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§ 1. Introduction

The problem to map conformally a multiply-connected planar domain onto
one of various canonical domains has been discussed by several authors.

In the present paper we will discuss a problem to map conformally a finite
Riemaπn surface each boundary component of which is a continuum onto a
certain canonical covering surface. With respect to this problem Ahlfors has
shown that a finite Riemann surface each boundary component of which is a
continuum can be mapped conformally onto a many-sheeted disk and further
has discussed a certain extremal problem for these mapping functions (cf. [2]).
Kusunoki has discussed the mapping of such a Riemann surface onto a covering
surface cut along parallel slits as an application of the theory of Abelian
integrals (cf. [5]).

We concerned ourselves in [7] with the problem to map conformally a planar
domain onto a covering surface of annular type cut along concentric circular
slits by a certain extremal method. Further in [8] we concerned ourselves with
the similar problem in the case where the image covering surface is of the
circular type. It seems, however, to me that the problem constructing such a
canonical mapping function is more significant when the basic set is a Riemann
surface. In the present paper we shall concern ourselves with the problem to
map conformally a finite Riemann surface each boundary component of which
is a continuum onto such a canonical covering surface.

First we shall prove by a rather elementary method that a finite Riemann
surface each boundary component of which is a continuum can be mapped
conformally onto a many-sheeted disk (§3, 1). This fact is known as the
Bieberbach-Grunsky's theorem when the basic domain is planar and has been
discussed in detail by Ahlfors. Next we shall concern ourselves with the
problem to map conformally a finite Riemann surface onto a covering surface
of annular type cut along concentric circular slits and shall show that for the
finite Riemann surface of non-vanishing genus there does not exist necessarily
a covering surface of annular type cut along concentric circular slits onto
which the other is conformally mapped (§3, 2). This is remarkably different
from the fact that when the basic domain is planar it can always be mapped
conformally onto such a canonical covering surface preassigning arbitrarily the
rotation number of the image of each boundary component about the origin
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(cf. [7]). Finally we shall concern ourselves with the case of circular type and
shall show that a finite Riemann surface can be mapped conformally onto a
covering surface of circular type cut along concentric circular slits so that the
radius of the image (a circle or a circular slit) of each boundary component
takes an arbitrarily preassigned value (§3, 3).

§ 2. Preliminaries

1. Let R be a finite Riemann surface each boundary component of which
is a continuum. It is always possible to show that such a Riemann surface R
is embedded conformally in a compact Riemann surface so that each boundary
component of the former constitutes of a simple closed analytic curve on the
latter. Thus we may assume that R is so taken in advance. We assume that
the genus of R is g and its boundary a consists of r simple closed analytic
curves alt , ar (r ̂  1). Let ar+ι, , &N (N = r + 20) be a canonical homology
basis of R such that ar+zj-ι and ar+2j (j=l, •••, g) are conjugate each other.

2. Canonical basis of normalized harmonic differentials. Let ω3 (j = 1,
• , r) be the harmonic measure of the boundary component a3 with respect
to R, respectively.

Let (Oj (j = r -f 1, , N) be a normalized potential of the first kind uniquely
determined by the following conditions, respectively:

( i ) o)j is one-valued and harmonic on R cut along a3\
(ii) o)j has a jump of the value 1 through a3\
(iii) ω3 = 0 on a.

We call the system of the differentials dωlt •••, dωN that are constructed
by this procedure a canonical basis of normalized harmonic differentials.

3. Let F be a covering surface over the unit disk which covers each point
of the unit disk exactly n times. Then we call F an n-sheeted unit disk.
Let G be a covering surface over the w-plane each boundary component of
which has the projection on the w-plane consisting of a circle or a circular slit
centred at the origin and further let there be no inner point of G on 0 or oo.
Then we call G a covering surface of annular type cut along concentric cir-
cular slits centred at the origin.Ό Let H be a bounded covering surface over
the w-plane each boundary component of which has a projection on the w-plane
consisting of a circle or a circular slit centred at the origin and let further
there exist a point of H on 0. Then we call H a covering surface of circular
type cut along concentric circular slits centred at the origin.^

4. Let ΐk (k = 2, , N) be a simple analytic curve on R starting from a
point ql on «i and ending at a point ql on ak (for 2^k^r) or on aι (for r+l^k^N)
and further satisfy a condition

Tlxaj = dj (j = r + l, •••, ΛΓ),

1) It is permitted that there is no concentric circular slit.
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respectively, where ΐ\ X a3 denotes the intersection number between ϊl and ajf

and d* the Kronecker's symbol. Let

Tl : p*(t) (0 ̂  ί ̂  1; p*(0) = ql, pk(ΐ) = ql]

be a parameter representation of the curve rl(k = 2, , 2V). The representation

Γί: p*(ί) (O^ί^r, rg l)

denotes a subarc of ϊ\ starting from ql and ending to pk(τ). Now let

uj(t}=(tdωj (j, k = 2, .- . , 2V).
J r #

Obviously

( 1 ) ttj(0) - 0, uj(l) - ί J (λ fc = 2, - , AT).

Consider W — 1 functions of 2V'— 1 variables

(2)
&=2

They define a continuous mapping φ of a closed unit cube

EN-ι = {0 ̂  ίft ̂  1; fe = 2, , N}

of the (2V— l)-dimensional euclidean space @#_ι into the (2V — l)-dimensional
euclidean space @^_ι.

The following lemma will play a fundamental role in the present paper.

LEMMA 1. The mapping

Uj = Uj(t2, - - , tN) = V, u](tk) (mod 1; j = 2, , 2V)
&=2

takes in EN-I all values of the closed unit cube

ES.^iQ^Uj^l; j = 2, •-, 2V}

of es.lβ

Proof. Though this lemma can be proved immediately, we will make here
use of the following Brouwer's fundamental theorem on the mapping degree in
topology (cf. [6]):

The mapping degree p of the continuous mapping /* of the (N—ϊ)-sphere
&N-I on another @&_ι depends only upon /* and it remains constant for any
mapping homotopic to /*.

Noting to (1), by means of defining
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from the functions of (2), we see that φ are extensible to a continuous function
/ of the whole space &N-ι into @Jv_ι, where

** = **-[**] (fc = 2, ••-, ΛO,

and [ ] denotes the Gauss' symbol. Further if we take their compactification
to the (N— l)-spheres &N-I and @3v-ι which are obtained from &N-ι and @$_ι
by means of the adjunction of points P0 and P0* corresponding to the infinities,
respectively, then / are extensible to the continuous function /* of &N-I into
@£_ι by means of /* =/ in ̂ N-ι and P0* =/*(P0) Then, according to the Brouwer's
fundamental theorem, we conclude that /* takes all values of @$_i (obviously
p = 1 in the present case). According to the above reasoning, the assertion of
the lemma will be almost obvious. q. e. d.

Now, if tκ — 1 for some K (2 ̂  tc ^ N), by taking tκ = 0 in place of it, we
see that

Σ«5(ί*) (j = 2, ,N)
k=2

vary only for integral values and thus the values of

(3) Ufa, -•-, tN) (j = 2, - . . , N)

are invariant. Thus the proposition will remain valid also taking

Ew-i = {0^tk<l; k = 2, - • - , JV}

as a basic region in place of EN-ι Further if tκ = 0 for some « (2 ̂  Λ ̂  ΛΓ),
the values of the functions of (3) remain unchanged by deleting the term
corresponding to k = K in

(3=2, •••, ΛΓ).

According to the above remark, we obtain the following lemma readily from
LEMMA 1.

LEMMA 2. For arbitrarily preassigned point (u*, , u$) e E$-ι, we have

,̂* (mod 1; y = 2, , AT)

6τ/ taking at most N—l points plf « ,ί>w (Q<ίn^N— 1) suitably on the
Riemann surface R, where ϊk (k = 1, , n) are arbitrary analytic paths on
R from points on an ίo ,̂ respectively. Some of plt , ί?TO ma?/ possibly be
repeated. Further , we always have n^l unless (%*, , ^) is a vertex of
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§3. Conformal mapping onto a canonical covering surface.

1. Conformal mapping onto a many-sheeted disk. We retain notations;
introduced in §2, unless otherwise stated.

LEMMA 3. Let plf - , pn (n ̂  r) be n points of the Riemann surface R.
Then, in order that there exists a function w = Φ(p) 2) which maps conformally
R onto an n-sheeted unit disk F over the w-plane such that the image points
on F of plt •••, pn and only these have the same projection w = Q and the
rotation number about w = Q of the image β3 of each boundary component a3

0" = 1, •••, r) is equal to v3 (v^l; ΣS=ι^ = n), it is necessary and sufficient
that the ΛΓ— 1 equations

f] f dωj = v, (3=2, •••, r),

7 *
dω, = 0 (mod 1; j = r + l, •••, N)

are satisfied for these points, where Yk (k=I, , n) are arbitrary analytic
paths from points on aι to pk. Some of plf , pn may possibly be repeated
in case where Φ has multiple zeros. In the present case, a mapping function
Φ is given by

( 4 ) w = Φ(p) = exp f - Σ (C(p, pk) + i Γ cZ
I *=Ά JPO

where G(p, Pk) are the Green's functions of R with poles at pk, dGk are the
conjugate differentials of the Green differentials dGk = dG(p, pk) and pQ is
an arbitrary point on R.

Proof. If there exists the desired mapping function w — Φ(p), the following
conditions will be satisfied:

( i ) Φ has zeros at pk (k = 1, - , n) according to multiplicity and is a
one-valued regular function on R which has no zeros other than these n zeros;

(ii) \Φ\ =1 on a;

(iϋ)
i c

(mod 2π; j = r + 1, , N).

Conversely, if these conditions are satisfied for an analytic function w = Φ(p),
it is the desired mapping function for which the conditions in the lemma are

2) Though Φ is a mapping of R onto F, we regard that Φ assumes values projected
onto the w-plane from F so far as a confusion does not arise. For preciseness we should
denote it as w=woφ(p) where w=w(q) is the projection map of F onto the w-plane.
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According to the conditions (i) and (ii)

Thus

Then, the condition (iii) can be expressed in the following form:

(5)
(mod 2ττ; y =

Consequently, in order that there exists the desired mapping function Φ, it is
necessary and sufficient that the condition (5) is satisfied.

Now, let du be any harmonic differential and let dG be the Green differential,
then the mixed Dirichlet integral of them vanishes. For, by means of the
Green's formula, we have

(dG, du)=\[ dGdu=(

where (dG, du) is the mixed Dirichlet integral of dG and du, and du is the
conjugate differential of du. According to this result, again using the Green's
formula we obtain

rk

or

- f dGk =
J«i

dω

— f
L J <*

, ri).

Inserting these relations to (5) we have

(6)

(mod 1; j" = r +1, , N).
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However, the first equation in (6) necessarily follows from the r — 1 equations
subsequent to it, since

n / Γ

(l +β l\ Jr.

by reason that

So the first half of the lemma has been verified.
The latter half of the lemma will be obvious from the procedure of the

above proof. q. e. d.

The following theorem which is easily verified by using LEMMAS 2 and 3
is known as the Bieberbach-Grunsky's theorem in the case where the basic
domain is planar and has been discussed in detail by Ahlfors (cf. [1], [2], [3],
[4], [9], [10]).

THEOREM 1. Let an arbitrary point PI be given on the Riemann surface
R. Then, by means of taking further at most N—l points p2, , pn (r ̂  n
5j N) suitably on R, we can always find a function w = Φ(p) which maps con-
formally R onto the n-sheeted unit disk F over the w-plane such that the
image points on F of pί9 •••, pn and only these have the same projection
w=0. Some of pίf •••ipn may possibly be repeated in case where Φ has
multiple zeros.

Proof. Let Γi be an arbitrary analytic path on R from a point on a± to PI
and put

(7) 1 dωjΞΞU* (modi; 0^itf<l; j = 2, •••, N).J dcϋj =
rι

By LEMMA 2, it is possible to take at most N—l points p2, •••, pn on R such
that

(8) f*{ dωj = l-uί (modi; j = 2, •••, N),

where Tk (k = 2, , n) arie arbitrary analytic paths on R from points on a± to
pk, respectively. Then by (7) and (8) we have

2 f dcoj = 0 (mod 1; j = 2, , N).
*=ιJr f c

Thus, according to LEMMA 3, (4) gives a desired mapping function. q. e. d.

2. Conformal mapping onto a covering surface of annular type.
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LEMMA 4. In order that there exists a function w=¥(p) which maps con-
formally the Riemann surface R onto a covering surface of annular type G
cut along concentric circular slits centred at w — 0 over the w-plane such
that the rotation number about w = 0 of the image βj of each boundary
component a3 O'=l, , r; r ί> 2) is equal to Vj (Σ5=ι ^j — 0 and »j=£θ for some
j) and the radius of a circle or a circular slit being the projection of βj is
equal to C,, respectively, it is necessary and sufficient that the following
N—l equations

dωk = Uj (3=2, --, r),

dωk = 0 (mod 1 j = r +1, , N)Σ ak
=2 J

are satisfied, where dωk are the conjugate differentials of dωk, respectively
and

In the present case, a mapping function Ψ is given by

w = Ψ(p} = Ci exp J2τr Σ ak (ωk(p) + ΐ f P d
I * = 2 V Jp 0

where pQ is an arbitrary point on R.

Proof. If there exists the desired mapping function w — Ψ(p), the following
conditions will be satisfied:

( i ) Ψ is a one- valued regular function which has no zeros on R;

(ii) \Ψ\=Ck on ak (fc = l, . .- , r);

(iii)
(mod 2ττ; j = r + 1, ••-, N).

Conversely, if these conditions are satisfied for an analytic function w=¥(p),
it is the desired mapping function for which the conditions in the lemma are
satisfied.

According to the conditions ( i ) and (ii)

lg \ψ\ = f] Ckωk = Σ (ck - d)cυk + d = 2τr Σ αfeωfc + c l f
A=l &=2 A— 2

where

c, = lgC, (fc = 2, •••, r).

Thus
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Then, the condition (iii) can be expressed in the following form:

(mod 2π; j =

• , r),

,N).

Consequently, in order that there exists the desired mapping function Ψ, it is
necessary and sufficient that the condition (9) is satisfied. However, the equation
for j = 1 in (9) necessarily follows from the equations for j = 2, , r, since

d5*=Σα*(— Σ[
ι *=2 V J^J

by reason that

•, r).

So the first half of the lemma has been verified.
The latter half of the lemma will be obvious from the procedure of the

above proof. q. e. d.

In the (N - l)-dimensional euclidean space ®,*_ι, let €>ί-ι be an (r-l)-dimen-
sional subspace of @&_ι which is spanned by r — 1 independent vectors

={[ dωk, , \ dωk\ (ft = 2, • - - , r).
U« Jα J

By LEMMA 4 we obtain immediately the following theorem.

THEOREM 2. In order that there exists a covering surface of annular
type G cut along concentric circular slits centred at the origin onto which
the Riemann surface R having at least two boundary components can be
conf ormally mapped, it is necessary and sufficient that the subspace §?-ι
contains an integral point not coincident with the origin.

Let §(r, g) be the class of the Riemann surfaces R of genus g and having
r (r Ξ> 2) boundary components such that there exists a covering surface of
annular type cut along concentric circular slit onto which R can be conf ormally
mapped. If jβeg(r, g) (g^l), then by THEOREM 2 it seems plausible that we
obtain a Riemann surface R* which does not belong to $(r, g) by only a little
varying of moduli of R.

Especially, if 0 = 0 (therefore r = N), €>?-ι is identical to g£_ι. Thus we
obtain the following corollary (cf. [7]).
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COROLLARY. A multiply-connected planar domain of finite connectivity
each boundary component of which is a continuum can be mapped conformally
onto a covering surface of annular type cut along concentric circular slits
centred at the origin. Further we can preassign the rotation number about
the origin of the image of each boundary component arbitrarily under the
condition that the sum of the rotation numbers is equal to zero but the
rotation numbers of all boundary components are not equal to zero.

3. Conformal mapping onto a covering surface of circular type.

LEMMA 5. Let pίt •••, pn (^2^1) be n points on the Riemann surface R.
Then, in order that there exists a function w=%(p) which maps conformally
R onto a covering surface of circular type H cut along concentric circular
slits centred at w = Q over the w-plane such that the image points on H of
Pi, •••> Pn and only these have the same projection w = 0, the rotation number
about w — 0 of the image 03 of each boundary component a3 (j=l, ••-, r) is
equal to v3 (Σj= ι ^j — n) ana ^e radius of a circle or a circular slit being
the projection of βj is equal to CJf respectively, it is necessary and sufficient
that the following N—l eqations

Γ

, r),

(C)
,N)

^ Γ r Γ

f dωj + J2ak( dwk =
-iJr, *=» J ,

are satisfied for these points plt , pn, where ϊk (k = 1, , ri) are arbitrary
analytic paths from points on a± to pk, respectively and

(4 = 2,. . ,r).
Δiΐ

Some of p^ •••, pn may possibly be repeated in case where 7. has multiple
zeros. In the present case, a mapping function % is given by

(10) w = X(p)ΞCιexpί-Σ(G(p, 2?*) + ^ Γ d
I *=1\ Jp 0

where p0 is an arbitrary point on R.

Proof. If there exists the desired mapping function w — %(p), the following
conditions will be satisfied:

( i ) % has the zeros pk (k = 1, , ri) according to multiplicity and is a
one-valued regular function on R which has no zeros other than n zeros;

(ii) | X | = G b on ak (k = l, -••, r);

(iii)
(mod 2τr; y = r + l, •••, N).
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Conversely, if these conditions are satisfied for an analytic function w=x(p),
it is the desired mapping function for which the conditions in the lemma are
satisfied.

According to the conditions (i) and (ii)

where ck = Ig Ck (k = 1, , r). Thus

d% lg % = -Σ dGk + 2π
A=l &=2

Then, the condition (iii) can be expressed in the following form:

(mod 2ττ; j = r + 1, •• -, N).

Thus, by using of the argument similar to the proofs of LEMMAS 3 and 4
which we omit here, we can prove the present lemma. q. e. d.

THEOREM 3. Let C3 ( j = 1, , r) be arbitrary r positive real numbers,
where some of them may coincide with each other. Then there exists a
function % which maps conformally the Riemann surface R onto a covering
surface of circular type H cut along concentric circular slits centred at w = 0
over the w-plane such that the radius of a circle or a circular slit being the
projection of the image βj of each boundary component a3 (j = 1, , r) is
equal to CJf respectively and the covering degree at w — 0 is equal to at most N.

Proof. We put

(11) ΣX ί dωk = u* (mod 1; 0 g uί < 1; j = 2, - , N),
« J α .

where

(4 = 2, ...,r).
2π

First, we assume that

for some j (2^j^ N). Then, by LEMMA 2 we have

(12) Σ ί dωj = 1 - wf (mod 1; j = 2, - , JSΓ),
*β lJr f c
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when we take at most N—l suitable points plt •••, pn (l^n^N—l) on R,
where ϊk (k = 1, -, n) are arbitrary analytic paths on R from points on an
to pk, respectively. Thus, by (11) and (12) we have

n f r /»

Σ d<ty + 2 ak\ dώk = 0 (mod 1; j = 2,
fc=ljr;fc *=2 J αJ

Then, by LEMMA 5, (10) gives the desired mapping function. In this case the
covering degree at w = 0 may be equal to at most N—l.

Next, we assume that

for all j (2^j^N). Then, the only following two cases may arise:
(i) Cι = = Cr;
(ii) there exists a function w — Ψ(p) which maps conformally R onto a

covering surface of annular type G such that the radius of a circle or a circular
slit, the projection of the image of each boundary component a3 (j = l, •••, r),
is equal to CJ9 respectively. The case (i) has been already solved in
THEOREM 1. In the case (i i) we have

fc I dώk = (= 0 (mod 1; j = 2, , N).

Otherwise, by THEOREM 1 we have

= Q (mod 1; j = 2,

when we preassign arbitrarily a point PI on J? and further select at most
N—l suitable points p2t •••, ί?Λ (r^n^N) on ί?. Thus we obtain

Σ f
*=1 J r

(Zώ^ΞO (mod 1; j = 2, •••, AT).
ttj

Then by LEMMA 5, (10) gives a desired mapping f unction. 3) q. e. d.
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