ON IMBEDDING OF A RIEMANNIAN SPACE IN A CONFORMALLY
EUCLIDEAN SPACE

By KENTARO YANO AND RICHARD BLUM

§0. Introduction.

Suppose that, in an n-dimensional Riemannian space V, with positive
definite fundamental metric tensor g;:(y), there are given N — n (> 0) symmetric

tensors H;:.(7) and -;—(N — n)(N —n —1) vectors L, () =— L,,.(1), where Latin

indices h, %, J,--- run over the range 1,2,---, 7 and z, ¥, 2 over the range n+1,
n+2,---, N. Yano and Muto [4, 5] have found necessary and sufficient con-
ditions for the Riemannian space V., to be imbedded in an N-dimensional Eu-
clidean space Ey in such a way that p%g;, oM, <Mm=Hm -—%g””chz gﬁ)
and L;,, are respectively first, second and third conformal fundamental quan
tities of the imbedded subspace V,, p(7) being a certain scalar function of V.

Blum [1, 2] also studied conditions for the Riemannian space to be imbedded
in an N-dimensional conformally Euclidean space in such a way that g, Hj:.
and L,,, are respectively first, second and third fundamental quantities of the
imbedded subspace V..

The purpose of the present paper is to give a complete solution to Blum’s
problem and to show that, if certain conditions are satisfied, a Riemannian
space V, can be imbedded either in an N-dimensional Euclidean space in such
a way that p%g;;, pM;, and L,,, are respectively first, second and third con-
formal fundamental quantities of the imbedded subspace or in an N-dimen-
sional conformally Euclidean space in such a way that g¢;, Hj;i, and L,
are respectively first, second and third fundamental quantities of the im-
bedded subspace.

§1. Preliminaries.

Let Vy be an N-dimensional Riemannian space of class C® with positive
definite fundamental metric

1.1 ds? = g,(6)dErdEr,
where Greek indices «, 4, g,--+ run over the range ai, as,--+,ay. We denote
by
K 1
(1.2) {# l} = o gm'(a‘ugm + 619/1:( - aagpi)

the Christoffel symbols formed with g,; g*® being the fundamental contra-
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variant tensor and 0,=0/06*. We denote by
K
1.3 Vvt =0,0" 4 {/u 2} L

the covariant derivative of a contravariant vector v*, and by

(L.4) O P E A B A | A s PO L

the Riemann-Christoffel curvature tensor of Vy.
We now consider an n-dimensional subspace V, of Vy defined by

(1.5) E’c = f’c(ﬁly ‘021 Y U"),
where the functions f*(y) are supposed to be of class C* and the matrix whose
elements are

B, =0£" (0:=0/7)
is of rank n. The fundamental tensor of V, is given by
1.6) 9j: = B#Big ..

We choose N —» mutually orthogonal unit vectors C.* which are orthogonal
to V, and oriented in such a way that

| B, C,*| > 0.
Then we have

1.7 Bjycxxgyl =0, Cypcrzg,ul = Byz, | B.*, Cf| = N/E> 0,

where §,, is Kronecker’s delta and g the determinant formed by g:.
The Christoffel symbols

h 1
(1.8) {j ’i} = Eh”“(@;gia + 0:9,0 — 0292)
of V., are given by
h Y _ on o« .
(1.9) {j z.}_B x<Bj#Bi {ﬂ 2}+aj31 >

where we have put
Bhr.':Bilgihglt-
If we put C,.=C,%g;,, it is easily seen that two matrices
(B, C;*) and (B%, Cy)

are inverse to each other.
The van der Waerden-Bortolotti covariant derivative of B.* is given by

(1.10) VB =0,Bs + Bj#Bil{ « } - B,f{ R } :
© A Jj1
Equation (1.9) shows that /7;B,* are, as vectors in Vy, orthogonal to V.,
and consequently we have equations of the form
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(1.11) VszE = Hjix 2"y

where Hj;, are the second fundamental quantities of V,. (1.11) are equations
of Gauss for V,.

Differentiating B;#C.*g,a=0 and C/C.*g., =0y, covariantly we find that
V,C;* must be of the form
1.12) ViCyt=—H;":B,* + L,,C/,

where H,', = H,,,9*" and L,,, are the third fundamental quantities of V,. (1.12)
are equations of Weingarten for V.

Now, substituting (1.11) and (1.12) into the Ricei formula:
(1.13) V7 ;B — VB = By K, i — Ba"Kiji,
we find
(1.14) B%#{QK,,/;,{‘ - anKkjih = Bh‘(Hkthjzz - ]h.rchw)

+ sz(VkHjiz - VjHIcu: + Hkmijxy - HjiyLlczy)y

where B%#? is an abbreviation of By’B;*B/ and K;" the curvature tensor

of V.
Next substituting (1.11) and (1.12) into the Ricei formula:

(1.15) V7 iCof — Vil7hCof = BYHCAK, i,
we find

Bi#4CA K, = — By (Vi H," s — VHy" s + Hi"*y L joy — H,"y Lizy)
(1.16) + Cf (Vi Liyoy — ViLigay + Hi®sHjyay — H,* s Hyay

+ Lkach]yz - L]zszyz)
where Bi# = BB
When the enveloping space Vy is locally Euclidean, we choose a rectangular

coordinate system in Vy, then we have {p’cz} =0, K,,;=0. Thus equations
(1.11) and (1.12) become respectively

(1.17) V;B.f = 0;B.,* — B,* {jh 7;} = H;;,C.*,
(1.18) V,Cf =0,C*=— H,*.By* + L,,,C,F,
and equations (1.14) and (1.16) give

(1.19) K" = H"»Hjiz — H,"  Hpoo,

(1.20) 0="VHjix — ViHgo+ HiyL,oy — Hjiy Ly,
(1.21) 0="H, s — V;Hy"s + Hi"y Loy — H)"y Liay,

(1022) 0= VkL]xy - Vijxy + HkawH]ay - H]aszay + kazL]yz - Lj:chkyz-

(1.19) are equations of Gauss, (1.20) and (1.21), being equivalent, are equations
of Mainardi-Codazzi and (1.22) are equations of Riceci-Kithne.

Equations (1.17) and (1.18) may be regarded as a system of simultaneous
partial differential equations with unknown functions B, and C.,* and then
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equations (1.19), (1.20) and (1.22) are found to be complete integrability condi-
tions of this system of partial differential equations.
Since the condition

6 jB i'c = azB ]"
is automatically satisfied, from
0,6° =B/,

we can find functions &= f*(y) with N additional arbitrary constants. More-
over, we can prove that if the conditions

B#B2=g;, BpCA=0, CAC*=0d,, and |B# ChAl=47¢

are satisfied as initial conditions for B, and C.*, then they are also satisfied
along the solution. Thus the functions & = f*(y) define an n-dimensional sub-
space V, whose first, second and third fundamental quantities are respectively
9ji, Hjz and L,,. Moreover, since a figure formed by B, and C,* satisfying
above conditions at a point is congruent to another figure formed by B, and
C,* satisfying the same conditions at a different point, the subspace V,, is
completely determined up to a motion. This is what we call fundamental theorem
of the theory of subspaces.

What we are going to do in the present paper is to see what will happen
when we assume that the enveloping space Vi is a conformally Euclidean space
Cy.

§2. Subspaces in Cy.

Suppose that our N-dimensional space Vy be a conformally Euclidean space
Cy and choose a coordinate system such that the fundamental tensor g,; has
the components

(2.1) Gur= ezr (5)5;:1;
where p(€) is a function of & of class Ce.
In this case, the Christoffel symbols {: 1} of Cy take the form

(2.2) {: 2} = A5+ 0245 — 0,
where

Pu=0u0, p"= p2g%.
Substituting (2.2) into (1.4), we find

(2-3) Ku,ul‘ = A:P/IX + A:/Ovl - Pv”g,ul + P,u‘gvly
where

1
(2.4) 2 =Vu0at Pua— 5 P Pabury 0F = Poug""
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Now we consider an n-dimensional subspace V, defined by & = f*(7), and
put

(2.5) o(7) = p(f (),

(2.6) a.=Vi0 =B, &.=CH0.
Then we have

@.n Vio,= Bi#*Byp; + Hjiz0z,

(2.8) Vo™ = B#B"V,0° + H," 204,

2.9) Vioe= B#CV 0, — H)304 + Ljayoy.

Substituting (2.8) into (1.14) and (1.16) we find
— Bp* (K" + Aloji— Aoy, + 0191 — 0" 9r) — Co (0429 7o — 0 ,2912)

= BhK(HIcthjiz - H]thkw) ‘I‘ Cz'c(VkHjix - VJHkL.t+szyL]xy - HjiyLlc:ty)y
- th(A’IzO']x - Ar;dkx) = BhK(VkHJhx - Vjchhz + HkhyLJ.zy — H]hykay)
+ ny(VIch.z‘y - Vij:cy 'I' HkaxHjay - H]akaay + Llca:zLJyz - L]zszyz)

respectively, where

(2.10)

(2.11)

(2.12) gji = BjFBiZ‘O,,z = Vjo'; — Hjixo’x -+ 00y — é‘ (g“a‘cab—ko'zdx)gji,
(2.13) o," = B#B" .0,  =V;6" — H"30,+ 00" — —;— (9°%a.0 + 0,0) A",
(2.14) Oz = Bj#CxZpr = Vj(fx‘I'H]axO'u - L]vady + 005

by virtue of the relations (2.7), (2.8) and (2.9).
From (2.10) and (2.11) we find
(2.15) Ky — (He"sHjio — H)" s Hiww) + Ao ji — Aon + 095 — 0,95 = 0,
(2.16) ViHjioe — ViHpz + HiayLyoy — HjiyLigay 4 0529 s — 63295 = 0,
(2-17) VkH;hz - Vijhx + Hkhijzy - HjhzlLlcxzj - (A%U;x - A’?O'k:c) = 0,
(2.18) ViLiyoy —ViLiay + Hy*2H,yoy — H,*sHyay + LizoLiyys — LjzaLiy, = 0.
Equations (2.16) and (2.17) are equivalent. If we put

(2.19) Py = Kyl — (H"2Hjiz — H s Hiuo),
then (2.15) takes the form

(2.20) Py + Aloji — Alow + 0695 — 0,91 = 0,
frow which

(2.21) ;= Qi

where

(2.22) Qu=—-Fr_, __ Pos

n—2  2(n—1)(n—2)

and
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(2.28) P;;=P,;* and P=g"Pj.
Substituting (2.21) into (2.20), we obtain
(2.24) P+ AlQji — A"Qu + Q95 — Q9. = 0.

Equations (2.15) or (2.20) and the set of (2.21) and (2.24) are equivalent.
If we put

(2.25) Stjiz = ViHjiz — ViHz + HiyLjoy — HjiyLiay,
then (2.16) takes the form
(2.26) Skjiz + Okel i — 01208 =0,
from which
(2.27) Okz =— 1 Sk,
n—1
where
(2.28) Siz = Skjizg’".

Substituting (2.27) into (2.26), we obtain
1
(2.29) Sejiz = 7 (Skxs1 = S,a0u) = 0.
Equation (2.16) or (2.26) and the set of (2.27) and (2.29) are equivalent.

§3. Imbedding in a conformally Euclidean space.

We now consider the following problem: In an w-dimensinal Riemannian
space with fundamental metric tensor g;:(7), there are given N—mn (> 0) sym-

metric tensors Hj.,(7) and % (N—n)N—n—1) vectors L,:(#)=— L,y(1).

What are the conditions for the n-dimensional Riemannian space to be imbedded
in an N-dimensional conformally Euclidean space in such a way that the first,
second and third fundamental quantities are respectively g¢;:(7), Hj(7) and
L/zy@)?

In order to have such an imbedding, we must find functions £%(9), B:*())
and C,*(y) satisfying

BjIlBilgyl = gjiy Bj‘uC.tlgul = 0, Cy‘uC.z:lgyl = 61/.?1 Iley szl = JE
and
0:&5=B*, ;B*=H;;,C,r, V;Cof=—H;:B.,*+L,C,".

But first three equations contain the function p(§) evaluated on the sub-

space:

p(EM) = o),
and the last two equations contain ¢,=/i6 and o,. In fact, the last three
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equations are written as

3.1) 0:5° = B/,
(32) VjB;'C = O/Bf + U'jBix + O'iBf - P”gji — B)* {Jh ’L} =Hjiszx;
(33) Vij'c = ajCzlc + O'ij'c + O':pr =— sza:Bzx + L]xy I

where p* has the form
0f = Bf¢* + C;fo.

On the other hand, we know that o, ¢, and o, satisfy the equations

3.4) Vig =,
1
(8.5) Vio,— Hjizoz+ 0,0, — ?(g“’am + 040295 = Qjis
1
(3.6) V;o‘m—l-Hfr_o'z—-ijyo'y-l—o'jaz:— HSM.

Thus equations (3.1), (8.2), (3.3), (8.4), (8.5) and (3.6) give a system of
partial differential equations with unknown function$ &%, B, C.%, g, . and o,.
We are now going to examine the integrability conditions of this system.

The integrability conditions of (8.1) are

a_/Bi” = 07;3/‘7,

but these are satisfied as we see from (3.2).

The integrability conditions of (8.2) are, as was shown in §2, given by
(2.21), (2.24), (2.27) and (2.29). The integrability conditions of (8.83) are given
by (2.27), (2.29) and (2.18). But, (2.21) and (2.27) are included in the system.

Thus to get the integrability conditions of the system, we have only to
study, in addition to the equations

3.7 P+ AiQy — A%Qr +Q4"9,: — Q," 91, = 0,
1
3.8) Skjiz — m‘(skzgji — S)29%:) =0,

(39) Vija:y - Vij:cy + Hka:cH]ay - Jakaay + kazL]yz - ijlecyz = 01

the integrability conditions of (8.5) and (8.6).
Equations (8.5) and (3.6) are respectively written as

(8.10) Vio.= Qji + Hjizo5 — 00, + ’%‘ (9005 + 0202)0 iy

1
(3.11) 17;'0';0 = n— S]x —_ H]azda, + L]zyo'y — 0;0z.

—1
To find the integrability conditions of (3.10), we substitute (3.10) into Ricci
formula:

VijO'q, - 7j7k0'z = Kkjiho'hy
then we find
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1
ViQji — ViQu: — i (StaHjiz — S)oHiz) + (Prji" + AkQji — A"Qx,

1
+ Qkhgji - thgkt)o'h + l:Skjix - m‘ (Sk.rgji - ij gki):l 0.=0,
or

1
(3.12) Viji - Vijz - 'm (Skz:H;zx - S]kaw) = 0

by virtue of (8.7) and (3.8).
To find the integrability conditions of (8.11), we substitute (3.11) in
formula:

Vijd,@—Vijax=Oy
then we find

1
n—1
1 A
_ [Sk;x - L (S,MA;.—SMA,@)] o
+ (Vijxy - Vlecxy + HkaxHa]y - JaxHaky + LkzyLsz - szykaz)O'y = 0

(Vkij - Vjskz + SkyL]zy - SgyLlcxy) - Hka'an] + H]aank

or
1
(3~13) - m (VkSJx - Vjslcx + SkyL]zy - Sijkxy) - chaanj + H]a:cQak - 0

by virtue of (3.8) and (3.9).

Thus we have shown that the integrability conditions of the system of
partial differential equations (3.1), (8.2), (8.8), (8.4), (8.5) and (8.6) are given by
(8.7, (3.8), (3.9), (3.12) and (3.13) and consequently if these conditions are satis-
fied, the system is completely integrable and admits solutions &= f*(y), B. (),
Cr(m), o), o.%) and ou(9).

We now show that there exists a function o(§) such that

o(f) =0, p(f)B*=0, pA(fD)CH=02

where p;(€) = 0;0(5).
To see this, we consider the equations
(8.14) & = (1) + 2°C*(7).
Since
o0& _ofr . ,0Ck o

or ~or V¥ o o O

08" 0§ | _\peos— o

0772 ’ 02* z=0_ lB’f ’C‘t l“ﬂ/Q?ﬁO,
we can solve equations (38.14) with respect to 7* and 2° and get
(8.15) 7T =748, #"=2%§)

in the neighborhood of 2°=0. If we consider (8.15) as a coordinate transfor-
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mation, then the original subspace can be represented by equations z”=0 in
new coordinate system. Now put
(3.16) 0o(€) = a(7(8)) + 2°(§)a(7(%)),
then we have
Lo(€) ]z = o(f (D)) = o(7).
Differentiating (3.16) with respect to 7* and evaluating at 2* =0, we get
pi(f() B = a,.
Next differentiating (8.16) with respect to z* and evaluating at z* =0, we

get
(S )C = 0.(1).

Thus the function p(&) given by (8.16) is a required one.
We shall next show that, these solutions satisfy
(3.17) B#Bi*gu=gji, Bi#Ci'9u=0, CyfCi?gu1=0ys
whenever their initial conditions satisfy them. By a straightforward computa-
tion, we find
Vi(B#Bi*guz — 951) = Hiyol Co*Bi*9 2) + Hino Bi#Co*g 1),
V(B #Ci*gu2) = Hiyy(CyfCotgpa — 0ya) — Hi o B#Bi*gui — 951) + Liay(Bi#Cy*g ),
Vi(Cy#Ca?gpz — 0yz) = — Hi'y(Bi#Co?gu2) + Lirye Co*Ca? @z — 020)
— Hy'(Cy*B*gu2) + Lo C#C G0 — 0y2).
These equations show that if we choose initial conditions in such a way

that (8.17) are satisfied at a fixed point of the space, then they are satisfied
along the solution. Thus we have proved:

THEOREM. Suppose that there are given, in an n-dimensional Riemannian
space V, of class C® with fundamental metric tensor g;;(49), N—mn (>0) sym-

metric tensors Hyi,(7) and —;— (N—n)N—n—1) vectors L, (7)=—L,.n). A

necessary and sufficient condition for V, to be imbedded in an N-dimensional
conformally Euclidean space Cy as a subspace with the first, second and
third fundamental quantities ¢;(7), H;(7) and L,(7) respectively is that
they satisfy (3.7), (8.8), (3.9), (8.12) and (3.13).

§4. Other forms of integrability conditions.
We now introduce tensors

1
4.1) Mjip=Hjiz — " 9 Hena9 i

which are invariant under a conformal transformation of the enveloping space
and are called conformal second fundamental tensors [3]. It is known that
the third fundamental vectors L,,, are also invariant under such a conformal
transformation.
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If we denote the mean curvature by

—_ 1 ch
Hx— ’ﬂ/g chzy

equation (4.1) can be written as
4.2) Hjio=Mjir+ 9;:Ho.
Substituting this into (2.19), we find
ijih = Kkjih - (Mkthiiz - M]thkw)
(4.3) _Mkhzgjin — A% ji.er — A%gﬁHsz
+ M .91 H, + A My H, + A"91:HoHy,

from which

Py = Kji + M,*s Moo — (0 — 2)Mji Hy — (0 — 1)g;:Ho Ho
and

P= K+ M, M.", — n(n — 1) H.H,

by virtue of ¢/M;, =0, where K;; = K,;* and K= g”’K;;. Hence

@t Query- My MWL M+ uBLH
where
Lje=~— nIi 2 " om —Ig&—z) '
Substituting (4.8) and (4.4) into (8.7), we find
(4.5) Cui* + ALM;; — ANM,, + Mg, — My g, =0,
where
(4.6) Ciji"* = Kiji"* + At Lji — A" Ly, + Li*9js — Li"gna

is the Weyl conformal curvature tensor and

MaxMaw + MbaxMa,bxgji
n—2 2n—1)(n—2)°

Substituting next (4.2) into (2.25), we find
+ Mkzijzy - ]u-jiyLk:ty + gkiHijxy - gjiHykay’

CN)) M=~

(4.8)

from which

1 1
B

Substituting (4.8) and (4.9) into (8.8), we find
(410) VkM]z:c - VJMIcz:c + Mm'ijxy - MyzyLchy + kagji - M;xgkz = O,

4.9

(VaMkax + MkayLaxy) - (VkH.r - Lka:yHy)-
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where
@.11) Moo= 2 s Cubit M, Loy,
Substituting (4.2) into (8.9), we find

(4.12)  PLjay — VjLiay + Mi®Myay — M*sMiay + Loz Ljys — LijzsLiy. = 0.
Now, (4.4) and (4.9) may respectively be written as

1
(4.18) Qji = Lji + My + My H + 9 95 H.H;
and
(4.14) - 1 Sz = My — Vi H: + kayHy-

n—1

Substituting (4.2), (4.18), and (4.14) into (8.12), we find

ViLjs — VL + VM — Vi My, + MyoMjiw — MyoMio
+ (TeMjiy — ViMys + MioyLijwy — MysyLigay + Mie9is — Myogi:)Hy = 0

or
(4.15) ViLjs — V3L + Vi — V; My, + MioMjjsw — MyoMye =0
by virtue of (4.10).

We substitute finally (4.2), (4.13) and (4.14) into (8.13) and find

ViMys — VjMyz — Mi®sLa; + M,%s Lo — My®sMa; + M,%Mi + Miy Lyjzy — Myy Ly
+ TiLijoy — ViMyoy + My sMayy — My*sMogy + LiayLijz: — LjayLizs) Hy =0

or
(4.16) ViM,z ~ ViMyz — My*sLay + M,*s Lor, — Mi* My, + M;* oMo
+ MiyLjoy — Myy Loy =0

by virtue of (4.12).

Thus we have seen that the set of equations (8.7), (8.8), (8.9), (3.12) and
(8.18) is equivalent to the set of equations (4.5), (4.10), (4.12), (4.15) and (4.16).
But the set of equations (4.5), (4.10), (4.12), (4.15) and (4.16) is the condition
that an n-dimensional Riemannian space with tensors g;; M, and L, is im-
bedded in an N-dimensional Euclidean space in such a way that p%g;:, oM
and L;,, are respectively the first, second and third fundamental quantities [4,5].
Thus we have

THEOREM. Suppose that there are given, in an n-dimensional Riemann-
ian space with fundamental tensor g;;, N—m symmetric tensors Hj, and

—;— (N —n)(N—mn—1) vectors Lj,y=— Lj,, which satisfy the conditions (3.7),

(3.8), (3.9), (8.12) and (8.18) or the conditions (4.5), (4.10), (4.12), (4.15) and (4.16),
then the Riemannian space V, can be imbedded either in an N-dimensional
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Euclidean space in such o way that p?g;, PMjix=P<Hjix— %g“megﬁ) and

L;,, are respectively first, second and third conformal fundamental quanti-
ties of the imbedded space, or in an N-dimenstonal conformally Euclidean
space in such a way that g;;, Hj, and Lj,, are respectively first, second and
third fundamental quantities of the imbedded space.
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