ON CONFORMAL MAPPING OF A RIEMANN SURFACE
ONTO A CANONICAL COVERING SURFACE

By HisAao Mi1zumoToO

§1. Introduction

The problem to map conformally a multiply-connected planar domain onto
one of various canonical domains has been discussed by several authors.

In the present paper we will discuss a problem to map conformally a finite
Riemann surface each boundary component of which is a continuum onto a
certain canonical covering surface. With respect to this problem Ahlfors has
shown that a finite Riemann surface each boundary component of which is a
continuum can be mapped conformally onto a many-sheeted disk and further
has discussed a certain extremal problem for these mapping functions (cf. [2]).
Kusunoki has discussed the mapping of such a Riemann surface onto a covering
surface cut along parallel slits as an application of the theory of Abelian
integrals (ef. [5]).

‘We concerned ourselves in [7] with the problem to map conformally a planar
domain onto a covering surface of annular type cut along concentric circular
slits by a certain extremal method. Further in [8] we concerned ourselves with
the similar problem in the case where the image covering surface is of the
circular type. It seems, however, to me that the problem constructing such a
canonical mapping function is more significant when the basic set is a Riemann
surface. In the present paper we shall concern ourselves with the problem to
map conformally a finite Riemann surface each boundary component of which
is a continuum onto such a canonical covering surface.

First we shall prove by a rather elementary method that a finite Riemann
surface each boundary component of which is a continuum can be mapped
conformally onto a many-sheeted disk (§3, 1). This fact is known as the
Bieberbach-Grunsky’s theorem when the basic domain is planar and has been
discussed in detail by Ahlfors. Next we shall concern ourselves with the
problem to map conformally a finite Riemann surface onto a covering surface
of annular type cut along concentric circular slits and shall show that for the
finite Riemann surface of non-vanishing genus there does not exist necessarily
a covering surface of annular type cut along concentric circular slits onto
which the other is conformally mapped (§3, 2). This is remarkably different
from the fact that when the basic domain is planar it can always be mapped
conformally onto such a canonical covering surface preassigning arbitrarily the
rotation number of the image of each boundary component about the origin
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(ef. [7]). Finally we shall concern ourselves with the case of circular type and
shall show that a finite Riemann surface can be mapped conformally onto a
covering surface of circular type cut along concentric circular slits so that the
radius of the image (a circle or a circular slit) of each boundary component
takes an arbitrarily preassigned value (§3, 3).

§2. Preliminaries

1. Let R be a finite Riemann surface each boundary component of which
is a continuum. It is always possible to show that such a Riemann surface R
is embedded conformally in a compact Riemann surface so that each boundary
component of the former constitutes of a simple closed analytic curve on the
latter. Thus we may assume that R is so taken in advance. We assume that
the genus of R is g and its boundary a consists of » simple closed analytic
curves ay, +++, a, (r=1). Let a,.1, -+, ay (N =7+ 2g) be a canonical homology
basis of R such that «,,s,-; and @,.s, (=1, ---, g) are conjugate each other.

2. Camnonical basis of normalized harmonic differentials. Let w, (j=1,
-, r) be the harmonic measure of the boundary component «, with respect
to R, respectively.

Let w, (j=7r+1, -+, N) be a normalized potential of the first kind uniquely
determined by the following conditions, respectively:

(i) w, is one-valued and harmonic on R cut along a;;

(ii) w, has a jump of the value 1 through «,;

(ii) ,=0 on a.

We call the system of the differentials dw;, ---, dwy that are constructed
by this procedure a canonical basis of normalized harmonic differentials.

3. Let F be a covering surface over the unit disk which covers each point
of the unit disk exactly » times. Then we call F' an n-sheeted unit disk.
Let G be a covering surface over the w-plane each boundary component of
which has the projection on the w-plane consisting of a circle or a circular slit
centred at the origin and further let there be no inner point of G on 0 or oo,
Then we call G a covering surface of annular type cut along concentric cir-
cular slits centred at the origin.® Let H be a bounded covering surface over
the w-plane each boundary component of which has a projection on the w-plane
consisting of a circle or a circular slit centred at the origin and let further
there exist a point of H on 0. Then we call H a covering surface of circular
type cut along concentric circular slits centred at the origin.®

4. Let 1z (k=2, ---, N) be a simple analytic curve on R starting from a
point g% on «; and ending at a point ¢ on ay, (for 2<k=7) or on & (for r+1=<k<N)
and further satisfy a condition

Th X a, =85 (j=r+1,---, N),

1) It is permitted that there is no concentric circular slit.
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respectively, where 7 X a, denotes the intersection number between 7} and «,,
and 0} the Kronecker’s symbol. Let

The Di(t) 0=t=1; p(0)=qi, pe(1)=qh)
be a parameter representation of the curve 7% (k =2, ---, N). The representation
T%: Pr(t) 0t © 1)

denotes a subarc of 7% starting from g% and ending to pi(r). Now let
uf(t):j do, (G, k=2, -+, N).
Tr

Obviously
(1) wi(0)=0, uj1)=205 (j, k=2, ---, N).

Consider N —1 functions of N —1 variables
N

(2) u,zkxujf(tk) 0<t.<1; j, k=2 ---, N).
=2

They define a continuous mapping ¢ of a closed unit cube
Ey.,={0=t:=1; k=2,---, N}

of the (NN —1)-dimensional euclidean space €y_; into the (N — 1)-dimensional
euclidean space €%._;.
The following lemma will play a fundamental role in the present paper.

LEMMA 1. The mapping

N .
u]:uj(t2y M) tN)E;éu;C(tk) (mOd 1! .7227 M) N)

takes in Ey_; all values of the closed unit cube
E¥. ={0=u,<1; j=2,---, N}
Of @1*\;—1.

Proof. Though this lemma can be proved immediately, we will make here
use of the following Brouwer’s fundamental theorem on the mapping degree in
topology (cf. [6]):

The mapping degree p of the continuous mapping f* of the (N—1)-sphere
Sy_1 on another S%_, depends only upon f* and it remains constant for any
mapping homotopic to f*.

Noting to (1), by means of defining
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N
Uy =fitsy -+, tw) =1[t,] +7§‘2u'§(fk) (o<t <+o0; 4, k=2, .-+, N)
from the functions of (2), we see that ¢ are extensible to a continuous function
f of the whole space €y_; into €¥_;, where
Tlc:tk—'[tk] (k:2,"'1 N)y

and [ ] denotes the Gauss’ symbol. Further if we take their compactification
to the (N —1)-spheres ©y_; and S5, which are obtained from Gy_, and G3_,
by means of the adjunction of points P, and Pg corresponding to the infinities,
respectively, then f are extensible to the continuous function f* of Sy_; into
©%_: by means of f*=fin €y_; and P§¥=f*(P,). Then, according to the Brouwer’s
fundamental theorem, we conclude that f* takes all values of ©5%_; (obviously
p=1 in the present case). According to the above reasoning, the assertion of
the lemma will be almost obvious. q.e. d.

Now, if t,=1 for some x 2=« < N), by taking #,=0 in place of it, we
see that

N ® .
]guj(tk) (.7227 R N)

vary only for integral values and thus the values of

(3) Uts =+, ty) (7=2,---, N)

are invariant. Thus the proposition will remain valid also taking
Exa={0=t:<1; k=2,---, N}

as a basic region in place of Ey_;. Further if ¢,=0 for some « <« < N),
the values of the functions of (8) remain unchanged by deleting the term
corresponding to k=« in

N
2 wit) (G=2, -+ N).

According to the above remark, we obtain the following lemma readily from
LEMMA 1.

LEMMA 2. For arbitrarily preassigned point (uy, ---, ux) € Ex_1, we have
kZE dow, =uy (mod 1; j=2,--+, N)
=1 Tk

by taking at most N—1 points pi, -+, P (0<n<N—1) suitably on the
Riemann surface R, where 1, (k=1, --+, n) are arbitrary analytic paths on
R from points on ay to D, respectively. Some of pi, -+, P, May possibly be
repeated. Further, we always have n=1 unless (uf, ---, uf) is a vertex of
E% ..
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§3. Conformal mapping onto a canonical covering surface.

1. Conformal mapping onto a many-sheeted disk. We retain notations
introduced in §2, unless otherwise stated.

LEMMA 3. Let py, -+, pn (n=71) be n points of the Riemann surface R.
Then, in order that there exists a function w = @(p)? which maps conformally
R onto an n-sheeted unit disk F over the w-plane such that the image points
on F of py, -+, pn and only these have the same projection w=0 and the
rotation number about w="0 of the image 8, of each boundary component «,
(G=1---,7) is equal to v, (v,=1; SH1v,=mn), it is mecessary and sufficient
that the N —1 equations

f dw]:XJ] (j=27"'; /r)y
=1 )y
(A) x
kzj dw,=0 (mod 1; j=r+1,--+, N)
=1 Te
are satisfied for these points, where 1, (k=1, ---, n) are arbitrary analytic
paths from points on a; to p.. Some of pi, ---, P, may possibly be repeated

in case where @ has multiple zeros. In the present case, a mapping function
@ is given by

n D ~
(4 w=0() = exp{ - 31(G(r, p+ i aGi )},

= Do
where G(p, pr) are the Green’s functions of R with poles at g, dG:. are the
conjugate differentials of the Green differentials dG.=dG(p, px) and po s
an arbitrary point on R.

Proof. 1If there exists the desired mapping function w = &(p), the following
conditions will be satisfied:

(i) @ has zeros at p: (k=1, ---, n) according to multiplicity and is a
one-valued regular function on R which has no zeros other than these n» zeros;

(ii) |®]=1 on «;

j d31g @ = 27y, G=1,---, 1),
(i) 4

j dSlg @ =0 (mod 27; j=r+1, -+, N).

%

Conversely, if these conditions are satisfied for an analytic function w = @(p),
it is the desired mapping function for which the conditions in the lemma are

2) Though @ is a mapping of R onto F, we regard that @ assumes values projected
onto the w-plane from F' so far as a confusion does not arise. For preciseness we should
denote it as w=wo®(p) where w=w(q) is the projection map of F' onto the w-plane.
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satisfied.
According to the conditions (i) and (ii)
Ig 0] =— 31 G(p, Py
Thus
d31g 0=~ 31dG..

Then, the condition (iii) can be expressed in the following form:

_éj dék=2n’y] (j: 1, cee, 7')’

(5) ,, %
";_JJ dG:=0 (mod 27; j=7+1, ---, N).

%

Consequently, in order that there exists the desired mapping function @, it is
necessary and sufficient that the condition (5) is satisfied.

Now, let du be any harmonic differential and let dG be the Green differential,
then the mixed Dirichlet integral of them vanishes. For, by means of the
Green’s formula, we have

(dG, du)=SS G dﬁ=j G div =0,
p3 a

where (dG, du) is thp mixed Dirichlet integral of dG and du, and d# is the
conjugate differential of du. According to this result, again using the Green’s
formula we obtain

((day, de)=s dék"‘zﬂ'(l +§ da)1> =0 k=1, ---, n),
“ %

(da,, de)=§ dék+znj dw,=0 (j=2,-++, N; k=1,---, m),
~ a; Tk

or
'—S dc‘;k=2n<1+§ dw1> (=1, ---, m),
J “1 Tk
_S dék=2n'j\ do, (j=2 -+, N; k=1, ---, n).
L a, T

Inserting these relations to (5) we have

(1 +s dw1> =y,
Tk

(6) S do, =, (G=2, -2, 7),
T

kY )
I 3 | 3
- -

S

f dw;=0 (mod1; j=7+1,---, N).
Tr

12

I
A
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However, the first equation in (6) necessarily follows from the » —1 equations
subsequent to it, since

5 (1 +Lk dau) =n—% 57“_:2 do,=n— 3131 Lkdw,
=n-— ﬁb’l =Vi,
J=2
by reason that
S dw,=0.

I
A

J

So the first half of the lemma has been verified.

The latter half of the lemma will be obvious from the procedure of the
above proof. q. e. d.

The following theorem which is easily verified by using LEMMAS 2 and 8
is known as the Bieberbach-Grunsky’s theorem in the case where the basic
domain is planar and has been discussed in detail by Ahlfors (ef. [1], [2], [3],
[4], [9], [10]).

THEOREM 1. Let an arbitrary point p; be given on the Riemann surface
R. Then, by means of taking further at most N—1 points ps, +++, Dn (r<n
=< N) suitably on R, we can always find a function w= &(p) which maps con-
Sformally R onto the m-sheeted wnit disk F over the w-plane such that the
image points on F of py, -+, p, and only these have the same projection
w=0. Some of pi, -+, P. may possibly be repeated in case where @ has
multiple zeros.

Proof. Let r; be an arbitrary analytic path on R from a point on a; to p;
and put

7 j dovy = u (mod 1; 0= uf<1; j=2, ---, N).
81

By LEMMA 2, it is possible to take at most N—1 points ps, -+, P, on E such

that

(8) ki‘j do,=1—u} (mod 1; j=2, ---, N),

=9 %

where 7 (k=2, ---, n) are arbitrary analytic paths on R from points on «; to

i, respectively. Then by (7) and (8) we have
kij do, =0 (mod 1; j=2, ---, N).
=1 i

Thus, according to LEMMA 3, (4) gives a desired mapping function. q.e.d.

2. Conformal mapping onto a covering surface of annular type.
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LEMMA 4. In order that there exists a function w=¥(p) which maps con-
formally the Riemann surface R onto a covering surface of annular type G
cut along concentric circular slits centred at w=0 over the w-plane such
that the rotation number about w=0 of the image B, of each boundary
component a, (§=1, ---, r; r=2) is equal to v, G =1y, =0 and v,# 0 for some
1) and the radius of a circle or a circular slit being the projection of (3, is
equal to C,, respectively, it is necessary and sufficient that the following
N—-1 equations

;;‘zakj dog=v, (=2, -, 7),
(B) : g

kZ}akS dao,=0 (mod1l; j=r+1,---, N)

—9 «

J
are satisfied, where di, are the conjugate differentials of dwi, respectively
and

- 1gG—1gC P
- 27_[ (k 2r ’ 7').

(247
In the present case, a mapping function ¥ is given by

w=¥(p) =C,exp {271]0};; ax ((uk(p) +1 Sp d(%)},

Py
where Py is an arbitrary point on R.

Proof. If there exists the desired mapping function w = ¥(p), the following
conditions will be satisfied:
(i) ¥ is a one-valued regular function which has no zeros on K;

(ii) |¥|=Cr on a k=1, ---, r);

f d31g ¥ = 27, G=1, - 1)
(iii) “
g A31g ¥ =0 (mod 273 j=7+1, -+, N).
%
Conversely, if these conditions are satisfied for an analytic function w=%(p),
it is the desired mapping function for which the conditions in the lemma are

satisfied.
According to the conditions (i) and (ii)

lg [7]= kgi Crwy = kZZ (ex — e + 1= 27'5]6;2 arwi + C1y

where
¢, =1gC; (k=2,-~',7‘).

Thus
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-
aAJg ¥ =2r > ardvs .
k=2

Then, the condition (iii) can be expressed in the following form:

]?;;akjv dék:y] (jzly Tty Ir)r
(9) o
k}____,;akj dar =0 (mod 2r; j=7r+1, ---, N).

J

Consequently, in order that there exists the desired mapping function ¥, it is
necessary and sufficient that the condition (9) is satisfied. However, the equation
for =1 in (9) necessarily follows from the equations for =2, ---, 7, since

o

r r r r r
ZakS d&')kzz‘ak ""E d&;k :—Ezak d(gk:‘"zb’jzyly
k=2 a k=2 a « P

J= =2 k=2
J 7
by reason that
jd(bkzo k=2, -, 7).

So the first half of the lemma has been verified.
The latter half of the lemma will be obvious from the procedure of the
above proof. q. e d.

In the (NN — 1)-dimensional euclidean space €¥_;, let H¥_; be an (r—1)-dimen-
sional subspace of €}_; which is spanned by = —1 independent vectors

Q}k:{\s‘ da')k’ Tty S da)k} (k=2y M) /r)-
% N

By LEMMA 4 we obtain immediately the following theorem.

THEOREM 2. In order that there exists a covering surface of annular
type G cut along concentric circular slits centred at the origin onto which
the Riemann surface R having at least two boundary components can be
conformally mapped, it is necessary and sufficient that the subspace £F_;
contains an integral point not cotncident with the origin.

Let 3(r, g) be the class of the Riemann surfaces R of genus g and having
r (r=2) boundary components such that there exists a covering surface of
annular type cut along concentric circular slit onto which R can be conformally
mapped. If REF(r, g) (9 =1), then by THEOREM 2 it seems plausible that we
obtain a Riemann surface R* which does not belong to F(r, g) by only a little
varying of moduli of R.

Especially, if ¢ =0 (therefore »r=N), 9F_; is identical to €%.,. Thus we
obtain the following corollary (cf. [7]).
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COROLLARY. A multiply-connected planar domain of finite conmectivity
each boundary component of which is a continuum can be mapped conformally
onto a covering surface of annular type cut along concentric circular slits
centred at the origin. Further we can preassign the rotation number about
the origin of the image of each boundary component arbitrarily under the
condition that the sum of the rotation numbers is equal to zero but the
rotation numbers of all boundary components are not equal to zero.

3. Conformal mapping onto a covering surface of circular type.

LEMMA 5. Let Dy, +++, Dy (n=1) be n points on the Riemann surface R.
Then, in order that there exists a function w=x(p) which maps conformally
R onto a covering surface of circular type H cut along concentric circular
slits centred at w=0 over the w-plane such that the image points on H of
D1,y D and only these have the same projection w =0, the rotation number
about w=0 of the image B3, of each boundary component a, (=1, ---, r) is
equal to v, -1y, =n) and the radius of a circle or a circular slit being
the projection of B, is equal to C,, respectively, it is necessary and sufficient
that the following N —1 eqations

éj\ dcoj+éak“ d(?)/‘;:lJ] (j=2,"', 7')’
k=1 % k=2 g
© - oo
Z{ dwj+2ak§ dor=0 (mod 1; j=r+1, .-+, N)
kzlark k=2 a;

are satisfied for these points pi, -+, P, where 1y (k=1, -+, n) are arbitrory
analytic paths from points on ay to pr, respectively and

— lgCr,—1g C,

o (k=2,...’/r)-

O
Some of pi, -+, . Mmay possibly be repeated in case where 1 has multiple
zeros. In the present case, a mapping function % is given by

10) w=x(p) =C,exp {—ki‘. (G(p, or) + ir dék> + 27r]ci=‘,2ak ((ok(p)+ir dcbk)} ,

=1 Py Py

where py 18 an arbitrary point on R.

Proof. If there exists the desired mapping function w = 2(p), the following
conditions will be satisfied:

(i) % has the zeros p; (k=1, ---, n) according to multiplicity and is a
one-valued regular function on R which has no zeros other than n zeros;

(ii) [x|=Cron ax (k=1, -+, 7);

j dﬁlgx=2m)] (j=17"'y T)!
(iii) %
d3lgx=0 (mod 27; j=7r+1,---, N).

a
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Conversely, if these conditions are satisfied for an analytic function w=x(p),
it is the desired mapping function for which the conditions jn the lemma are
satisfied.

According to the conditions (i) and (ii)

lg x| = —IC?‘:IG(p, Dr) +’§10k(0k

= —3>1G(p, px) +2r Er] arwy, + Cy,
k=1 k=2
where ¢, =1gC; (k=1,---, r). Thus
d‘fs lg 1= —é dék + 2r é akdcT)k.
k=1 k=2

Then, the condition (iii) ean be expressed in the following form:

k=1

—éj dék+27rki}2akj day =2z, G=1---,7),
% - %

—kﬁf d(‘;k+2nkéakj da=0  (mod2z;j=r+1,---, N).
=1 Ja =2 a,

' 7

Thus, by using of the argument similar to the proofs of LEMMAS 3 and 4
which we omit here, we can prove the present lemma. q. e. d.

THEOREM 3. Let C, (=1, ---, r) be arbitrary r positive real numbers,
where some of them may coincide with each other. Then there exists a
function % which maps conformally the Riemann surface R onto a covering
surface of circular type H cut along concentric circular slits centred at w =10
over the w-plane such that the radius of a circle or a circular slit being the
projection of the image B, of each boundary component a, (§=1,---,7) is
equal to C,, respectively and the covering degree at w =0 is equal to at most N.

Proof. We put

(11) k}jzakj doe=uf  (mod 1; 0Suf<1; j=2 -, N),
= .
where
o= 8C:—1gC k=2 -+, 7
2r
First, we assume that
uf#0

for some 7 <7< N). Then, by LEMMA 2 we have

(12) i}j‘ do;=1—uf (mod 1; j=2,---, N),
£=1),,
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when we take at most N —1 suitable points py, --+, p, 1<2<N—1) on R,
where 7, (k=1, ---, n) are arbitrary analytic paths on R from points on a;
to pr, respectively. Thus, by (11) and (12) we have

zj dwj—i—éakj Ay =0 (mod 1; §=2, --+, N).
k=1 T k=2 aj

Then, by LEMMA 5, (10) gives the desired mapping function. In this case the
covering degree at w =0 may be equal to at most N —1.

Next, we assume that

uf=0

for all j <7< N). Then, the only following two cases may arise:

(l) CI:"'= ry

(ii) there exists a function w=¥(p) which maps conformally R onto a
covering surface of annular type G such that the radius of a circle or a circular
slit, the projection of the image of each boundary component «, (=1, ---, 7),
is equal to C,, respectively. The case (i) has been already solved in
THEOREM 1. In the case (ii) we have

kézakj doy=0 (mod 1; =2, ---, N).
= o
Otherwise, by THEOREM 1 we have
S| dw,=0 (mod 1; j=2, -+, N),
=y,

when we preassign arbitrarily a point p; on R and further select at most

N —1 suitable points ps, -+, p, *<n<N) on R. Thus we obtain
zj dw]+‘2ak5 dasn =0 (mod 1; 5=2, ---, N).
k=1 T k=2 a;
Then by LEMMA 5, (10) gives a desired mapping function.® q.e d.
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