
SOME THEOREMS IN AN EXTENDED RENEWAL THEORY, I

BY HIROHISA HATORI

1. Prof. J. L. Doob [1] has treated the renewal theory in terms of the
theory of probability as follows: Let Xlt X2, be non-negative mutually
independent random variables. It is supposed that X2, Xz, have a common
distribution function. Let N(t) be the number of sums Xίt Xι + X2, which
are less than t. In other words N(t) is the random variable such that

(l.i) Σ X < ^ Σ X .

The process X(t) is defined as follows:

iVcί)

ί-ΣX if
(1.2)

= X0 + t if

where XQ is a random variable. Then renewal theory may be said to be a
theory on N(t) and X(t), and Doob has investigated many properties on N(t)
and X(t).

Recently Prof. T. Kawata [2] has found in an application that it has
been necessary to weaken the assumption that X2, Xz, * have a common
distribution function and discussed an asymptotic property of E{N(t + h)
— N(t)} at t—>OQ with the condition that there exists

lim —(at \ h an) = a

where av = E{Xυ} (y = l, 2, •••)• In this paper we shall give some results on
N(t) and X{t) by the methods of Doob [1] in the case where the existence of

lim α
n->oo n — l

and some other conditions are assumed.

2. Through this section we set the following assumptions:
(2.1) Xίf X2, ••• are non-negative and mutually independent random

variables.
(2.2) X2, Xz, - - - have finite means a2, as, respectively and there exists

a positive constant L such that av^L for v = 2, 3, .
(2.3) X2, Xz, ••• have finite variances <?2

2, <r3

2, ••• respectively and there
exists a positive constant K such that συ

2^K< + oo for v = 2, 3, •••.
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(2.4) There exists

lim —(α2 H \-an) = a
n+oo n — 1

where a may be +00.
In the following N(t) and X(t) are the random variables defined by (1.1)

and (1.2) respectively and a'1 is interpreted as zero if a= + oo.

LEMMA 1. Let Xu X2, be mutually independent random variables
such that

If there exists a positive constant p such that pv^p for v = 2, 3, , then
we have

(2.5) E{N(t)"} < + 00

and

(2.6) ϊϊmEl{-^^y\< + oo for α^l,

where N(t) is the number of sums Xu Xi + X2, ivhich are less than t.

Proof. It is evident under the conditions of this lemma that N(t) can

be finite with probability 1. If v ^ l , then we have by the definition of

N(t) that Xι-\ h-X"Srcv> = ̂  — l f Xaf c»)+i = l» %NW+2 = -- = XN<V+D = 0 a n d

XNQV+D+I = 1. S i n c e t h e e v e n t N ( v ) = j i s d e t e r m i n e d b y J£Ί, J?2» •••» -X7+1 o n l y ,
w e h a v e

X P{X,+2 = 0} P{X,+fc = 0}P{Xy+,+1 = 1}

^ (l - rt'"1 Σ P{Mθ = Λ = (l - P)*"1-

The same evaluation is obtained for v = 0, where iV(0) = 0. Therefore we have

A = l

so that, using the well-known property of the convex function x", we have

E{N(t)"} =

+ly-'Έ IN(»+1) - Nw] ^ ([«+1)« A, < + 00,

which implies (2.5). Consequently we get
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and hence

which give (2.6).

Using this lemma we shall prove the Theorem 1. (2.7) in this theorem
shall be made more precise in theorem 4 with some other assumptions.

THEOREM 1. / / Xu Xz, * are the random variables satisfying the con-
ditions (2.1) —(2.4), then we have

( 2 7 ) •• - α

(2.8) E{N(tyy < oo,

and

(2.9) ^Mψ±=A_ for a>0.

Proof. Suppose a<+oo. According to the strong law of large numbers
which is found to be true by (2.3), and using the fact that limΛ->oo-Xi/w = 0
(a.s.), we have that

(2.10) Km x i + ~' + x». = lim a 2 + " ' + a» = a (a.s.).
n->oo n «-»oo n — 1

Since a^L>0 by (2.2), N(t) is finite by (2.10) with probability 1, and

(2.11) limN(t) = oo (a s.)-

Let Eι be the subset of Ω on which either of (2.10) and (2.11) does not hold
where Ω is the probability space. If ω^Ω — Eu there exists a suitable
number ne = ne(ω) for an arbitrary small 8 > 0 such that

(2.12) —en<Xι-\ \-Xn — an<en for n>n6.

Since N(t) > ne for large t by (2.11), we get by (1.1) and (2.12) that

(2.13) - εN(t)<Xt + + XN,t, - aN(f) < t - aN(t)

so that

When t—>oo, we have that

(2.14) _ ^

Since we get from (2.12) by the similar way that

t-a(N(t) + 1 ) ^ Z i + + XNCO+I - a(N(t) +1)< s(N(t)4-1),

it is known that
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(2.15) EE^r l—gα.+ e

which gives with (2.14) that

lim * x — a for all ω^Ω — Ei.

Therefore we have

(2.16) l i m - ^ - = — (a.s.)
t->oo t a

which is equivalent to (2.7). Now using Tchebyshev's inequality, we know
by (2.2) and (2.3) that there exist positive constants λ and p such that

for v = 2, 3, •••.

Defining Xu X2, by

for v = 2, 3, •••,
= 1 if Xv *=! Λ,

they satisfy the all assumptions in Lemma 1. From the fact that

~ X
XiΛ h XN«> < t and Xv ^ — — for v = 1, 2, ,

we get

-Λ-i + — h Λ vco < y ,

so that

which implies (2.8) with (2.5). Since we have by (2.6) that, taking β > l so
that aβ > 1,

it will be known from (2.16) that

which concludes the proof of our theorem. The proof of the case a = oo will
similarly be done with slight modifications.

REMARK 1. If we want to get (2.7) only, we may assume the weaker
condition instead (2.3) that

(2.30 Xι> Xz, obey the strong law of large numbers.
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The following two theorems can be proved in our case by the similar
way as in Theorem 2 and Theorem 9 of Doob's paper [1].

THEOREM 2. // a < + oo with the assumptions in Theorem 1, we have

(2.17) f
and if in addition E{XQ} < + oo, it follows that

(2.18) l i

THEOREM 3. //, in addition of the conditions of Theorem 1, we as-
sume that

(2.19) b = lhaE{XΛ + ... + E{XJ}
7»->co n — 1

exists and

(2.20) f>~ 2 Var {X2} < + oo,

then we have that

(2.21) p{\imMtX{s)ds =-AΛ = i.
l*->°° t Jo 2a J

3. We have used the strong law of large numbers in the course of the
proofs in the preceding section. If we can assume the law of iterated
logarithm on X2t X3, , we can make Theorem 1 and Theorem 2 more
complete.

We substitue for (2.3) and (2.4) the conditions that

(3,

(3,

and

•1)

.2)

(3.3)

Then we

a<

X2

have

: + oo

— a<2,

that

and -

B

Xz — a>z, obey the law of iterated logarithm.

THEOREM 4. Under the conditions (2.1), (2.2), (3.1), (3.2) and (3.3), we
hat

/o c\ τ>Γv— \N(t) — t/a\ ^ ΛJB I .,(o.O/ •* l u r n —: . ._ -— ̂  . .-o~> = j .
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(3.6) EE5 = Πm = g.
n->oo tt — 1 w*oo Ύl — 1

Proof, Let E2 be the subset of Ω on which (3.4) does not be satisfied.
If ω^Ω — Ei — Eί} there exists a number mβ = ms(ω) for an arbitrary small
a such that

(3.7) - ( l + β)< X l + ' < ' / l 'p X Γi α 2 + P " + α n ) < : L ^ g f o r

V 2 J5n log log £
If we make t so large that N{t)>mβ, then it follows by (1.1) and (3.1) that

- (1 + B) V2£tfCί)loglog£tfco < Xi + + X^cί) - (as + +

< t - αΛΓ(ί) + oUN(t)\oglogN(t)).

Since, noting Remark 1, we have that

for sufficient large t where e' is an arbitrary small number, we get that

(— - βΛ ί log log (— - eΛ ί < -W(*) log log iV(ί)

< ( i + £ / ) ί l o g l o s ( i + ε ' ) ί '
so that

(3.9) l i m

#-̂c» t log log £
Therefore it follows that

(3.10) M
ί log log ί

= Em ^ α > l 0 g l 0 g Bira) lim ^ ( ^ l o g l o g m )

t+σo N(t)loglogN(t) *+oo t log log t

~ — Em Bir™Em =
α <->« iv(ί) — 1

Prom (3.8), (3.9) and (3.10), we have

a TΪZ 4U log log ί

because ε.can be taken as an arbitrary small number. By the same way, if
we take n = N(t) +1 in the right inequality in (3.7), we get that

/o io\ r— t — aN(t)
(3 12) ϊS

which gives (3.5) with (3.11).
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REMARK 2. Without the assumption (3.1), we have that

where

2loglogn

and

S5sΛ n - 1 /V 2 log log n -

This remark is available in the following Theorem 5.

THEOREM 5. Under the conditions in Theorem 4, we have that

(3.14)

Proo/. If ω^Ω-Eι-E2 we have by (3.7) and (1.2) that

- (1+ e)V2JWloglog#2rco < t - X(t) - αAΓ(ί) + o(jN{t) log log î (έ))

so that

( 3 Λ 5 )

By the same way, we get that

V2έloglogί

which gives (3.14) with (3.15).

Combining Theorems 4 and 5 we get the following corollary which will
be a more complete form of Theorem 2.

COROLLARY. Under the conditions in Theorem 4, we have that

(3.17) Pfΐϊϊn" *{t\ • ^ 2. JB\ = 1
I*-**, ^2* log log t V α J

4. Let Xi, X2, •••; Yu ^2, •••; ̂ 1, ̂ 2. ••• be non-negative and mutually
independent random variables with finite means aίt a2, •; bίt δ2, •; cu c2t

respectively. We assume the conditions analogous to (2.1) — (2.4) for every
above sequence and that a ^ 6 ̂  ^ c. Then defining M(t) as the random
variable such that

we know easily that
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Pi lim —-— = — j = 1 and

so that

α for «>0.
aa

t->co 0 U,

In this case, we have also a conclusion analoguous to Theorem 4.

In conclusion, the auther expresses his sincerest thanks to Prof. T.
Kawata, Prof. K. Kunisawa and Mr. H. Morimura who have given valuable
advices.
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