Hence

2(”—”jf+el‘ek)(0) — A0 =3P(0) = 2@ ~o%2(0).

Jrt+er—ex
As au(x, &) =0 implies 45, %(0) =0 as before, (j, f+¢,—¢) and (7, ) belong
to the same class.
Now our purpose is to determine the functions p;x from (4.5) under the
assumption that

(4.6) cie@, &)=0 if o;x=0 or Ax<oiP(0)=0.
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As a first step, we put
4.7) py(x, =0  if oy >0 and A 3(0)=0,
and consider the equation (4.5) in which the index (7, ¥) is such that
Az, €) =0, ie. ax=0, A¢972(0) = 0.

Then, as we have remarked above, the indices of undetermined p’s in this
equation all belong to the same class. Therefore, every undetermined 7, in
this equation, we have

Ay o%(0) = 0.

However, on account of the relation (4.7), such p; for which o;5>0 are all
equal to zero. Hence, on both sides of the equation (4.5), only the p; such
that Ay(x, €) =0 are present. Therefore the totality of such equations forms a
self-contained system, and the p;¢ such that

4.8) Ax(x, )=0
can be determined by solving this system. Since (4.8) holds for this system,
we see (by dividing both sides of the equation by &) that such p;¢ are holo-
morphic functions of (x, €) in the domain (4.2)¢ where 7y, f_x, 0., 0¢ are to be
suitably chosen. Obviously they are asymptotically developpable in a form
Dy zpz‘lopjf(p’(w) &P,
Next we consider the index (7, f) for which
o6>0 and 2;:9P(0)=0.
Since, in this case, we have put p;s=0, every py actually remaining in the
equation has the index (I, ) for which
oy =0, ie. Aylz, &) =0.

As such p, have been all determined in our first step, (4.5) is only an algebraic
equation from which we determine c;x(x, ¢) such that

o;s>0 and ;6 02(0)=0.

Combining this with (4.6), all ¢;«(x, ¢) have been now determined.
Finally, we have to consider the index (7, f) for which

ge>0 and A P(0) = 0.

Since, in this case, ¢;s =0 and 4,4 °#(0) x 0, the equation (4.5) is of the same
form with (8.7). Therefore, following the same reasoning as in section 3, we
can prove the existence of the formal solution

4.9) pie= 2 PP (w)er.
p=0jt

Then, by Theorem 1, there exists a solution p;¢(x, &) holomorphic in (x, ¢) in
the domain (4.2)¢ and asymptotically developpable in the form (4.9). Thus we
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have determined all p;¢s and the proof is complete.

Proof of the Corollary. Let us put
Yoi1=1, 2na(Z, 8)=0, fou(®, ¥, &) =0;
Cni1, (T, 8)=0; 1=k=n+1,
@, ni(®, ) =ai@, €);  1=j=mn.
The equation (2.1) can be rewritten as follows:
(4.10) e"%=2](w, &Y, + e”gajk(w, OYr+ & fi(%, Y1,y Yny &)y, J=1,--,m+1
Without loss of generality, we may assume
Az, &) =0, ji=1, .-, n,
Az, &) =0, j=n'+1, -+, n+1.
By Theorem 2, a linear substitution with holomorphic coefficients

n+1

(4.11) Y, =2 +)CZ__1pjk(xr 8z, J=1,---,m+1,

can be so determined that (4.10) is reduced to

@12) oD gz e ST b, 2t ) (@ 21 ey Znar ©)
dx 2520=0, 0j2>0

where g;(x, 1, ***, Zns1, €) are holomorphic functions satisfying the same con-
dition as fi(x, ¥1, -+, Yn, &)- )

Owing to the Theorem 3 just proved, we see that the system (4.12) can be
formally reduced to the system

(4.13) e"% = 4@, Uy + 6 by, &)+ € S Gyt (@ &)U+ UL

by a formal transformation of the type
(4.14) 2, =~ Uy + S pie(®, ugtie - unnil,

Here cCjk,o ini (2, €) %0 implies o4 >0 and 2 9%(0)=0. Thus the first n’
equations of (4.13) are satisfied by putting

Up ="+ =Upr =0.
Then, since bz, &) =0 for j=mn'+1,---,n+1, remaining equations are
written as
du, Ens k
- = Cjo...k,,,+1...k”+1(x, 8) unf‘:{l- . -un’ﬁl.

A w1+ T kagz2

Applying Theorem 3, if necessary, to this system, all of the coefficients of the
transformed equations can be reduced to zero. Hence, without loss of gene-
rality, we may assume that

Ci0ee+Okns 41w vkppr =0 for j=n'4+1,---,n+1,
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in (4.13).
Solving %,,; from the last relation of (4.11) (where we put ¥,.,1=1) and
substituting it into the remaining equations, we have

y;=zj +§1ij(wy E)zky J =17 cre, M
Therefore, substituting (4.14) into this, we have

(4.15) Yy = U+ 3 Ry, e)uie - -wii,
Since
(4.16) U= = Un =0, Unsi=¢

is evidently a solution of a formally transformed system (4.13), we obtain a
formal solution of (4.10) substituting (4.16) into (4.15) which can be written in
the form

Y= 0P, j=1,---, .

Thus we have the required result.

5. Investigation of the reduced system. In this section, we shall prove
several lemmas concerning the reduced system (4.3) which will be of great
avail in proving our main theorem.

In section 2, we have supposed that

{aJ:O, j=n'+1,.--,n'"—1,
a, >0, otherwise.
Here we add further assumptions:

61:"':0'a1:¢71*7 Ga1+1:"':0'a2=0'2*7 ttty Gah—1+1:"':0'll.'1:gh*’

dn=’ﬂ/, 0'1*>0'2*>”'>0'n*>0,

*
O'ah+1:"'=0'alz+1:o'h+1
5.1
(6.1) =n'—1 L gp—
Ap1=MN y Ohil =
- — — ¥ — —_ —_ %
Oap141 =" "= Oappg = 0042y **°y Oayy_141 =" = Oqy =0m,
_ * *
n =0, 0< 0% <0his< - <ome

This is clearly consistent with the assumption (2.7) we have hitherto used if
|&| is chosen sufficiently small.

For convenience’ sake, we adopt a notation (4.3); to signify the j-th equa-
tion of the system (4.8).

Now let us begin with the proof of the following

LEMMA 2. If we put
uk=0, k#av-l""l,"'yay,
then the equations (4.3); (J=a,_1+1, -+, a,) are satisfied.

Proof. First consider the case a, <n'/. Since the linear part of the
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system (4.3) is already in the reduced from, a;.(x, €)= 0 implies
oix>0 and A9 7#(0) =0,
or, what is the same thing,
g,=0r  A470P(0) = 2" (0).

Therefore, if a;(x, )=0 for jxa,.1+1, -+, @, we must have kxa, 1+1,
---, a, because, according to (5.1), we have

or=0,"%0, (Jxar1+1, -+, a) if a1+1=ZkZa,.

So we have Mlaju(x, )ur=0if jxa,_1+1, -+, a,, and uz =0 for kxa,_; +1,
sy, av-
Next we shall show that ¢;«(x, &) = ¢jx,...1,(, &) always vanish if j % a,_s +1,
v, a,and k,=0 for hxa,.1+1, -+, a,.
Indeed, for such index (7, ¥),
ij(x, 8) = lj(x, E) —_ E khlh(w, 8).
a,_1<h=a,

If 3 <a,_1, we have o,> o, according to (5.1). Therefore
xjt(a—o'jf)(()) — j] (a—a’j)(O) 0

which shows that ¢;¢=0. If a,<j=<n'"—1, we have ¢,<0o, and o, =0,* for
ay_1 <h=a, Hence

2o o (0) == S ks @ 22(0)
unless kq,_; =-:+=ks =0. Then, from the assumption (2.7), we have

(o-0p) -1
SRIL—J;UL?)L =T for a,.1<h = a,.
If we notice that k, are all positive integers, the above inequality assures
us that

I T9(0) = — S knd~7(0) 0
and hence ¢;¢=0.

If Koy js1="++ =kas, =0, we have ojs =0, and 2;3 ?(0) = 2,°7?(0) whence
we conclude either g;6=0 or ;>0 and 2;° (0)x0. In any way, we also
have ¢;s=0.

Proof of the case a, =n’’ will be carried out quite similarly.

Thus the right-hand member of (4.8); vanishes identically for j*a,_1+1,
--+, a, and our lemma is proved.

From this lemma, we see that, if we put ;=0 (kxa,_;+1, ---, a,), the
system (4.3) will be reduced to
5.2), ea% =4, &)U + & S (@, &)U+ 6 3 0Ty &) Uate s+ Ugrlerr,

j:av—1+1, crcy
or, especially when j=n'+1, ---, n’'—1, to
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du
(5.3) 6"-‘(1—;“ = 0,

where we used the following notation for simplicity’s sake:
@, a)=(ay1+1, -+, ), H=00,+,0, ke, -+, ker, 0, -+ +, 0).
In order that ¢;,(x, ) should not vanish, we must have
A2, 792(0) = 2,9979P(0) — X1 kndn 7 o?(0) = 0.

According to the assumption (2.7), such arrangements (0, ---, 0, kys, - -+, Korsy O,
.-+, 0) are only finite in number, whence we have

LEMMA 3. The left-hand members of the system (5.2), are polynomials
WM Ugry ***, Uarr Whose coefficients are functions of (x, &) holomorphic in the
domain (4.2)s,,

Moreover, we can prove

LEMMA 4. The intersection of the domains (4.2)¢, is not empty.

Proof. It suffices to show that the conclusion of the lemma holds for
almost all (7, £). First suppose that v < h.
If j<a’, we have

Iie,Tm2(0) = 4,2722(0).
Hence, by (2.7), we have

zjfv(u—aﬁp)(o) e—m
&%ty

R =2t>0 for arge=~0,.

If o/ <5< a'’, we have
zjfy(cr—ajfu)(o) — /I,(""’j’—- ka’/la’ ("“’a’)(O) — e — kau'{a,’(a—aa//)(o).
Therefore, if the integer N, is chosen sufficiently large, we have

ERZj—f”(L:’;’;—EO)e—W <—%<0 if kw+---+ker=N, for arge=>0,.
If a’<j=n,
A58, 7O (0) = — Kardar C70(0) — < - - — KarrRar 77« (0),
and we have
Aot (0)e
&%3t,

<—7<0 for arg e=6,.

Finally, if n’’<j we can easily see from (2.7) that

zjfl’(a—ajf”) (0) e—i!)
&%ty

Bix <—7<0 for arge=0,.

Thus we have either
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Le, 0o m(0)e® 7

e > - >0,
or
Aoy (0-058) -2
g{_f&_au?@e_d <— z <0,
&9y 2

for arge=40,, if kor+---+ ko =N, where N, is a sufficiently large positive
integer. Therefore, if we construct the donmain (4.2)y, by the same method
as was used in section 2, the intersection of D(f_¢, 0.x, d¢,), (ko + -+ kar
=N,) is not empty and contains the direction arg e=#6,. Also the intersection
of the domains |2 |< r¢, contains a certain neighborhood of the origin.
For v > h 41, proof is similar, and for v =h + 1, proof is utterly trivial.
From Lemma 4, we have

r=inf r¢, >0, 0..0=inf 6.¢, >0, >0_,° =sup O_x,.
Now consider the lozenge E(po, ¢, £) contained in the domain |2|< 7.° and
define a point x,* by

& prm {22 C<hED,

a®  (w>h+1).

Let I’ be the segment joining @y and x,*. Then the variable point on
this segment is contained in the domain E(p, ¢, £) and is expressed as

T =u*+se?

where s is the length of the segment from x,* to x, and ¢ =arg (xo— x,%).
Let

u, =Uxx, xo u,° &), j=da, -+, a”,
be the holomorphic solution of the system (5.2), such that
U, =u,° for x=x,,
(o, €) being an arbitrary point in the domain
(5.5) E(o, ¢, ) X D(0-.°, 0..° 3,°).

If, especially, (a/, -+, &’ )=(n'+1, ---, n'’ —1), 4, do not depend on z.
Then, from Theorem 8 and the lemmas just proved above, we have

LEMMA 5. There exist m systems of formal solutions (F.), v=1, -+, m,
of (1.1)
(FH) y] = af(y)uj +E pjfy(xr 8) ua'kal' * 'ua”ka”y j = 1? IR (2
where
1: j:a/r"'9a”:

8, = {
0, otherwise,

and the coefficients p;e(x, €) are functions of (x, &) holomorphic in the domain
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(5-6)u ’ X | < 'rvoy Ee @(0_p0, 0+v0’ 5110);
and asymptotically developpable in the form
®.7) pr@ 9= 31 pr (@)

as e—0 in the domain (5.6),.
Now we shall prove our final lemma.

LEMMA 6. If 0,* >0, the inequality

a’’ 1 a” (6-0p) a”
5.8) ;—{maxlukll/%} > s1nz* 7 Ao (0) ] max | g |V
s | k= 4| e|%" k= M k=ar

holds for x on I, and e € D(0_,°, 0..°, 8,°) where r is a small positive number
determined in the same way as in section 2, and

zk(y—ak)(O) eﬁ

(Boeiﬂo)”k ’ k < (293 P

(5.9) M = 1, k= Xpi1y
_ ,{k(a-uk)(o)e—i!'?

T Geteyr k> an.1,

& being a sufficiently small positive number.

Proof. We give the proof for the case v>h +1 only. Other cases will
be treated analogously.
Since the c;¢(x, €) appearing in the right-hand member of (5.2), are finite
in number, the inequality
[4,“772(0) [sin y
(5.10) Dlla, &)+ X eie(, )] < T dfe

will hold in the domain (5.6), if 4,° is chosen sufficiently small.
Moreover, we have

. 2 o-a 2
ER,L(a:, &)ed =§R/IJ 2(0) e +O< X >,

* *
&% &%

&%*

SD_%’Fréargii(a—dj)(o)_Q—Gv*argeé _¢+%_71 jz(ll, “t 0y d”,

in the domain (5.6),. Hence we have

(-0 2
arg A4,779(0)e !

IIA

F_
2 TY

&mv*

which implies

&%v*

-0 2
cos<arg<—zi~M>> =siny > 0.

Accordingly, if 6,° and 7.° are sufficiently small,
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R zJ'(x! E) e > lz](a—aj)(o) ‘ sin 7
&9v* = 2| & %"

(5.12)

If we choose a point «° arbitrarily on I, *’, there exists an index ko
such that

max | V4 = | ug, |V#o.
k=a’

Naturally k, depends upon the choicee of 2°. The conditions
Crot, (%, ) X0 and (%, €) X0

respectively imply

(6.12) [thr [0+ <+ o [t [Forr < )| and || < |tz |

at the point 2°. Indeed, suppose that c.¢ (%, &)=0. Then, as we already
know, we must have

lko(a—a'ko)(o) — ka’za’ (""”a’)(O) + e + ka”za"(v-a'an)(o),
or, from (5.9), :
#ko = ka’/“a’ + cet + ka”/’la"'
Thus we obtain
l u"o I = (I Ui, Il/f‘ko)kvx’ﬂa'- . -(l Uk, |1/.”ko)ka”/‘a"
Z (| Uar |V Vearttar o oo (| Ugrr |V Har?Vearrtiarr
= Uar [ e+« [ s a7,
which is the first inequality of (5.12).
The second inequality of (5.12) can be proved similarly.

Now the inequality (5.8) can be proved easily. Let s be the length of the
segment z,*z°. Then

[d%{max | % Il/ﬂk}lsz = [dis [ %, Ilﬂ/colzso
[ 1 VI O 1 d ] 1 [ 1 i >i|
- [Mko [ u l * l ko ‘ d I | s =80 - /«‘1(:0 max [ukl lukm(ds log uko 3=80

1 [maxlu [l/ﬂk%< 1 dulco l¢>:] )
M, U, AT o=20

Making use of the equation (5.2),, we have

I’N«kol

+ E ‘ ckofy(x’ 8)
Thus, from (5.10), (5.11) and (5.12),
< 1 dug, 1¢~> Mko(" ‘T”o)(o)}Sln)’ [ " 7%(0) [siny | e, 9%(0) | siny
Uk,

] Iua/ka’ s u,,,,"’a" ‘}
[ U, |

“dx 2| e|os* 4|¢e|o” - 4)e|o”
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whence immediately follows the required inequality.

6. Main theorem. Now we are in a position to undertake the proof of
our main theorem which will by stated as follows:

THEOREM 4. In the expressions of the formal solutions (Fy), (F,.1) and
(Fn), the formal power series in their right-hand members converge uniformly
in the domain

(6.1) [2] <1, max|ug|Vtr <&, e€D(H—a,d+ a, dy)

where 1o, &, @ and &y are sufficiently small positive constants.
In other words, formal solutions (F;), (Fn.:) and (F,) represent actual
solutions of (1.1).

Proof of this theorem necessitates rather lengthy reasoning and we must
proceed step by step.

1) Preliminary transformation. To simplify our description, we make a
following convention:

(8, -+, B") denotes (1, -++, ay) or (W' +1,---, "' —1) or (an_1+1,---, n),

s denotes the index (0, ---, 0, kg, ---, kg, 0, -+ -, 0).

Let us put
(6.2) Qj]vﬂ(x, u, 8) = Bjﬁuj + E pjfﬁ(x, 8) ug/kﬂ’- . -uﬁr/kﬂ", j = 1, cee, M,
kﬁr#ﬂ/+-'-+kﬁffﬂ§/l<A’
where
Bjﬁ:{o: j#ﬁ’y"';@”y
1, otherwise.
Since Q;»f(x, u, ¢) is a polynomial in wg, -+, #g» with holomorphic coefficients

and lim.,, Q;~f (0, 0, &)=0, we can find sufficiently small positive numbers 7./,
&', 8o’y po’ and 7’ such that we have

| Qinf(, u, &) |+ po’ < 70" (0o’ <70'), j=1 .-, n,
in the domain

o
lol <!, max|u V<G e € DO Op ),

where D(0%g, %5, 6o’) denotes

@(00—1 03—1’ 60’) if (B,, ) B”) = (1, ) al)y
@(00_(h+1)’ 09}-(h+1)9 30’) if (B,y Ct BN) = (n,+ 1; Sty n”— 1)1
@(00_"” E.(-m, 3/) if (B/, ] BI,) = (am—l + 1, %y n)y

and, moreover, the right-hand members of (1.1) are holomorphic in (z, ¥, ¢) in
the domain

le| <rd, max|yel <np', e=DO, 0%s 00).

Let us make a transformation
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(6'3) y] = QjNﬁ(x, Uﬁ'(x) Lo, uﬁ’oy 8); M) Uﬁ"(x’ xO; uﬂ”oy 8)’ 8) + vj, j = 11 e, M,
and let
(6.4) & ?;J =, &)v; + & Dlax, &)ve + e°gi(x, Ug, « -+, Ugr, vy, *++, VUny &)

be the transformed system. Elementary calculation shows that
9@, u, v, &) = A, &) Qinb(x, u, &) + & 3 a; (%, &) QunP(2, u, €)
+ efi(x, QnP(x, u, &)+ v, &) — g0 09? _ $ 0Quwt , At
0x =F ou, dx
=G+ G:— G35 — Gy,
Gl = Eafti(xy QNﬁ +, 8)’
G =2, e){QinP(@, u, &) —0;fu,} + & X au(x, &) Qun?
St {6% o
Uy ox
8 )
Gs= {s"fdﬂ — Az, &) ul} { 0Qx? - jz} ,
x ou

1

Go=51 %5, 2w, yudp,
= dw

where 6; mean the Kronecker’s symbol.
Clearly, Gy, Gs, and G4 contain a factor . Moreover, if we notice that
G: can be rewritten as
S e(, &) Dyl &) + & S, &) pres(, &)
o dp;es(, E)]
dx

u‘g/kﬁ’ . 'uﬁ//kﬁ",

and that
]fﬁ(xy &)= ,]fﬂ(a 7itp (1) &7t 4 0(8” oitg*l),
Dies(®, €) = Pye, 09 () e77p + O(e776™),
we can also conclude that G. contains a factor ¢’. Hence g,(x, u, v, &) are
functions of (%, g, ++, Ugr, V1, +**, Vn, &) holomorphic in the domain

74

B
(6.5) || <rd, max [we Ve < L' max|v;| <pof, e€D(04, 6%, 00').
=g’ J

On the other hand, the system (6.4) evidently admits a formal solution
(6.6) v = 2 pj’fﬁ(xy €) Uﬁ/kﬁ' e Uﬁ,,k,sv_

N<hgug +eo-+kg’pg”
So we can easily see that the positive constants A, and By can be so chosen
that

19//
6.7 [ Sl au(x, &) ve+ gi(x, u, v, &)| <A, max | vy +By max g | Ve,

Next we make a transformation
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v; = w; exp A;(x, &) Az, &) = r *Zj(ac, &e’dex,
where gx* is equal to g
z* when (B,---,08)=Q1, ---, ay),
z,* when (8,---,8")=(n'+1,---,n"~1),
Tn* when (B, -+, f)=(am_1+1, -, n).
Then the system (6.4) will be reduced to

d’w]'
6.8) dx

=l au(®, &) wrexpdi(x, &) + g,(x, U, wexpA, €) exp(— A,(, €))
=h(x, U, wexpA(w, €), &) exp(— 4(x,e)).

2) Family & and the mapping £. Let us choose the domains E(e, ¢, 2)
and (0, — a, ¢+ a, d,) such that

Ep, ¢, Dz lel<r'},  D(o—a, O+ a, 6o) C D4, 0p, 6").

Let § be the family of the systems (¢i(x,u,e), .-, ¢u(x, u, &) where
¢i(x, u, &) are functions of (%, ug ---, ug~, &) holomorphic in the domain

/9//
6.9) x € E(p, ¢, ), max [ug [Vee <&, e€D(lo—a, 6o+ a, do)

and satisfying the inequalities
ﬁl/
6.10) 1y, u, )| =Kymax|u,|Vrcexp(—Rdyw, &), J=1,-m,

where 0 <& <&’ and 0 <Ky&" <ps’. Put
b,(®o, U°, &) = ¢,(sx*, Usa*, @o, U, €), &)
©1) | 1w, U@, 0,08, 0, o, U, o, 0, ) expat(@, 9,0 expl— Ao, ),
£~
where (o, up? - --, ug, €) is an arbitrary point in the domain (6.9) and the
integration is to be carried out along the segment gx*x, which will be hence-
forth denoted by sI%,. Then the mapping ¥ is defined as follows:

(¢1y tt ¢n)£ ((51’ ) q;n)

Since {0, ---, 0} €&, ¥ is not empty. Further, as can be immediately seen, &
is convex, closed and normal. On the other hand, since, according to Lemma
6, maxj’, |u:|/* decreases monotonically as « tends to sx* on I3, the in-
tegrand

hy(x, U, ¢ exp4, &) exp(—A4;)

is bounded. Thus the integral in the right-hand member or (6.11) converges

and the mapping T has a well-defined meaning.
Our proof of the main theorem is based on the existence of a fixed point

of this mapping.
3) Two lemmas. Before going into the essential part of the proof, we
must state two lemmas. Suppose that
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1°. D and ® are simply connected domains in a complex plane;

2°. ®, is a simply connected domain in a product space of r complex
planes;

3°. ful=, 21, vy 2m, &), k=1, -+, m, are holomorphic in the domain
xED: (21,"', zm)E@my GE@;
4°. g%, Y1, + ) Yn, &), k=1, ---, n, are holomorphic in the domain

xED, (yly Tty Z/n)E@m SE@;

5°. ou(x, 21, -+, 2m, &), k=1, -+, m, are holomorphic in the domain
xeD, 21y 2n) EDn, cED;
6°. zx(x, o, 2,° -+, 220 &), k=1, ---, m, is a solution of the system
(A) %—sz(x, ot e k=1 eee,m,

such that z;°=zi(x, %o, 2°, &) wWhere (%o, 2° &) €D X D,, X D;
7. G, %o, 2% -+ -, 20 &) = g2, u(x, 2% 8), - -+, Pu(®, 2% 8), &), K=1,---, m;
8°. The integral
(B ¢i(2o, 2% 8)=§ Gy, ®o, 2° &)dx
['jxo
converges where I, is a curve joining «* on the boundary of D with z, €D
and contained in D except the point z*;
9°. If zy is sufficiently near to x,, the relation

(©) dan, 2, 9= G, o, 2 0du+ [ Giw, w0, 2% )d

T, o’

holds where the integration ro should be taken along the segment 2, .
xo’
LEMMA 7. ¢, 21, -y Zm, &), j=1,---, n, 18 a solution of the system
du,

T = gj(x? ¢1($, zO’ 8)! Tty ¢n(xv zoy 8)): j = 17 RPN
X

such that ¢,(x*, 2° &) =0.

LEMMA 8. If the integral (B) converges uniformly with respect to z°
cee, 2,0 for each xy and &, then ¢i(x, 2, &) is holomorphic in the domain
DX%D, XD.

These lemmas were proved by one of the authors when the equalities (A),
(B), (C) do not depend upon &; ecf. [4]. Since the discussion goes essentially
the same way for our case, we omit the proof here.

4) Proof of the main theorem.

ProrosiTION 1. The mapping T transforms §F into itself. In short,

F) B
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Proof. For the proof, we must show
(a) 15, 0, €)| < Kovmax | us?| Vo exp(— R (oo, ©),
and
(b) ¢,(x, u, &) are holomorphic in the domain (6.9).
By (6.7), we have

:5”
lhy(@1 U, §(z, U, &) expA(@, €), &)| = (A;Ky +By) max [U |7/,

Therefore, to show that (a) holds, it suffices to prove

| g5(sx*, U(gar*, o, u°, u), )| + YO(AjKN-FBN) rkn';;x | Uk |¥/rrexp(—R4,(x, €))ds
(6.12) o =
< Kymax | |7/ exp(— R, ),

where s, is the length of the segment 47, Since the above inequality is
trivial when so=0, we have only to show that

(6.13)
ﬂ/[ ﬂl/
(43K -+ By max | Us | exp(— R (o, ) < Kir e max | U evexp(— Rz, ©) |

It @, -, 8")xMn'+1, .-, n""—1), we have, by Lemma 6,

pl/
gdg {Igl:a}gx | Uy |¥1 exp(— RA,(x, a))}

ﬁ/’ 77 — 4
=[__d—§)uj(x, &) max | U | ™ +N<nfax U, |wk>N 4 x| U |wk] exp(— R4,(x, &)
ds B=p’ k=p ds k=g
= mlax | U] — LA, )+ —5——— L | U0 | exp(— 0 (w, )
k=g ds ds r=p

max | Uy |Vex
k=g

3 ;144 (o-ap)
Nsiny e [ 2:7 7% (0) |
4| e w=p M

= mg’x | U IN/“"|:— —d—fRAj(x, &+ } exp(— R4z, €))
k=pr ds
where
* { or if (B/r"'vﬁ”):(l;"'!al)s
O = .
O'm* if (B,y tt B,/)z(am-1+1; ) ’I’l/),

If o, < go*, we have

Nsiny ﬁ’.’n |4~ "%(0)| _ Nsinr rrllg’i’n [ 27~ 7%(0) |

d
——RA(x, ¢ =
Ot e BB L Zhle R 4

ds
by taking N sufficiently large. If 4, > po*, we have either

jén’, i~e- (Bl Tty ﬁ,/)=(dm—l+1; Ct n)’
or
j g n”’ ie. (B/y ) B”) = (11 ) al)-

In these cases, pI7, coincides with I, in Lemma 1. Hence, by Lemma 1,
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3 B [CAL 7]
_ %%Aj(x, &)+ Nsiny min |47 (0) |

4|e|p” 2= 2
> I/I,“’"’J"(O)!sinr Nsiny ﬂ’l.’nlik"""k’(O)l Nsint ng,i’n [ 2% (0) |
= PRI 4|¢e|s” r=p Lk 5lels" k=p y7

by taking N sufficiently large. Thus, in any way, (6.13) is implied by the
inequality

Nsiny lﬁ’i’nllk‘”""k’(O)l

5lels k=p yz

AjKN +By=Ky

which will be realized if Ky and 1/8, are chosen so large that we have
N sin*r oin | 27— (0) | )
53056 k=p y27%
To examine the remainig case
(B,r M) B”) = (n/+ 1? STty n'’— 1)7

we must notice that U, does not depend upon = for j=n'+1,---, n/'—1.
Sinee, recalling the discussions in section 4, the functions p;e(w, &), j=n'+1,
»e+,n'"—1, can be determined in such a way that they all vanish at « = ga*.
Therefore we can suppose that

di(gx*, Ulga*, 2o, u%, &), &) =0, j=n'+1,---, n'"—1.

A, <

Now, for ¢,>0, it follows from Lemma 1 that

= 14,772(0) | siny

= 2| e|%s

Thus (6.13) follows from the inequality

| A,99-99(0) | siny
2|l

which can be realized if 0, is chosen sufficiently small. For o,=0, (6.12) is
equivalent to

L exp(— R (2, ) exp(— RA,(@, ©).

A;Ky+By< Ky

ﬂ/’ AII
so(A;Ky +By) max | U |V <Ky max | U, | Y/
=p =g

because Uj is independent of z. This can be easily verified by taking 20(= s¢)
so small that we have A4;s,<1.

Thus we have proved (a).

In order to prove (b), we consider following correspondence:

1. the system (5.2), to (A);

2. hj(zx, w, w, &) exp(—A4,(z, £)) to G; in 7%

3. di(@o, u°, &) — @;(sx*, U(ga*, xo, u°, €), €)) to ¢i(xo, 2% &) in (B);
4. I3, to I in (B).

The inequality (a) just established assures us the uniform convergence of the
integral
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S re h]'(xO: U(.’L', Lo, uO’ 8)’ ¢((E, U(x; Xo, uO’ f) eXpA(x) 5) 5): 8) exp(—Aj(x’ 8))dw
8z
which corresponds to

j Gj(x, o, 20, e)dx
I‘jzo

in (B) by the above defined correspondence. Therefore the Lemma 8 can be
applied and we are immediately led to the condition (b).

Thus we have proved the Proposition 1.

Since, the integral in (6.11) being uniformly convergent, ¥ is a continuous
mapping of ¥ with respect to the topology of uniform convergence (in wide
sense), we can conclude, from Proposition 1, the existence of a fixed point of
the mapping T; namely the system (¢, ---, ¢.) of §F such that

(¢1! ] ¢n):($1: Tty (En)-

PRrOPOSITION 2. The system (¢, ---, ¢n) of F corresponding to a fixed
point of T is a solution of the system (6.8).

Proof. To prove it, we have only to show that, for any (¢, -+, ¢.) of F,

(1, +++, ¢n) is a solution of the system
%:hj(w, U, pexpA(z,e), ), J=1,--+,m,

which can be easily derived from Lemma 7.

Thus we have established that there exists, in the family &, a solution of
(6.8). We shall denote it by ¢;x(x, Uz, 2o, u°, €), €).

PROPOSITION 3. The solution ¢;x® of (6.8) such that

b, U, 0 = o{max | U 7 expl— Az, )

18 unique.

Proof. Assume the contrary, and let z,, j=1, ---, n, be the difference of
any two solutions. Then, evidently, the differential inequality
(6.14) i(li—zsd <A, mgx (|21 | exp(RA(x, €))) exp(— R4z, €))

must hold. If we put
8 ~
max {l 2, max | Uy | "# exp A/, €) ]} =K>0,
LY k=g
it follows from (6.14) that
o . B
Iz, < g AR max | Uk |V 1% exp(— RA;(x, €)ds.
o e

As we have already seen in the proof of the Proposition 1, we have
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3, ~ B 14
§ OAjKrltclaﬂx | U745 exp(— R (@, ) ds <, max | Ui [V exp(— RA, #)
0 =p =5

where
*’/ . ﬁ’.’ |2k(o'—0‘k)(0)l 7 1y —
5|ele*/ ( Nsiny-min 2, (8, -+, )=, -+, a1), (@m-1+1, - -+, m),
/ k=p y 237
K =12lel%/ (|4, ??(0) |siny,) B, B =n'+1,---,n""—1), o,>0,
sy (Z2p), By, B)=(n'+1,---,0''—1), 0,=0.

Therefore, if we choose Jd, and 2p so small that we have «,4;, <1, we obtain
K < K which is a contradiction. Hence z=0 and the unicity of the solution
is established.

Now consider the solution of the system (1.1):

SinP(x, U, &) = Qinf(x, U, &) + ¢jnf(x, U, €) exp A{(z, ¢).

To complete the proof of the Theorem 4, it remains for us to show that the
solution S;yf is independent of N. Since

[Qjx? + %‘N/ﬁ exp 4, — QjN’e:l exp(—4;), i=1 -, m, N’'>N,

is a solution of (6.8) satisfying the condition of Proposition 8, it must be equal
to ¢;nf from the above established unicity. Therefore we have S;y.f=S;»?
which shows that S;»# is independent of N.

Thus we have completed the proof of our main theorem.

7. Concluding remark. We have thus proved the convergence of the
formal solutions (F;), (Fx.:) and (F,). As we have seen, there exist another
formal solutions (F,), v=1, h+1, m. As for these formal solutions, it is
doubtful whether they converge.

If all of o, are equal to o and all of 4,7#(0) (= 0) lie on one side of the
straight line passing through the origin on the complex plane, we can construct
the general solution of the system (1.1) by Theorem 4. In this case, moreover,
it can be shown that we can dispense with the diagonalization of the terms
whose degrees with respect to ¢ are less than ¢ in the linear part of the second
member of (1.1). This has been already shown by Sibuya in his paper cited
before.

In conclusion, we wish to express our cordial thanks to Dr. Sibuya by
whose work this paper was greatly inspired.
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ERRATA
We profit this opportunity to correct some errors in Iwano’s former paper
cited before.

Iwano [4], I, p. 276: The second member of (19.3) should be replaced by
the following expression:

b 0P;n(z, 0P;n(x,
[lj(w)(szv(% 2) — 02;) — kgjk(w) 2 {—ﬁg—@ - Bf’c} — a7 ﬁ(:cc ?) ]

+ [wah’j(x! PN(xr Z) + 'U)] + [lej(ac)z] - ]ﬁﬁjkx"”%%k]
=1

Iwano [4], II, p. 99: The second member of (33.1’) should be amended
as follows:

(10X, =320 - S e[ 8D g, ) - i Bten?)]
k=a’ az % 6'90

+ [@ohy(@, Pu(@, 2)+v)] + [s,zj(x) T %_]

i dz OPin(x, 2) o
g+1 ’i JN\Yy ~] )
[k;.,' <x dax A(®) zk) < ]azk 0]k>:l'

Iwano [4], II, p. 120: The linear differential equation (46.2) and (46.4)
should be replaced by

dP

a7 1 E = Uy (@) + dyo®) Py + 07 é D@y Zury > Zar) Pryy
(46.2) F0Qu(®, L, -, Zr),
Din(®y Zary =y Zar) = 23 Ugyeeein(B) @1+ + <@g Fr-1- g, D271y, Fr1e o o
(=1, ---m),
and
x(-i}i”i = [m i‘, D1(X, Toy 200y vy 2%07) B0V XD Anp/ ()
dx =
(46.4) + Qv (, %o, 2%, -+, z"av)} x~4p'e exp(— A, (X)),
Dn(x, Toy 2% + v+, %) = Oy, Zor(2, %o, 20%), =+ +y ZLor, To, 2%))
(7=1,---, m),

respectively.
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lwano [4], II, p. 122: The argument from 4-th to 12-th line should be
corrected as follows:

Cela posé, dans tous les cas, les fonctions Vjy(x, 2o, 2% (7 =1, -+, n) se
déterminent d’une seule maniére par les conditions V;p(0, o, 2°) =0 de sorte
que les fonctions V,y(x, 2) =V,y(x, x, 2) soient holomorphes dans le domaine
(46.1) et représentent les solutions des équations différentielles linéaires (46.4)
si 'on y remplace z par Z.

En effet, si on porte la solution formelle (45.1), o ’on pose z=Z, dans
les équations différentielles linéaires (46.2), on aura les équations différentielles
linéaires pour déterminer les coefficients P,,,(x). On verra alors que les fonc-
tions Pjpy () sont déterminées demaniére qu’elles soient holomorphes et dévelop-
pables asymptotiquement en les séries (45.2) pour le domaines ®[6*,,_, O%,,,,r].
Si, ensuite, on applique les raisonnements tout & fait analogues aux ceux des
nes 33, 34, 35, 41 au systéme des équations différentielles linéaires (46.4), on
pourra démontrer I'existence des fonctions Vy(x, 2, 2°).

L’existence des fonctions Vjy(x, ) nous montre que les séries (45.1) sont
uniformément convergentes pour les valeurs z, z telles qu’elles appartiennent
au domaine (46.1).
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