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§ 0. Introduction.

Suppose that, in an ^-dimensional Riemannian space Vn with positive
definite fundamental metric tensor βr/ίOy), there are given N — n (> 0) symmetric

tensors Hjix(ή) and —(N—ri)(N—n — 1) vectors Ljxy(^) — — Ljyx(rj), where Latin
Δ

indices h, ί, j, run over the range 1, 2, , n and α?, y, z over the range n+1,
n+2, ,N. Yano and Muto [4,5] have found necessary and sufficient con-
ditions for the Riemannian space Vn to be imbedded in an TV-dimensional Eu-

clidean space EN in such a way that p2gjit ρMjix (Mjix=Hjix — — gcbHcbxi\ n
and LjXy are respectively first, second and third conformal fundamental quan
titles of the imbedded subspace Vn, ρ(rf) being a certain scalar function of Vn.

Blum [1, 2] also studied conditions for the Riemannian space to be imbedded
in an TV-dimensional conformally Euclidean space in such a way that gjit Hjix

and Ljxy are respectively first, second and third fundamental quantities of the
imbedded subspace Vn.

The purpose of the present paper is to give a complete solution to Blum's
problem and to show that, if certain conditions are satisfied, a Riemannian
space Vn can be imbedded either in an TV-dimensional Euclidean space in such
a way that p^gμ, ρMjix and Ljxy are respectively first, second and third con-
formal fundamental quantities of the imbedded subspace or in an TV-dimen-
sional conformally Euclidean space in such a way that gjίf Hjίx and Ljxy

are respectively first, second and third fundamental quantities of the im-
bedded subspace.

§ 1. Preliminaries.

Let VN be an TV-dimensional Riemannian space of class Gω with positive
definite fundamental metric

(1.1) ds* =

where Greek indices κ,λ,μ, run over the range aίt α2, , aN. We denote
by

(1.2) ~

the Christoffel symbols formed with gμλ, gκa being the fundamental contra-
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variant tensor and θμ = d/dξμ. We denote by

(1.3) Pμv* = dμv
κ + l K \vλ

the covariant derivative of a contravariant vector vκ, and by

(1.4)

the Riemann-Christoffel curvature tensor of VN
We now consider an ^-dimensional subspace Vn of VN defined by

(1.5) e^/'OΛ?2, •• ,9n),

where the functions f*(τj) are supposed to be of class Cω and the matrix whose
elements are

B/ = 0iP (8i = 0/V)

is of rank n. The fundamental tensor of Vn is given by

(1.6) gji = BfBi*gμλ.

We choose N—n mutually orthogonal unit vectors Cx

κ which are orthogonal
to Vn and oriented in such a way that

\Bf,CΛ*\>Q.
Then we have

(1.7) BfCJgμι = 0, Cyt*Cx

λgμλ = dyX) \ Bf, Cx

κ \ = V? > 0,

where dyx is Kronecker's delta and β the determinant formed by <//;.
The Christoίfel symbols

(1.8) {̂ } - y A^ίβ^α + Θtgja - daQa)

of Fn are given by

where we have put

B\=BWgλf.

If we put Cxκ = Cx

λgλκj it is easily seen that two matrices

(5ΛCV) and (B*λ,Cxύ

are inverse to each other.
The van der Waerden-Bortolotti covariant derivative of Bί

κ is given by

(1.10) ΓjBf = θjBS + BfB

Equation (1.9) shows that PjBτ

κ are, as vectors in VN, orthogonal to Vn

and consequently we have equations of the form
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(1.11) {7jBS = HjίxCx

κ,

where Hjix are the second fundamental quantities of Vn. (1.11) are equations
of Gauss for Vn.

Differentiating BfCx

λgμχ = Q and Cy

μCx

λgμχ = dyx covariantly we find that
must be of the form

(1.12)

where H?x = Hjαxg
αι and Ljxy are the third fundamental quantities of Vn. (1.12)

are equations of Weingarten for Vn

Now, substituting (1.11) and (1.12) into the Ricci formula:

(1.13)

we find

(1.14)

+ CX

K(P7J£Hjia; — PjHjciX + HfoyLjxy ~ HjiyLkχy),

where Blμ£ is an abbreviation of Bk

vBfBiλ and Kkji

h the curvature tensor
of Vn.

Next substituting (1.11) and (1.12) into the Ricci formula:

(1.16)

we find

(1.16) 4- Cyκ(f7kLJxy - {7jLkxy + Hk

α

xHjαy - Hjα

xHkαy

where Bϊ^ =
When the enveloping space F r̂ is locally Euclidean, we choose a rectangular

ί Λ )
coordinate system in VN9 then we have | | — 0, Kvμf = 0. Thus equations

(1.11) and (1.12) become respectively

(1.17)

(1.18)

and equations (1.14) and (1.16) give

(1.19) Kvt = fl **

(1 20) 0 =

(1.21) 0 =

(1.22) 0 — FjcLjxy — FjLjcxy + Hk

α

χHjαy — Hj^xHkαy + LkxzLjyz — LjxzLkyz

(1.19) are equations of Gauss, (1.20) and (1.21), being equivalent, are equations
of Mainardi-Codazzi and (1.22) are equations of Ricci-Kϋhne.

Equations (1.17) and (1.18) may be regarded as a system of simultaneous
partial differential equations with unknown functions Bl

κ and Cx

κ and then
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equations (1.19), (1.20) and (1.22) are found to be complete integrability condi-
tions of this system of partial differential equations.

Since the condition

is automatically satisfied, from

we can find functions ξκ=fκ(y) with N additional arbitrary constants. More-
over, we can prove that if the conditions

Bj*Bi* = gji, B/ey = 0, C,W = ίy, and !BACy|=/fi

are satisfied as initial conditions for B^

κ and C/, then they are also satisfied
along the solution. Thus the functions ξ κ = f*(ή) define an ^-dimensional sub-
space Vn whose first, second and third fundamental quantities are respectively
gji9 Hjix and Ljxy Moreover, since a figure formed by Bf and C/ satisfying
above conditions at a point is congruent to another figure formed by B^κ and
C/ satisfying the same conditions at a different point, the subspace Vn9 is
completely determined up to a motion. This is what we call fundamental theorem
of the theory of subspaces.

What we are going to do in the present paper is to see what will happen
when we assume that the enveloping space VN is a conf ormally Euclidean space
CN.

§2. Subspaces in CN.

Suppose that our AΓ-dimensional space VN be a conformally Euclidean space
CN and choose a coordinate system such that the fundamental tensor gμχ has
the components

(2.1) gμι
where ρ(ξ) is a function of ξκ of class Cω.

In this case, the Christoff el symbols I κ , [ of CN take the form
[μ λ)

(2.2) k*J=^ϊ+M;-p%*
where

Pμ = dμp, ρκ = pιgλR.

Substituting (2.2) into (1.4), we find

(2.3) Kvμf = - Alpμλ + Aκ

μpvλ - pv

κgμλ

where

(2-4) pμλ = 7μpλ + pμpλ - — papagμλ, ρv

κ =
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Now we consider an ^-dimensional subspace Vn defined by ξκ = fK(q\ and
put

(2.5)

(2.6)

Then we have

(2.7) Pjσt = BfBiΦtfi + Hjίxσx,

(2.8) 7^ = BfBnyμf + Hj\σx,

(2.9) I7jσx = BfCxΨμpλ - H«xσa + Ljxyσy.

Substituting (2.3) into (1.14) and (1.16) we find

- Bh

κ(Kkji

h

— — Bh

κ(Hk x

- Bh*(Al<,JX - Ahjakx) = - Bh*(7kH,h

x - r,Hf, + Hk

h

vL}XV - H3\Lkxy)

respectively, where

(2.12) σμ = BfBiλρμλ = Fjστ - Hjίxσx + σ^ - ~ (gcb

(2.13) σjh = BfBh

κpμ

κ = 7^h - H,h

xσx + op* - ~ (gcb<τ

(2.14) <t,x = BfCx

λpμλ = Pj(Jχ+H3

a

xσa - Ljxyσy + σjσx

by virtue of the relations (2.7), (2.8) and (2.9).
From (2.10) and (2.11) we find

(2.15) Kkjί

h - (Hk

h

xHjίx - H3

h

xHklx) + Afaji - Afa* + σ f g j i - σ3

hgkl = 0,

(2.16) PjcHjix — PjHklX + HkiyLjxy — HjiyLkχy + O f

 kxQ ' ji ~ ffj^kl ~ 0,

(2.17) F*H/, - fyϊΛ + Hk\LJxy - H3

hvLkxy - (Afa, - AV*.) = 0,

(2.18) ϊ7kLJxy — PjLkxy + Hjca

xHjay — Hja

xHkay + LkxzLjyz — LjXZLkyz = 0.

Equations (2.16) and (2.17) are equivalent. If we put

(2.19) Pkji

h = Kkji

h - (Hk

h

xHjix - Hjh

xHkτx),

then (2.15) takes the form

(2.20) Pkji

h + Aϊσji - A^ σkz + σk

hgjt - σ3

hgkl = 0,

f row which

(2.21) <rjt = QJt,

where

and
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(2.23) Pji = Pa,ia and P = gjiPJi.

Substituting (2.21) into (2.20), we obtain

(2.24) jv + AM* - AhjQ^ + Qfffji - QfffK = o.
Equations (2.15) or (2.20) and the set of (2.21) and (2.24) are equivalent.
If we put

(2.25) Sjcjix = ί^kHjix — FjHjcix + HkiyLjxy — HjίyLkxy,

then (2.16) takes the form

(2.26) Skjίx + ffkxdji — tfjxQki = 0,

from which

(2.27) σjcx — -- — — Sjcχt

where

(2.28) Skx = Stjixg'i.

Substituting (2.27) into (2.26), we obtain

(2.29) Skjtx - ̂ j- (8*0 jt - S3Xgkί} = 0.

Equation (2.16) or (2.26) and the set of (2.27) and (2.29) are equivalent.

§3. Imbedding in a conformally Euclidean space.

We now consider the following problem: In an n-dimensinal Riemannian
space with fundamental metric tensor gμ(f]\ there are given N — n (>0) sym-

metric tensors HjiX(?j) and — (N — n)(N —n — l) vectors L3Xy(η) = — L3yx(η).
Δ

What are the conditions for the ^-dimensional Riemannian space to be imbedded
in an ΛΓ-dimensional conformally Euclidean space in such a way that the first,
second and third fundamental quantities are respectively gμ(ή), Hjix(η) and

In order to have such an imbedding, we must find functions ξκ(η),
and Cx

κ(ή) satisfying

BfBίgμι = gjt, BfCx

λguλ - 0, CfCJgμλ = dyx, \Bj*, Cx

λ\ = Vi

and

But first three equations contain the function p(ξ) evaluated on the sub-
space:

and the last two equations contain tf^PV and σx. In fact, the last three
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equations are written as

(3.1) da* = BS,

(3.2) 7,Bf = 9,Bt* + aβf

(3.3) 7jCx* = djCx* + σjCx

κ + <τxBjκ = - H*XBS + LJXVCy*,

where pκ has the form

ρκ = BSσ% + Cx

κσx.

On the other hand, we know that σ, σ^ and σx satisfy the equations

(3.4) Ftσ = σl9

(3.5) 7jfft — Hjίxσx + σjσ* — - (gcb<rc<Tb + (rxσx)gji = QJi9

(3.6) Pj<rΛ + fl /α?^
Ύυ

Thus equations (3.1), (3.2), (3.3), (3.4), (3.5) and (3.6) give a system of
partial differential equations with unknown function^ ξκ, Bτ

κ, C/, σ, <j% and σx.
We are now going to examine the integrability conditions of this system.

The integrability conditions of (3.1) are

but these are satisfied as we see from (3.2).
The integrability conditions of (3.2) are, as was shown in §2, given by

(2.21), (2.24), (2.27) and (2.29). The integrability conditions of (3.3) are given
by (2.27), (2.29) and (2.18). But, (2.21) and (2.27) are included in the system.

Thus to get the integrability conditions of the system, we have only to
study, in addition to the equations

(3.7) Pkji

h + AΪQji - AhjQkl + Q k

hgμ - Q/^ = 0,

(3.8) Skjίx - —^ (Skxgβ - Sjxgkί) - 0,
—

(3.9) PkLjxy — PjLicXy + Hjca

xHjay — Hja

xHkay + LkxzLjyz — LJXZLkyz = 0,

the integrability conditions of (3.5) and (3.6).
Equations (3.5) and (3.6) are respectively written as

(3.10) Pjfft = Qji + Hjixσx — σjσί + — (gcb(rcσb + e^gji,

(3.11) Pj<rx = - -—£ SJX - Hja

x<ra + Ljxyσy - σjσx.

To find the integrability conditions of (3.10), we substitute (3.10) into Ricci
formula:

then we find
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(Pk

h

kji

"* J
or

- Sjxgkί) LrΛ=0,
J

(3.12) PtQjt - (7jQkl - - - (SkxHjίx - SJXHklx) = 0

by virtue of (3.7) and (3.8).
To find the integrability conditions of (3.11), we substitute (3.11) in

formula:

rx =•- 0,
then we find

Ύl J.

— Skfx — _^ (SfaAj — SJXAk) σ^

+ Hk

aχHajy ~ H f χHa,ky + LkzyLjχZ ~

or

(3.13) -- ^- (FkSJX - ί7jSkχ 4- S*,L^ - SyyL^) - Hk

a

xQaj + H^Qα* - 0
Ύl JL

by virtue of (3.8) and (3.9).
Thus we have shown that the integrability conditions of the system of

partial differential equations (3.1), (3.2), (3.3), (3.4), (3.5) and (3.6) are given by
(3.7), (3.8), (3.9), (3.12) and (3.13) and consequently if these conditions are satis-
fied, the system is completely integrable and admits solutions £*=/Λθ7), Bz

κ(η),
C/0?), σ(y), σJΰ) and <rx(η).

We now show that there exists a function p(ξ) such that

where
To see this, we consider the equations

(3.14)

Since

frf

we can solve equations (3.14) with respect to if and zx and get

(3.15) 9' = ?*(€0, zx = zx(ξ)

in the neighborhood of zx = 0. If we consider (3.15) as a coordinate transfer-
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mation, then the original subspace can be represented by equations zx = 0 in
new coordinate system. Now put

(3.16)

then we have

Differentiating (3.16) with respect to rf and evaluating at zx = 0, we get

pι(fmBt* = σ>.

Next differentiating (3.16) with respect to zx and evaluating at zx = Q, we
get

Thus the function p(ξ) given by (3.16) is a required one.
We shall next show that, these solutions satisfy

(3.17) B/B^gμλ = g j ί f BfCJgμi = Q, C/Cx*gμλ=dyx,

whenever their initial conditions satisfy them. By a straightforward computa-
tion, we find

= Hkjy(C/Cx

λgμλ - 3yx) - Hk\(BfBiλgμλ - gjt) + Lkxy(BfCy

λgμλ\

μλ - δyx) = - H*\(BfCJgμϊ) + Lkyz(CsCx

λgμλ - dzx)

- Hk

%

x(CsBJgμλ) + Lkxz(Cy^Cz

λgμλ - 3yz).

These equations show that if we choose initial conditions in such a way
that (3.17) are satisfied at a fixed point of the space, then they are satisfied
along the solution. Thus we have proved:

THEOREM. Suppose that there are given, in an n-dimensional Riemannian
space Vn of class Cω with fundamental metric tensor g^), N—n (>0) sym-

metric tensors Hjix(η) and ^-(N- n)(N —n — ϊ) vectors Ljxy(y) = — L38X(η)t A
Δ

necessary and sufficient condition for Vn to be imbedded in an N-dimensional
conformally Euclidean space CN as a subspace with the first, second and
third fundamental quantities g^), Hjix(η) and Ljxy(η) respectively is that
they satisfy (3.7), (3.8), (3.9), (3.12) and (3.13).

§4. Other forms of integrability conditions.

We now introduce tensors

(4.1) Mjίx - Hjίx - - gcbHcbxgji
ιb

which are invariant under a conformal transformation of the enveloping space
and are called conformal second fundamental tensors [3]. It is known that
the third fundamental vectors Ljxy are also invariant under such a conformal
transformation.



62 KENTARO YANO AND RICHARD BLUM

If we denote the mean curvature by

TT — ncbTT•tlx — — 9 -H cbx,

equation (4.1) can be written as

(4.2) Hjίx = Mj

Substituting this into (2.19), we find

Pkji

h = Kkjί

h - (Mk

h

xMjix - Mjh

xMkl

(4.3) -Mk\gjiHx - AlMjixHx - Ah

k

from which

Pjt = KJt + M3\Mαιx -(n- 2)MjίxHx -(n-

and

P = K+ Mb

α

xMα\ - n(n - 1)HXHX,

by virtue of gjίMJίx = Of where K3i = Kαji
(l and K=gjίKji. Hence

ίλ A\ S\ T -"3 x M-ατx . -M-b x M-α xQjί •*.• TT \
(4.4) Qί( = Ljt -- ^-^- + 2(n_l)(n_

where

Jl n-2 ' 2(n-l)(n-2)'

Substituting (4.3) and (4.4) into (3.7), we find

(4.5) Ckji

h + AίMji - AhjMkl + Mk

hgjt - M3

hgkl = 0,

where

is the Weyl conformal curvature tensor and

Substituting next (4.2) into (2.25), we find

Skjix = ViMϋx - FjMklx + (PkHx)gji

+ MklyLjχy — MjiyLkxy + QkίHyLljXy ~

from which

(4.9) ί- Skx = --^r (FJIfΛ + MfyLasy) - (P*H* - LkxyHy).
ιb ~~~ J. Ύb J.

Substituting (4.8) and (4.9) into (3.8), we find

(4.10) PiMjix — PjMtox + MtoyLjxy — MμyLkXy + ΛffepflT/ί - Mjxgk% = 0,
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where

(4.11) Mkx = (PaMk

a

x + MfyLaxy).
n ~~~ JL

Substituting (4.2) into (3.9), we find

(4.12) PkLJxy - FjLkxy + Mk

a

xMjay - Mja

xMkay + LkxzLjyz - LjxzLkyz = 0.

Now, (4.4) and (4.9) may respectively be written as

(4.13) QJt = Ljt + Mjt + MjίxHx + -

and

(4.14) - — ί- Skx = Mkx - 7kHx + LkxyHy.
n — JL

Substituting (4.2), (4.13), and (4.14) into (3.12), we find

l + MkxMjίx - MJXMklx

klyLjxy - MjiyLkXy + Mkxgjt - MJxgki)Hx = 0

or

(4.15) PkLJt - PjLto + P*Mjι - PjM* + MkxMjix - MJXMklx = 0

by virtue of (4.10).
We substitute finally (4.2), (4.13) and (4.14) into (3.13) and find

PkMJX - FjMkx - Mk\Laj + Mja

xLak - Mk

a

xMaj + Mja

xMak +' MkyLjxy - MjyLkxy

+ (PkLJxy - PjMkxy + Mk

a

xMajy - Mja

xMaky + LkzyLjxz - LjzyLkxz) Hy = Q

or

j

+ MkyLjχy — MjyLkxy = 0

by virtue of (4.12).
Thus we have seen that the set of equations (3.7), (3.8), (3.9), (3.12) and

(3.13) is equivalent to the set of equations (4.5), (4.10), (4.12), (4.15) and (4.16).
But the set of equations (4.5), (4.10), (4.12), (4.15) and (4.16) is the condition
that an ^-dimensional Riemannian space with tensors gSi Mjίx and LJxy is im-
bedded in an JV-dimensional Euclidean space in such a way that pzffji, pMJix

and Ljxy are respectively the first, second and third fundamental quantities [4,5].
Thus we have

THEOREM. Suppose that there are given, in an n-dimensional Riemann-
ian space with fundamental tensor gjit N—n symmetric tensors Hjίx and

~(N—n)(N—n — l) vectors Ljxy = — Ljyx which satisfy the conditions (3.7),

(3.8), (3.9), (3.12) and (3.13) or the conditions (4.5), (4.10), (4.12), (4.15) and (4.16),
then the Riemannian space Vn can be imbedded either in an N-dimensional
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Euclidean space in such a way that p2gjt, pMjix = p( Hjίx — —gcbHcbxgji] and
\ n /

Ljxy are respectively first, second and third conformal fundamental quanti-
ties of the imbedded space, or in an N-dimensional conformally Euclidean
space in such a way that gjit Hjίx and Ljxy are respectively first, second and
third fundamental quantities of the imbedded space.

BIBLIOGRAPHY

[ 1 ] BLUM, R., The metric of a conformally euclidean space referred to a subspace.
Trans. Royal Soc. Canada, Third Ser., Sec. Ill, 49 (1955).

[ 2 ] , The fundamental equations of a Riemannian space imbedded in a confor-
mally euclidean space. To appear.

[ 3 ] YANO, K., Sur quelques proprietes conformes de Vι dans Fm dans Vn. Proc.
Imp. Acad. Tokyo 16 (1940), 83-86.

[ 4 ] YANO, K., AND Y. MUTO, Sur le theoreme fundamental dans la geometric con-
forme des sous-espaces riemanniens. Proc. Phys.-Math. Soc. Japan 24 (1942),
437-449.

[ 5 ] , Note sur le theoreme fundamental dans la geometric conforme des sous-
espaces riemanniens. Proc. Japan Acad. 12 (1946), 338-342.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY, AND

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SASKATCHEWAN, SASKATOON, CANADA.




