
ON A SYSTEM OF NON-LINEAR ORDINARY DIFFERENTIAL
EQUATIONS CONTAINING A PARAMETER

BY MASAHIRO IWANO AND TOSIYA SAITO

1. Statement of the problem. In this note, we consider a system of n
equations of the type

Γ/Λ/ n
(1.1) e°-j2 = tj(χ, ε)yj + ε*^ajk(x, ε)yk + εσfj(x, yί9 , yn, <?), j = 1, - , n,

where we suppose that
1) σ is a positive integer;

2) £ is a complex parameter;

3) x is a complex variable;
4) λj(x, έ) are of the form

where

;/Λ>(aO = 0, λ = 0, 1, •••, σ-σj-1;

VV(αO^O; Λ/*-V(0)%0 if <7,

and λj™(x) are holomorphic for |a? | <r;
5) <fyfc(α5, β) are holomorphic functions of x and ε for

where ®(^_, <?+, )̂ denotes an angular domain

6) /X«, 2/ι, i yn, f ) are of the form

/X»> 2/ι> , 1/n, f) = Σ //*!-*„(», e) ̂ 1*1 yn*
n, ί = 1, , ,̂

*!+..• +*n^2

where the power series in the right-hand members are uniformly conver-
gent for

a |<r, m a x | 2 f c l < 9 , βe®(^_, *+, δ),
^and the coefficients fj^—k^x, ε) are holomorphic functions of a? and ε for

I a |0, εe £)(#_, tf+, 3);

7) when ε tends to zero in ®(0_, ίτ, δ), α (̂α;, ε) and fjkι>.>kn(x, e) admit
asymptotic expansions in powers of β valid uniformly for | # | < r.

Our aim is to establish the existence of the solution of (1.1) containing
several arbitrary constants and converging to 0 as ε tends to 0 in ®(0_, θ+, 8).

Our proof is essentially similar to that given by one of the authors in his
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recent paper [4].

2. Theorem of existence. We consider a slightly modified system

s°Vi = λj(x, ε)yj + εσ(a,j(x, f) + Σ ajk(x, ε)yk

(2.1) d* V *=1

/ι, •••, yn,

where a,j(x, e) are functions satisfying the conditions 5) and 7).
This section will be devoted to the proof of the following existence

theorem.

THEOREM 1. // the system (2.1) possesses a formal solution

(2.2) K/«Σ!P/*W, J' = I, •",*,

ίΛe coefficients Pj a\x) are holomorphic functions of x for \x\<r'
and PJ(U) = 0, then there exists a solution yά = ψj(x, ε) holomorphic in (x, ε) for

\x\<r", εe£>(#_", 0+", <5),

which admits an asymptotic expansion (2.2) (valid for \x\<r") as ε tends
to 0 in £)(#_", θ+", δ) where r" ', ^_ r/, β+", d" are suitably chosen constants.

First we put
N + σ-l

y, = z, + QJN(X, ε), QjN(x, ε) = Σ p/'̂ ^e1,
z=o

then (2.1) will be transformed into

flz
(2.3) £σ^p = ;χα;, ε) z3 + β<Άχα?, ^i, , zn, ε), j = 1, , n,

where
n

, zίt •••, zn, ε) Ξ ε"gα^(α;, ε)(«t + QkN(x, ε)) + ε"aj(x, ε)

+ MX, e) Q1N(x, ε) + ε°fj(x, z + QN(x, ε)) -

Obviously, if the positive constants To', V, ^or are suitably chosen, hj(x, z, ε) are
holomorphic in (x, z, ε) and satisfy the inequalities

(2.4) I hj(x, z,έ)\£s
K

in the domain

I x < r0', max | zk < ?<>', e e S>(0_, ff+, <V),
k

where A, and BN are positive constants. Putting

i
x

λj(x, ε)ε~σdx,
XjO

(2.3) will be transformed into

(2.5) -* = hj(x, UιexpΛι(x, ε), ••, unexpΛn(x, ε), ε)exp(—Λj(x, ε)).
dx
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Here the values of xf and the paths of integration will be determined later. If

. a j > 0, otherwise,

we may suppose, without loss of generality, that there exists a real number Ω
(0 < Ω < τr/2) such that

for arge = #0 (θ- < #0 < #+), where r is a small positive number. Then we have

where ωj = argΛ/<y~ff./)(0). So, if ,̂ α, T (>0) are chosen sufficiently small,
we have

(2.8) max ωj- (Ω±φ) - *3 (tf0± α) I ^-f- -Γ, j = l, •• , Λ / ,
j -ώ

and

(2.9) max | ωk - (Ω ± φ) - σk (ff0 ± a) - π \ ^ ̂ -- γ, k = nn ', - , n.
k £

Denote by E(p, φ, Ω) an inner part of the lozenge whose four vertices are

αα> = pe-io9 αc2> = ΐαci) tan ̂  α(3) = _ αα) f α(4> = _ α(2)y

respectively. Then, for the proof of the theorem, it is sufficient to prove the
existence of a solution %(#, ε) of (2.5) such that

1) %(α?, ε) are holomorphic functions of (x, έ) for

(2.10) xe=E(p,φ,Ω), εeφ(^_ / x, #/', (5r/), θ-"=0Q-a, θ+" = θQ + a,

2) %(«/, e) = ̂ °, ^ = 1, , n,
3) %, satisfy the following inequalities in (2.10) if KN>0 is chosen suffi-

ciently large:

(2.11) i uj(x, e)\^KN\ e \N exp(- VtΛj(x, <?)).

Let XQ be an arbitrary point in E(p, φ, Ω) and ΓJXo be a segment joining
XJQ and aj0. Γjχ0 is clearly contained in E(p, φ, Ω). Any point x on this seg-
ment can be represented as

where s is the length of the segment xfx and ψ = arg(a;° — Xj°). Now we shall
prove the following

LEMMA 1. Let j be the number for which σ3 > 0, then, on Γ J X o , we have

(2.12) -j- exp(- 9MX*, e)) ̂  ̂ '""'^^ exp(-
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for any εe £>(#_", θ+", δ").

Proof. Since ^"^(OJ^O, we have

Hence

Λ/ f f-V(

If j ^ nf, we have, by (2.8),

φ —~ + ϊ ^ arg ^<ff"V(0) — Ω — a3 arg ε ̂  — ^ + -

Since —φ-ζψ — π + Ω'^φ, we obtain

2 ''

whence follows that

Multiplying exp(—^R/l^ ) on both sides of the above inequality, we obtain (2.12).
For j ^ n", proof can be carried out quite similarly.
Let §? be the family of the systems {uι, •••, un} of the functions Uj(x, ε),

holomorphic in (x, ε) for (2.10) and satisfying the inequality (2.11) with

Let X be the mapping which maps the system {ui, , un} to the system
{Ui, •••, Un} where U3 are defined by

i x
hj(x, u(x, ε)expyl(α?, ε), ε)exp(—Λj(x, e))dx.

"^j
Here the integration is to be carried out along the path ΓJXo and |%°|

Since {0, , 0} e §, § is not empty, and moreover, f? is evidently closed,
convex and normal. So, to complete the proof, we have only to show that:

1°. £(g)cg;
2°. % is a continuous mapping;
3°. under the condition (2.11), the solution of (2.5) such that %(#/, ε)

= Uj° is unique.
Indeed, by a well-known fixed-point theorem, we can conclude, from 1°

and 2°, that there exists an element of § such that

{ui, •••, un} = {Uι, •••, Un}

which is clearly a solution of (2.5) with desired properties. We denote this
solution by ujN(x, ε). Then

SJN(x, ε) = QjN(x, ε) + uJN(x, ε) exp^(α?, ε)
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is the solution of (2.1) whose asymptotic expansion naturally coincides with
(2.2). To show that SjN(x, ε) does not depend on N, it suffices to prove that

ujN ~ {QjN, -f ujN' exp Ay — QJN} exp(- Aj)

which is an immediate consequence of 3°.

Proof of 1°. The integrand of (2.13) being bounded, it is clear that Uj(x, ε)
are holomorphic for (2.10). So we have only to prove the inequality (2.11).
Now, by (2.4), we have

, u(x, ), ε}exp(— Aj(x, ε))dx

I ε Γexp(-
9 έfids,

where s0 is the length of the segment ΓJXQ. As Uj° have been so chosen that
\UJQ\ <(KN/2)\ε\N, (2.11) would follow if we could show

j o : 2

For σj = 0, this inequality is reduced to

(A K + B )s < KN

j N 0= £ ,

since, in this case, we have Aj(x, ε) = 0. As s0 ̂  2p, this inequality is im-
plied by

which is always satisfied if p is taken sufficiently small.
If <Jj>Q, it suffices to show

I ε\» exp(- ΆΛj(x, ε),
2 as

which follows immediately from Lemma 1 if, as is always possible, d" and
KN~l are chosen so small that we have

4 \ε\*J(AjKN+Bώ ^ I V-^(O) | sin γ KN.

2° is almost evident since the integral in (2.13) converges absolutely and
uniformly.

Proof of 3°. Assume the contrary, and let UJN(X, ε) and VJN(X, ε) be two
solutions of (2.5). Then the difference Wj = ujN—vjN satisfies the differential
inequality

— L-

^ max

, ε) \ exp(-
CίS

j(Xj°, ε) = 0.

Taking the inequality (2.12) into account, we integrate the above inequality
along Γjχo9 and obtain
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I Wj(x, e) expΛ/#, β) ^ a3 max | wk(x, e) ex$Λk(x, ε)\
k,ΓkXQ

where

So, if we choose p and d" sufficiently small, we have α,^l/2 and the above
inequality can be replaced by

Wj(x, ε) exp Λj(x, e)>^ — max wk(x, e) exp Λk(x, 8)
I ί 2 k,rkXQ

which shows that \Wj(x, ε)expΛj(x, ε)\ must vanish identically.
Therefore we have Wj = 0 which is the required result.

3. Reduction of the linear part. Here we assert that, without loss of
generality, we may suppose the coefficients a,jk(x, e) in (1.1) satisfy the con-
dition

(3.1) ajk(x, e) = 0 if V'

where we used the notation

) - λk(x, 8} = λjk(x, 8) = λJk<
σ-σJk>(x)ε*

This assertion is based on the following

THEOREM 2. The system

(3.2) ϊ^ = λfa, 8) yj + 8«
Oί-ίί!/ A=l

can be transformed into the system

dz n

(3.3) εσ-- 1 = λfa, 8) Zj + 8σ Σ bjk(x, 8) zkax *=ι

the property

(3.Γ) fy*(ί&, £) = 0 if ^c<τ"σ^(0)^0 or

&2/ α linear substitution

(3.4) 2/y = Zj + €"

where pjk(x, ε) are holomorphic in the domain

(3.5) |α|<r2«r), εe®(0-',0+',8), (θ-<0

Proof. For (3.2) to be transformed into (3.3) by (3.4), we must have

(3.6) 8σ~ = λjkpjk + eσ(ajk - bjk)

1) Our proof is essentially similar to Sibuya [5].
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We put here 6^ = 0 if ^(<7"σ^(0) ̂  0 and ̂  = 0 if ^*Cσ"^*)(0) = 0. Then (3.6)
will be reduced to

(3.7) ε σ ^ = λjkpjk + εσajk + ε« Σ ajhphk-ε* Σ pjhbhk,
dX *7ιkO*Q

(3.8) 0 = εσ(ajk - bjk) + eσ Σ

where the notation ^*o = ̂ *c<'"^*)(0) is adopted for simplicity's sake.
From (3.8) we immediately have

(3.9) bjk = aj

Substituting the expression (3.9) into the right-hand member of (3.7), we have

(3.10) εσ^

Σ Λ «Λ* + Σ «Λzί>z* L
[_ *lkQ*0 J

By assumption, ajk(x, έ) admits an asymptotic expansion

(3.11) ajk(x,

Now we put formally

(3.12) *

and substitute (3.11) and (3.12) into the equation (3.10). Comparing the terms
of the same degree in ε on both sides of the equation, we can determine the
coefficients py*cp) step by step.

Suppose that Pjk

ίp\x) (p<N) have been determined as holomorphic func-
tions of x. Then the coefficients pjk*

N*(ώ) will be determined from

* ' dx

where the right-hand member is a linear form of αrs

cm) (0<m ̂ N—σrs) whose
coefficients are polynomials of prs^ and dprs

a:>/dx (Q<h <N). Hence Qjk are
known holomorphic functions of x. Since λjk^~σ^(Q) ^ 0, PJ^N\X) can be de-
termined as a holomorphic function of x. Thus (3.10) admits a formal solution
of the type (3.12).

Since the system (3.10) can be regarded as a special form of the system
(2.1), the conclusion of Theorem 1 is applicable. Hence (3.10) has a holomorphic
solution Pjk(x, ε) whose asymptotic expansion coincides with (3.12). Therefore
there exists a substitution (3.4) such that the transformed system is of the
form (3.3) and δyfc = 0 if λjk"-σ&(0)*?Q.

This transformation having been done, we consider the equations of (3.3)
for which σjk = 0. As σjk = 0 means λjk(x, ε) = 0, we have either

λj(x, ε) = λk(χ, ε) = 0 (i.e. σj = σk = 0)
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or
λj(χ, ε) = λk(x, e) ̂  0.

For the first case, (3.3) will be written as

(3.13) $*L = Σ ft (a.f ε) Zk (σ = 0).
ax σk=o

It is well known that there exists a linear substitution with holomorphic
coefficients

(3.14) Zj = Uj + Σ Qjk(x, ε)ukσk = 0

which transforms the system (3.13) into

dx

Next we consider the second case: λj(x, ε) = λk(x, ε) ̂  0.
Let

(3.15) e0*^- = λj(x, ε)Zj + ε* Σ bjk(x, e)zkdx λk=λj

be the equations of (3.3) for λ3 = λk ̂  0. Putting

z3 — Uj-expA^x, β), ylXίu, ε) = 1 ̂ y(αj, ε)ε~σdx,

(3.15) will become

(3.16) -̂  = ΣMa.*Kαα;

which is of the same form as (3.13). Therefore we can find a linear substitu-
tion with holomorphic coefficients

such that (3.16) will be reduced to d
Consequently, by composing these transformations, i.e.

y-+z-+u9 or y-^z—*u—»v,

we arrive at the required result.

4. Formal transformation. Having finished the reduction of the linear
part of the system (1.1) in the preceding section, our next step is to transform
its non-linear part into a possibly simple form. For that purpose, we begin
with the utterly formal construction of such transformation. Discussions con-
cerning its convergence will be postponed to the latter sections.

Let us consider a formal transformation

where we used a symbol ϊ to represent the arrangement of n non-negative
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integers (kίt •••, kn). We impose upon the coefficients pn following two con-
ditions:

1) Pjΐ(x> ε) are holomorphic functions of (x, ε) in the domain

(4.2)ϊ \x\<r*, fieS>(0-if0+l,a,),

where the constants rt, #_*, #+*, 5t may generally depend upon ϊ;
2) every Pji(xt ε) admits an asymptotic expansion valid for | x \ < π

, ε) «

as ε tends to 0 in &(#_*, 0+*, δι) where the symbol a& is defined by a following
formula:

λsι(x, ε) = λj(x9 ε) - Σ kjίv(x, ε) = λ^- &Wf-'A + 0(ε*-<^+1).
υ = l

Applying (4.1) to the system (1.1), it will be transformed into a formal
system

(4.3) 6 ~ Λ/α?, <?)tt, +
αa?

The aim of this section is to establish the following

THEOREM 3. There exists a formal transformation (4.1) such that Cjt(x, ε)
are all holomorphic in (x, ε) in the domain (4.2)* and

(4.4) c^(a?, ε)Ξθ ί/ ^-^(0)^0 or ^ι=0.

COROLLARY. TΛe system (2.1) admits a formal solution of the type (2.2)
i/ V*~^0(0)^0/or tf,>0.

Proof. We define the order of arrangements (j, klf •••, A?n) of the non-
negative integers j, kι, - , kn in the following way.

If

feiH ----- h f c n < ^ ι H ----- h^«
or

feH ----- h kn = Qi H ----- htfrc and A:s = #s (i < β ̂  ri), kτ < qίt

we shall call that (klf , fcw) precedes (^i, , ^n) and denote it by (klt , /cn)
-<tou •••> ^n). Then we define that (.7 , kι , kn) precedes (fe, ι̂ ,gw) or,
in symbols,

0', fcl, , fcn) < (ί?, ^1, * , tfn),

if (fci, ••-, kn) <(qι, •••, gn), or (/bj, •••, fcn)=toι, •••» 9n) and j >fc.
Suppose that i?/i(ic, ε) and 0^1(0?, ε) have been determined for k\ Λ — + kn

<N. The inverse transformation of (4.1) be written as

(4.4) Uj « yj + Σ QjWί*1 ' ynkn,

where q^ = - #/* + Qji(pώ, Qj(pιΰ being polynomials of p{j (fci H ----- \-hn>N)of
degree ^2N— 1. Differentiating (4.4) term by term, and substituting (4.1) and
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(4.3) into it, we obtain a formal equality between formal power series of uίf

•• ,un. Equating the coefficients of Uιkι un

kn on both sides, we can easily
derive the following relations:

e) phτ - εσ( Σ &ΛαΛΛ(#, ε)
\A=1

η

-^J

, ε),

where

1) cfc denotes (&*, •• , dnk) (δjk: the Kronecker's symbol);

2) ϊ + Cι - efc denotes (&! + δlt - δlk, , fcn + δnι - δnjc);

3) QJΪ is a linear form of a$(x, ε), (Z, l))-^(jt ϊ), whose coefficients are poly-

nomials of pφ ΛH ----- \-hn<N.
Hence Q/Ϊ are known holomorphic functions of (x, ε) asymptotically develop-

pable in powers of e.
Let 0', ϊ)jv be the totality of the arrangements (j, ϊ) such that l^j^n

and fcH ----- \-kn=N. We divide 0", IV into classes (j, ϊV, , (j, t)%' accord-
ing to the values of ^ιcσ"<r^)(0), i.e. (j, ϊ) and ( j f , lr) belong to the same class
if and only if ^ιCtf-σΛ)(θ) = ^/ϊ/

c<Γ"<r^ι/)(0). Then we must notice that, in the
system (4.5), the indices of undetermined p's appearing on both sides of the
equation all belong to the same class. Indeed, such undetermined p's are di-
vided into following three groups:

(1) JVi,
(2) phι in the term sσ^ajh(xy ε)pΛΪ,

(3) Pj^+tj-tk in the term ΣαίA;(#, ^Pj t+^-t^

To the group (2) belong p^'s such that α/Λ(ίc, β) ̂  0. Since, according to Theo-
rem 2, we may suppose that linear parts of (4.5) are in a reduced form, i.e.
a,jh(x, ε)^0 implies <τ/ Λ >0 and Λ/ΛCσ~ f f'Λ)(0) = 0» we have

^ι<α-tfΛ>(θ) - ^^-^(Q) = ̂ Λ

to-^(0) = 0.

Therefore, every (ft, ϊ) in the group (2) belong to the same class as (j, ϊ).

To compare the index (j, ϊ + et — efc) and 0", ϊ) in the group (3), we notice
that

Hence

As αZΛ(a?, ε) ^F 0 implies /ίfcz

(<7~σfc^(0) = 0 as before, (j, I + fy — eΛ) and (^, ϊ) belong
to the same class.

Now our purpose is to determine the functions p# from (4.5) under the
assumption that

(4.6) Cjΐ(x, ε) = 0 if σ# = 0 or V
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As a first step, we put

(4.7) p$(x9 ε )ΞΞθ if σιi)>Q and V-^O) = 0,

and consider the equation (4.5) in which the index (j, ϊ) is such that

λχ(x, ε) = 0, i.e. σ# = 0, ^σ~σ^(0) = 0.

Then, as we have remarked above, the indices of undetermined p's in this
equation all belong to the same class. Therefore, every undetermined p$ in
this equation, we have

V^'ίO) = 0.

However, on account of the relation (4.7), such p$ for which σ$ > 0 are all
equal to zero. Hence, on both sides of the equation (4.5), only the p$ such
that λΰ)(x, ε) = 0 are present. Therefore the totality of such equations forms a
self-contained system, and the p^ such that

(4.8) Λyί(z, ε)ΞΞθ

can be determined by solving this system. Since (4.8) holds for this system,
we see (by dividing both sides of the equation by εσ) that such p# are holo-
morphic functions of (x, ε) in the domain (4.2)* where r*, #_t, θ+τ, δ* are to be
suitably chosen. Obviously they are asymptotically developpable in a form

33=0

Next we consider the index (j, ϊ) for which

σ# > 0 and *#<*-* &(G) = 0.

Since, in this case, we have put p# = 0, every p$ actually remaining in the

equation has the index (I, ty) for which

<r$ = 0, i.e. λ$(x, e) = 0.

As such pii) have been all determined in our first step, (4.5) is only an algebraic
equation from which we determine Cji(x, e) such that

<ry ϊ>0 and ^tc<r-^(0) = 0.

Combining this with (4.6), all c/ϊ(#, ε) have been now determined.
Finally, we have to consider the index (j, ϊ) for which

<ryϊ>0 and V-*Λ>(0) =SF 0.

Since, in this case, c^ = 0 and λjιίσ~σjV(0) % 0, the equation (4.5) is of the same
form with (3.7). Therefore, following the same reasoning as in section 3, we
can prove the existence of the formal solution

(4.9) ftι» Σ Pji™(x)ε*.
P=σft

Then, by Theorem 1, there exists a solution PJΪ(X, e) holomorphic in (x, ε) in
the domain (4.2)ι and asymptotically developpable in the form (4.9). Thus we
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have determined all p# and the proof is complete.

Proof of the Corollary. Let us put

yn+ί = 1, λn+ι(%, ε) = 0, /n+ι(α, y, ε) ΞΞ 0;

βn+i, *(&, ε) Ξ 0; 1 ̂  fc ̂  n + 1,

fy, n+ι(», ε) Ξ αX», ε); 1 ̂  y ̂  w

The equation (2.1) can be rewritten as follows:

dw- n+l

(4.10) εσU^=tj(xf ε)yj + eσ Σ αyΛ(α, β)y* +
αα? A=I

Without loss of generality, we may assume

By Theorem 2, a linear substitution with holomorphic coefficients
n+I

(4.11) yΛ = Zj + Σ Py*(»> ε) ^fe» j = 1, , w + 1,

can be so determined that (4.10) is reduced to

(4.12) εσ~^~ = λj(x, s)Zj + ε* Σ bjk(xf ε)zk + sσgj (x, zl9 , zn+ι ε)

where £/(#, z ί f •••, 2w+ι, ε) are holomorphic functions satisfying the same con-
dition as fj(x, yit , 2/n, ε).

Owing to the Theorem 3 just proved, we see that the system (4.12) can be
formally reduced to the system

(4.13) εσ~^- « λj(x, ε) u3 + εσ Σ bjk(x, ε) +
ax

by a formal transformation of the type

(4.14) Zj&Uj+ΣPJI(X, ε

Here .̂..̂ (̂α, ε)^0 implies <r/t>0 and ^ιcα"σ^(0) = 0. Thus the first nr

equations of (4.13) are satisfied by putting

Ui = ' = Un' = 0.

Then, since bjk(x, ε) = 0 for "̂ = %' +1, , n +1, remaining equations are
written as

(V p^ι/*n/+1.. .-»/*n+1

*w+ιV *'> cj U,n>+ι ton+l

Applying Theorem 3, if necessary, to this system, all of the coefficients of the
transformed equations can be reduced to zero. Hence, without loss of gene-
rality, we may assume that

c/o . o λ w r ^ i- 0 for j = n'+l, •• ,n + l,
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in (4.13).
Solving Zn+i from the last relation of (4.11) (where we put yn+ι = ϊ) and

substituting it into the remaining equations, we have

χ, £*k, 3 = , •••> n.

Therefore, substituting (4.14) into this, we have

(4.15) yj « uj + Σ ΦϊG*> * ) ̂ i"1 * wίS1-
Since

(4.16) ^ = ... = ̂  = 0, ttn+ι = £

is evidently a solution of a formally transformed system (4.13), we obtain a
formal solution of (4.10) substituting (4.16) into (4.15) which can be written in
the form

yy«ΣP/*)(»)e*f j = l, ,n.

Thus we have the required result.

5. Investigation of the reduced system. In this section, we shall prove
several lemmas concerning the reduced system (4.3) which will be of great
avail in proving our main theorem.

In section 2, we have supposed that

a 3 > 0, otherwise.

Here we add further assumptions:

0*1 = = σaι = 0*1*, CΓα1+l = — <T«2 = <T

> > σh* > 0,

/r ^ x ^Λ + l ~ ' " ' — <7ffA + l — ̂ Λ+
(5.1)

0 < σ* + 2 < <T* + 3 < < 0m.

This is clearly consistent with the assumption (2.7) we have hitherto used if
I ε is chosen sufficiently small.

For convenience' sake, we adopt a notation (4.3)y to signify the j-th equa-
tion of the system (4.3).

Now let us begin with the proof of the following

LEMMA 2. If we put

uk — 0, fc^tfy_ι + l, ••, av,

then the equations (4.3)^ 0"=^αry_ι + lf •••, av) are satisfied.

Proof. First consider the case av<n". Since the linear part of the
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system (4.3) is already in the reduced from, a,jk(x, ε) ̂  0 implies

<7,fc>0 and Va'^*'(0) = 0,

or, what is the same thing,

Therefore, if ajk(x, ε) ̂  0 for j %αr v_ι + l, •• , av, we must have &Φ<* y _ι + l,
•••, av, because, according to (5.1), we have

&k = <*v* ̂  0j (j*ratι>-ι + 1, , αrυ) if av-ι + 1 ̂  k ̂  av.

So we have ^ajk(x, ε)uk = 0 if j*?av-ι + l, •• 9aV9 and uk = 0 for fc=^αrv_ι + l,
• , av.

Next we shall show that Cji(x, ε) = cjkί...kn(x, ε) always vanish if j % av-ι -f- 1,
• , av and kh = 0 for h % αr v_ι + 1, , «rυ.

Indeed, for such index (^, ϊ),

λji(x, ε) = ^(a?, c) - 2 fc^ft(a?, ε).
ar v — !<*£«„

If '̂ ̂  αy-ι, we have <τ^ > ^r^ according to (5.1). Therefore

which shows that Cjt=Q. If aυ<j^n"—l, we have <jΊ<σh and σn = σv* for
αry_ι <h^av. Hence

unless Λα,,.! = = kav = 0. Then, from the assumption (2.7), we have

~τ for ^

If we notice that && are all positive integers, the above inequality assures
us that

= ~ Σ ft^A^

and hence e/ι = 0.
If fcβy_1+ι = =A;αy = 0, we have <rχ=σj and /^"-^(O) = /?/ίr"<'^(0) whence

we conclude either <r/ι = 0 or ^>0 and ^σ~σ^(0)^0. In any way, we also
have Cji = 0.

Proof of the case av^n" will be carried out quite similarly.
Thus the right-hand member of (4.3)/ vanishes identically for j ^ av.ι + 1,

• , av and our lemma is proved.

From this lemma, we see that, if we put uk = Q ( fe%α y _ι + l, •••, av), the
system (4.3) will be reduced to

or, especially when j = n'-\-'L, •• ,n"—l, to
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(5.3) €*^- = 0,
dx

where we used the following notation for simplicity's sake:

(af, • • • , tf") = G*v-ι + l, ••,«„), ϊ, = (0, - - ,0, fc«/, •••, fcα,,, 0, •••,()).

In order that c/iw(ic, ε) should not vanish, we must have

-^>(0) = 0.

According to the assumption (2.7), such arrangements (0, •••, 0, AV, •••, &«", 0,
• , 0) are only finite in number, whence we have

LEMMA 3. The left-hand members of the system (5.2)y are polynomials
in Ua', •••, ua" whose coefficients are functions of (x, e) holomorphic in the
domain (4.2)ιtf,

Moreover, we can prove

LEMMA 4. The intersection of the domains (4.2)^ is not empty.

Proof. It suffices to show that the conclusion of the lemma holds for
almost all (j, ϊy). First suppose that v ̂  h.

If j <af, we have

^/'-'MO) = V*
Hence, by (2.7), we have

If «:7 ̂  j ^ ̂ 7/, we have

^ΪV

C*-<W(0) = ̂ Cff-ff^- fcα^α'(ff"ffβ/)(0) ----- fcα'^α"(<r"αβ//)(

Therefore, if the integer ΛΓV is chosen sufficiently large, we have

1* Cff"^VCO)e"ίJ? τ
3t 3 v

 £σjtl
 } - <-γ<0 if Av + + AV'^ΛΓ y for

If a"<j^n",

W-°*S(0) = ~ karλ^ -' 'W) - - - - - fcα/^/'-^-^

and we have

j? * (σ-σJf VOV~ ίβ

^ .̂ J~<-Γ<° for argε=^o.

Finally, if n"<j we can easily see from (2.7) that

λ* <σ~σtfS(Q}e-ίΩ

a— - ,, <-τ<0 forε 3τv

Thus we have either
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' - * 0 r
> ~ > 'g fi,

or

for arg ε = θ0, if λv H ----- h AV/ ^ ΛΓV where JVΊ, is a sufficiently large positive
integer. Therefore, if we construct the donmain (4.2)ϊv by the same method
as was used in section 2, the intersection of ®(0_*y, U+τv, dtv), (ka'-\ ----- \-ka»
^Nv) is not empty and contains the direction argε = #0 Also the intersection
of the domains x\<rtv contains a certain neighborhood of the origin.

For if > h + 1, proof is similar, and for v = h + l, proof is utterly trivial.
From Lemma 4, we have

r,° = inf r lv > 0, #+y° = inf #+ϊj, > #0 > #-y° = sup 0_v

Now consider the lozenge E(p, φ, Ω) contained in the domain \x\<rv°, and
define a point xv* by

(5.4) xv* =

Let /L0

Cv) be the segment joining XQ and xv*. Then the variable point on
this segment is contained in the domain E(p, φ, Ω) and is expressed as

where s is the length of the segment from #y* to x, and ψ — arg (XQ — a?v*).
Let

Q Uj°, ε), j^a/, , ̂ r/,

be the holomorphic solution of the system (5.2)y such that

Uj = ̂ ° for a? = αJo,

(a5o> «) being an arbitrary point in the domain

(5.5) E(p, φ, Ω) X Φ(#_Λ #+Λ ίp°).

If, especially, (a', , <*") = (̂  + 1, , n" — 1), ̂  do not depend on x.
Then, from Theorem 3 and the lemmas just proved above, we have

LEMMA 5. There exist m systems of formal solutions (Fv), v=l, •••, m,
of (1.1)

•) ua' «' ua"
κ«", 3 = 1, , n,

where
A — fyt . . . fy"

t J — 6t , , c / t ,

. 0, otherwise,

coefficients Pjiv(x, ε) are functions of (x, s) holomorphic in the domain
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(5.6)y I x < ry°, ε e S)(#_y°, #+y°, <5y°),

and asymptotically developpable in the form

(5.7) #/*„(#, ε) ~ Σ, ί3

as ε^ O w ί/^e domain (5.6)υ.

Now we shall prove our final lemma.

LEMMA 6. // <τυ* > 0, the inequality

d

81

(5.8) mm

/or x on /Vυ) αm^ β e ®(^-υ°» ^+v°» <5y

0) where γ is a small positive number
determined in the same way as in section 2, and

1,(5.9)

do being a sufficiently small positive number.

k>

Proof. We give the proof for the case v > h + 1 only. Other cases will
be treated analogously.

Since the c^v(x, e) appearing in the right-hand member of (5.2)v are finite
in number, the inequality

(5.10) + Σ I ?, e)

will hold in the domain (5.6)y if δv° is chosen sufficiently small.
Moreover, we have

<f> - -f- + r ̂  arg /?/σ - ̂  (0) - J2 - σv * arg ε ̂  -
it

in the domain (5.6)y. Hence we have

- - - γ , j= a'

arg

which implies

Accordingly, if <V> and n° are sufficiently small,
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If we choose a point x° arbitrarily on /10

CV), there exists an index kQ

such that

Naturally k0 depends upon the choicee of 05°. The conditions

CkQτv(x, ε) ̂  ° and α*0*(^» *0 3= 0
respectively imply

(5.12) |tιβ,|*« ...... | t t a " l * « " ^ | t f c l and

at the point Λ Indeed, suppose that ck^v(xf ε) ̂  0. Then, as we already
know, we must have

or, from (5.9),

μ*Q = ka'μa' H ----

Thus we obtain

,̂. . .(I ̂ Q

^7- "(I Nα

which is the first inequality of (5.12).
The second inequality of (5.12) can be proved similarly.
Now the inequality (5.8) can be proved easily. Let s° be the length of the

segment xv*x°. Then

Γf{max uk\^}~\ =\~\u
\_as J5=5o \_ds

T -T- 1 **• Π = —[max I ̂  |^*afA log w* β l d β Js=5o yu^L \ds

max I

Making use of the equation (5.2)y, we have

Thus, from (5.10), (5.11) and (5.12),

/J^^ \ > 1 V-'* >(0) I sinr _ 1 4 Cg-^(0) I sinr

kQ dx e
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whence immediately follows the required inequality.

6. Main theorem. Now we are in a position to undertake the proof of
our main theorem which will by stated as follows:

THEOREM 4. In the expressions of the formal solutions (Fi), (Fh+i) and
(Fm), the formal power series in their right-hand members converge uniformly
in the domain

(6.1) I x \< r0, max uk \VP* < Co, ε e ®(00 - a, ΘQ + α, <50)

where rQ, Co, α αwd <5o are sufficiently small positive constants.
In other words, formal solutions (Fi), (FΛ+ι) and (Fm) represent actual

solutions of (1.1).

Proof of this theorem necessitates rather lengthy reasoning and we must
proceed step by step.

1) Preliminary transformation. To simplify our description, we make a
following convention:

(/3', •••, 0") denotes (1, •••, αι) or (nr + 1, , n" - 1) or (αro_ι + l, •••, n),
fy denotes the index (0, , 0, kβ,, , λ^//, 0, , 0).
Let us put

(6.2) Q/ Λff, u, β) = 3,%; + Σ £/*/»(»» *) ̂ /V uy,kβ", j = l, ,n,
kβ'Vβ' + +kβ'fμβ'f<N

where

1, otherwise.

Since Q^Ca?, w, ε) is a polynomial in ^/, •••, ^^// with holomorphic coefficients
and linie+o Q/Λ^ (0, 0, ε) = 0, we can find sufficiently small positive numbers TO'*
Cor, <V, jθ0' and ^o7 such that we have

I QJNP(x, u,έ)\+ pQ' < 'io' W < y ), j = 1, , n,

in the domain

\x\< r0', max | uk\
l/μk < Co', e

where Φ(^°_^, ^°+jS, 30

;) denotes

fl° <50 if (Qf ••• Rff} — (ίΎ ι-l-l ••• ΎI}
x „_; " + τft, i/ / iJ. \fJ , , P / — v^m-l ~ 1-, , 't'/,

and, moreover, the right-hand members of (1.1) are holomorphic in (x, y, e) in
the domain

I x \< r</, max | yk \< V, £ e ^(0°- ,̂ θQ

+β, 3Q').

Let us make a transformation
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(6.3) y, = QjNP(x, Uβ,(x, XQ, uβ,°, ε), - , Uβ»(x, x<>, uβ»°, ε), ε) + vj9 j = 1, , n,

and let

(6.4) 6*— .̂ = χ.(χ9 ε) Vj + εσ Σ α^(a?, e) vk + €ffflr/&, Uβ>, --, Uβ», vίt , vn, ε)
cίx

be the transformed system. Elementary calculation shows that

εσgj(x9 u, v, ε) = λj(x, ε)QjNP(x, u, ε) + εσΣfyk(&, «)Q*^(«» ^^ £)

+ fi'/X^ Q ,̂ u, ,) + v, ε) - ε«® -

= e /X*, Q^ + v, ε),

+ ε"

where 3/z mean the Kronecker's symbol.

Clearly, Glf G3, and G4 contain a factor βσ. Moreover, if we notice that
G2 can be rewritten as

, ε)

and that

we can also conclude that G2 contains a factor ε*. Hence QJ(X, u, v, ε) are
functions of (x, uβ,, , ^//, Vi, , vw, β) holomorphic in the domain

(6.5) lαK-ro', max | uk \ ̂  < Cor

On the other hand, the system (6.4) evidently admits a formal solution

(6.6) Vj « Σ pyϊ/ϊ(a?, έ)Uβ,
kv ZV^.

So we can easily see that the positive constants A3 and -B r̂ can be so chosen
that

(6.7) I Σ M»» *) ̂ ^ + ί/X»> ^» v> 8 ) l< ̂  max I v* I +^Λ- max |
k k=β'

Next we make a transformation
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J
x

λj(x, έ)e~σdx,
if*

where βX* is equal to

a?ι* when (β'9 - - , β") = (l, . ., Λl),

a?/ when (£', - , 0") = (n'+ 1, , n"- 1),

αm* when (β', •••, j9 / /) = (αrm_ι + l, •••, w).

Then the system (6.4) will be reduced to

) exp(-ΛΛα?, ε))
(6 8)

= hj(x, U, wexpΛ(x, ε), ε)exp(—

2) Family g and the mapping St. Let us choose the domains E(p, φ, Ω)
and ®(0o — α, ΘQ + α, o0) such that

E(p, < f , Ω ) d { x ' , \ x \ < r0

7}, ®(^o - α, ^o + α, 3o) c Φ^^, θ°,β, 3Q').

Let f? be the family of the systems (φ\(x, u, ε), , 0w(α?, ,̂ ε)) where
, ,̂ ε) are functions of (a;, ^/ , Uβ», ε) holomorphic in the domain

(6.9) a; e E(ρ, φ, Ω), max | uk l
1^* < Co, β e ®(0o - α,^o + α, δ0)

and satisfying the inequalities

(6.10) I φj(x, u, ε) I ̂ HΓtfinax uk\
N/r*exp(- 3tΛj(x, ε)), j = l, ,n,

where 0 < Co < Co' and 0 <KNζQ

N < p0'. Put

(611) f^o
+ 1 hj(x, U(x, XQ, u°, ε), φ(x, U(Xy XQ, w, ε) exp/ί(α;, ε), ε) exp(—Λj(x, ε))dx,

J βX

where (x0, Uβ^f , Uβ»°, ε) is an arbitrary point in the domain (6.9) and the
integration is to be carried out along the segment βX*xQ which will be hence-
forth denoted by βΓXQ. Then the mapping St is defined as follows:

(01, , φn) -^ (0ι, , φn)>

Since {0, , 0} e g, g is not empty. Further, as can be immediately seen, $
is convex, closed and normal. On the other hand, since, according to Lemma
6, maxl'ljg, \uk\

l/μ*> decreases monotonically as x tends to βx* on βΓXQ, the in-
tegrand

hj(x, U, φexpΛ, ε)exp(-Λj)

is bounded. Thus the integral in the right-hand member or (6.11) converges
and the mapping & has a well-defined meaning.

Our proof of the main theorem is based on the existence of a fixed point
of this mapping.

3) Two lemmas. Before going into the essential part of the proof, we
must state two lemmas. Suppose that
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1°. D and ® are simply connected domains in a complex plane;
2°. ©r is a simply connected domain in a product space of r complex

planes;
3°. /*(#, 2ι, , 3m, ε), ft = 1, , ra, are holomorphic in the domain

α eZ), (si, , zn) e ©TO, εe£>;

4°. #*;(#, 2/ι» •> 2/n, β), ft = 1, •••,%, are holomorphic in the domain

5°. φk(x, Zi, , zm, ε), ft = 1, , ft, are holomorphic in the domain

6°. #*;(#, #o, 2ι°, , 2m°, ε), ft = 1, , m, is a solution of the system

(A) ~^- = fk(χ9 Zί iZmiε), ft = l, •••, m,

such that «*°=i2;*(a?o, »oι «°, f) where (α0, 2;0. ε) eZ) x Φw x ®;
7°. GΛ(», a?0, «ι°, , ^m°, β) Ξ flrΛ(aj, φ^x, z°, ε), , 0n(», «°, β), «), ft = 1,
8°. The integral

(B) ψj(x0, af>, e) = { Gj(x, x0, 2°, ε)dx

converges where ΓJXQ is a curve joining #* on the boundary of D with α
and contained in D except the point #*;

9°. If x0' is sufficiently near to XQ, the relation

(C) φj(xQl z°, e) = ί GX«, α0, β°, ε)dx + Γ° Gy(α, a?0, 2°, e)d»
Jov Jv

ί
a;0 _

should be taken along the segment XQ'XQ.
XQ'

LEMMA 7. ψj(x, z ί f , «;m, ε), j = 1, , n, is α solution of the system

din
~-^~ = gj(χ, φί(xt z°, ε), , 0n(&, 2°, ε)), ^ = 1, , n,
dx

such that ψj(x*, z°, ε) = 0.

LEMMA 8. // the integral (B) converges uniformly with respect to Zj.°,
•• , zm° for each x0 and ε, then ψj(x, z, ε) is holomorphic in the domain
D x S)m x S>.

These lemmas were proved by one of the authors when the equalities (A),
(B), (C) do not depend upon ε; cf. [4]. Since the discussion goes essentially
the same way for our case, we omit the proof here.

4) Proof of the main theorem.

PROPOSITION 1. The mapping X transforms $ into itself. In short,
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Proof. For the proof, we must show

( a ) \fa(xQ, u°, ε) ^KNmax \ uk" Γ/^exp(- 9M/B0, ε)),
k=β'

and

( b ) φj(Xj u, ε) are holomorphic in the domain (6.9).

By (6.7), we have

I hjfa U, φ(x, U, ε) expΛ(α, ε), ε) | ̂  (AjKN + BN) max | Uk \
N/™.

k=β'
Therefore, to show that (a) holds, it suffices to prove

x*, U(βx*. a?0f u\ u), ε) I + Γ(AjKN+BN)m^ | U* r^expt-^Λ/α, ε))ds
(6.12)

exp(- 9U/α?o, ε)),

where s0 is the length of the segment βΓXQ. Since the above inequality is

trivial when SQ = 0, we have only to show that

(6.13)

| Uk |^*exp(- 9M/ίc, ε)) ̂  κΛ-\wai \ Uk |^*exp(- SR^Xa?, ε))Ί.

If (/9r, - . . , /9")%(rc'+l, ..., ̂ r/-l), we have, by Lemma 6,

^ {max Uk \
N'n exp(- ̂ (α?,

as (*=β'

= —-mΛj(x, ε) max | Uk |̂  +Λrmax | Uk I ^ m a x | Uk l
1^ exp(- WAj(x, ε))

L ds β=β' \ *=^ / ds k=y

= max I Uk \
N^[- ~3tAj(x, ε) + ,„ ^ - -^max | ί7, l1^ exp(-5R^(a?f ε))

^ max I Uk \»'r*\ - ~^Aj(x, ε) + ^ ° ,* min -̂  ^ exp(- 5R^(α?, -

where

σ* = [ tfι* if (#'> •• , / 9 / / ) = (l, -"^i),
I <rm* if 03r, , β") = (am-ι + 1, , n),

If <Jj ^ j8<τ*, we have

- , β) +ds ε β ° k=β> μk ~ ε / s σ *=^ ^fc

by taking Λf sufficiently large. If ^ > £<?*, we have either

j ̂  n', i.e. (/97. , £") - (αm-ι + 1, , n),

or

j ^n", i.e. 097, ••-, j97/) = (!,-• ,αι)

In these cases, βΓXQ coincides with ΓJXQ in Lemma 1. Hence, by Lemma 1,
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d en A f \ , AT sin r β" I V^^CO)!— —υtΛj(x, ε) +——~~ mm J ^̂ -L

μ/g-gj°(0)|Binr , AT sin r ^ IV'- ^ff)) . N sin y „£'- -f- - mm - > — — —
*

<>. --
~ 2\ε\σ* 4 \ ε \ β ° * k=β' μk

by taking N sufficiently large. Thus, in any way, (6.13) is implied by the
inequality

λ v , R <lr ΛΓsίnr ^ IV—*>(0)|
ΛjKN +nN ^ &N~ — : — r mιn --

5| ε\β°* *=r μk

which will be realized if KN and 1/50 are chosen so large that we have

— *>(()) IAj < —^ σ/ min

To examine the remainig case

we must notice that Uj does not depend upon x for j — n'+ 1, , n" — 1.
Since, recalling the discussions in section 4, the functions Pjΐβ(x, β), j = nf+l.,
-•-, n"—l, can be determined in such a way that they all vanish at x = βX*.
Therefore we can suppose that

Φj(βX*> U(βx*, XQ, u°, 8), 8) = 0, j = n' +1, - , n" -1.

Now, for ffj > 0, it follows from Lemma 1 that

exp(— ^RAj(x9 8)).

Thus (6.13) follows from the inequality

which can be realized if do is chosen sufficiently small. For <j3 — 0, (6.12) is
equivalent to

8Q(AjKN +BN) max | Uk \ N/^ ^ KN max | Uk \ N/^
k=β> k=β>

because Uk is independent of x. This can be easily verified by taking 2p(^s0)
so small that we have AjS0 < 1.

Thus we have proved (a).
In order to prove (b), we consider following correspondence:

1. the system (5.2)y to (A);

2. hj(x, u, w, e)ex$(—Λj(x, ε)) to Gj in 7°;

3. φj(x0, u\ ε) - φfox*, U(βx*, XQ, u\ ε), ε)) to ψj(x0, z\ e) in (B);

4. βΓXQ to ΓJXQ in (B).

The inequality (a) just established assures us the uniform convergence of the
integral
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#0* U\Xj XQ, u , £), φ\x, u(x, XQ, u , ε)Q'Kf)Λ{x, ε) ε), £)exp(—Λj\x, ε))dx
J β1 *o

which corresponds to

Gj(x, XQ, z°, ε)dx

in (B) by the above defined correspondence. Therefore the Lemma 8 can be
applied and we are immediately led to the condition (b).

Thus we have proved the Proposition 1.
Since, the integral in (6.11) being uniformly convergent, ^ is a continuous

mapping of % with respect to the topology of uniform convergence (in wide
sense), we can conclude, from Proposition 1, the existence of a fixed point of
the mapping %; namely the system (0ι, •••, φn) of f? such that

(01, ' ' ', Φn) = (01, ' ' ', Φn)

PROPOSITION 2. The system (φlr •••, φn) of f? corresponding to a fixed
point of % is a solution of the system (6.8).

Proof. To prove it, we have only to show that, for any (0ι, , φn) of g,
(0ι, , φn) is a solution of the system

—— = hj(x, U, φ exp A(x, ε), ε), j = 1, , n,
dx

which can be easily derived from Lemma 7.

Thus we have established that there exists, in the family f?, a solution of
(6.8). We shall denote it by ψjNP(x, U(x, a?0, M°, β), β).

PROPOSITION 3. ΓAe solution ψjN? of (6.8) s^c/^ ίftαί

, ε) = o max IC7,
\ *=£'

unique.

Proof. Assume the contrary, and let zjf j = l, •••, w, be the difference of
any two solutions. Then, evidently, the differential inequality

(6.14) 4^ ̂  A, max (| 2;̂  | exp(SRy4*(», β))) exp(- 3lΛj(x, ε))
ds

must hold. If we put

max l^max Uk\~N/^Q^^Aj(x, ε) \ =K> 0,

it follows from (6.14) that

I z, I ̂  (S°AjKmax \ Uk Γ^exp(- 9tΛj(x, ε))ds.
JO X;=β'

As we have already seen in the proof of the Proposition 1, we have
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j o

where

, (/9', - , 0") - (1, - , αι), (*„_! + 1, - - , n),
I
09', ".,0") = (*'+!, •••,*"-!), <r, >0,

Therefore, if we choose 30 and 2j0 so small that we have κ,3A3 < 1, we obtain
K < K which is a contradiction. Hence z = 0 and the unicity of the solution
is established.

Now consider the solution of the system (1.1):

SjΛx, U, e) = QίNβ(x9 U, e) + ψjNβ(x, U, ε)expΛj(xf e).

To complete the proof of the Theorem 4, it remains for us to show that the
solution SjNP is independent of N. Since

LQjN'β + ψjN'β exp^ - QJNn exp(-^ ), j = 1, - - , n, N'>N,

is a solution of (6.8) satisfying the condition of Proposition 3, it must be equal
to ΨJN& from the above established unicity. Therefore we have SJN^ = SJN^
which shows that SJN& is independent of N.

Thus we have completed the proof of our main theorem.

7. Concluding remark. We have thus proved the convergence of the
formal solutions (Fi), (FΛ+0 and (FTO). As we have seen, there exist another
formal solutions (Fv), v =^= 1, h + 1, m. As for these formal solutions, it is
doubtful whether they converge.

If all of a3 are equal to a and all of /ί/σ"σ^(0) (^0) lie on one side of the
straight line passing through the origin on the complex plane, we can construct
the general solution of the system (1.1) by Theorem 4. In this case, moreover,
it can be shown that we can dispense with the diagonalization of the terms
whose degrees with respect to ε are less than σ in the linear part of the second
member of (1.1). This has been already shown by Sibuya in his paper cited
before.

In conclusion, we wish to express our cordial thanks to Dr. Sibuya by
whose work this paper was greatly inspired.
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ERRATA

We profit this opportunity to correct some errors in Iwano's former paper
cited before.

Iwano [4], I, p. 276: The second member of (19.3) should be replaced by
the following expression:

f \ ?N \ v—i ι / \ I w jιy\vυt **/ Λ I
' ry φ\ ft /y \ % 1 J I /γ\ ty ) J n .,i 'JC, Z) — OjZj) — ^2j Λk(X) Zjc\ ^^ Ojk I

+ [xσhj(x, PN(X, z) + v)^\ •

dzk \9PJN(x, z)
Tσ + l_^ _ (γ\y — ^ V \ - > -/ ^Λ ^7/v. ^k\^)^k 11 OΛ ^j'A;αα; y \ ozk

Iwano [4], II, p. 99: The second member of (33.10 should be amended
as follows:

, «) - to) -Σ «. -
*=«'

, PN(x, z) + »)]

Γ yi Λσ+ι dzk . _ \ / 9P^(α?, «) . \ Ί
— 2j I # ~^ -- XftV^; ^A; I -- Γ -- O/A; .

L^=«Λ cία; J\ dzk /J

Iwano [4], II, p. 120: The linear differential equation (46.2) and (46.4)
should be replaced by

dP+1-- =

(46.2) 4-^0^(0?,^, •• ,Zβ//)>

and

(46.4) + Qw(x, x0, z\,, , «

ΦyΛ(«, «o» *V , «V) Ξ ^Λ(«, Za,(x,

respectively.
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Iwano [4], II, p. 122: The argument from 4-th to 12-th line should be
corrected as follows:

Cela pose, dans tous les cas, les fonctions Vjγ(x, x0, z°) (j = l, , r i ) se
determinent d'une seule maniere par les conditions F/p/(0, x0, 2°) = 0 de sorte
que les fonctions Vjy(x, z) = Vjy(x, x, z) soient holomorphes dans le domaine
(46.1) et representent les solutions des equations differentielles lineaires (46.4)
si Γon y remplace z par Z.

En effet, si on porte la solution formelle (45.1), oύ Γon pose z — Z, dans
les equations differentielles lineaires (46.2), on aura les equations differentielles
lineaires pour determiner les coefficients Pj^(x). On verra alors que les fonc-
tions PJW(X) sont determinees demaniere qu'elles soient holomorphes et develop-
pables asymptotiquement en les series (45.2) pour le domaines SD[<9%_, Θ*vμ+, γ~\.
Si, ensuite, on applique les raisonnements tout £ fait analogues aux ceux des
nos 33, 34, 35, 41 au systeme des equations differentielles lineaires (46.4), on
pourra demontrer Γexistence des fonctions Vjγ(x, x0, z°).

L'existence des fonctions Vjp(x, z) nous montre que les series (45.1) sont
uniformement convergentes pour les valeurs x, z telles qu'elles appartiennent
au domaine (46.1).
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