REMARKS ON HOLOMORPHIC AUTOMORPHISMS OF A
SIMPLY-CONNECTED NORMAL DOMAIN IN
SEVERAL COMPLEX VARIABLES

By HIRAKU ARAI

1. In the theory of several complex variables, a domain is called rigid
(““starr”’) if it admits no holomorphic automorphism other than the identity;
see Behnke and Thullen [1]. Holomorphic automorphisms and rigidity of a
simply-connected normal domain have been studied by several authors. Though
some examples of rigid domains were expicitly constructed for the first time
by Cartan and Thullen [4], they are not domains of holomorphy. Behnke and
Peschl [2] have then succeeded to construct domains of holomorphy which
admit only the identical holomorphic automorphism by means of Carathéo-
dory’s metric and Lindelof’s inequality. Rothstein [7] has also shown im-
portant properties of holomorphic automorphisms of a normal domain in the
case of two variables, but his results do not completely characterize the pro-
perties of holomorphic automorphisms. Recently, Hedtfeld [5] has given
sufficient conditions for rigidity of simply-connected normal domains by means
of Rothstein’s results together with analytic projection.

In this paper, we shall give a complete characterization of all holo-
morphic automorphisms of a simply-connected normal domain and then esta-
blish a necessary and sufficient condition in order that a simply-connected
normal domain is to be rigid. By the same method, we can solve the problem
how to determine all holomorphic homeomorphisms of a simply-connected
normal domain onto another.

The author wishes to thank to Professors Y. Komatu and S. Hitotumatu
for help and advice in the improvement of this paper.

2. We first define a normal domain in the space of n complex variables,
which has been defined by Rothstein [7] and Hedtfeld [5] in case of two
variables.

DEFINITION 1. A domain Dc C™ is said normal when it satisfies the
Sollowing conditions:

1) D s bounded.

2) The boundary of D consists of a finite number of smooth hyper-
surfaces O;(x1, Y1, *++, Tn, Y) =0, 2, =2,;+ 1y, t=1,---, p; J=1,---, n; p=m.
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8) FEach ©,=0 is defined by analytic hypersurface fi(zi, -+, 2.) =7i(t)
with ASt=<B,rit) being continuous. All fizi, ---, 2,) are holomorphic in
D, the closure of D.

4) For every fu(zi, -++, 2,) with 1=, <p, there exist at least n—1
holomorphic functions fi, -, f.,, with 1<4,<p, j=2, ---, n, such that

a(f?p "'yfzn) . n
m$0 wn D,

By a work of Sommer [8], we can characterize any normal domain as a
domain whose each boundary component @(xi, ¥, -+, %n, Yn) =0 satisfies
L(®;)=0, L(®;) being the Levi’s symbol, and is locally represented by
fi(z1, -+, 22) =T(t) where f, is holomorphic in D.

Now, we consider a function f(2i, ---, 2,) holomorphic in D and an ana-
lytic projection defined by it. The notion of analytic projection has been
given precisely by Koch in his Dissertation [6].

DEFINITION 2. Analytic projection, or holomorphic basis, (R, ¢) defined
by a holomorphic map f of D into an analytic space X is a collection of an
analytic space N and a holomorphic map ¢ of D onto R such that for any
holomorphic map g which 1is holomorphically dependent (‘‘ holomorph ab-
himgig”’) in the semse of Stein [9, 10, 11] on f, there exists a holomorphic
map AUp), pER, satisfying gx)=i(¢)), x&D. We call ¢ a projection
map of D onto R.

We say that four points Py, P, Qi, Q: in D satisfy the relation:
(1) A(Ph P2; Ql, Q2)/(§R’ 50)

if the following conditions hold:

1) There exist two Jordan curves Ci(t) and C:(t), 0=<¢ <1, connecting
P, Q: and P, Qz, respectively, and Ci(0)=7P;, Ci(1)=Q;, Cx(0)=DP;, Cx(1)=Qs.

2) All points on Ci(¢) and Ca(t) are ordinary points of ¢ except their end
points Qi, Qs.

3) For allt, 0=t=1, ¢[Ci(t)]=¢[Cs()].

In the construction of a holomorphic basis, the equivalent classes of points
in D (see Koch [6], Stein [9, 10, 11]) have been considered and it is known
that two points Q; and Q, are equivalent, if P; and P, are equivalent and
APy, P3; Q1, Q2)/(N, ¢) holds.

Now, we consider analytic projections (., ¢;) defined by fi(z1, - - -, 2.) (1=1,
-+, p), where f, are given in 3) of Definition 1, and a holomorphic automor-
phism F' of a simply-connected normal domain D. We then have the follow-
ing Rothstein’s theorem.

LEMMA 1. (Rothstein [7]) Let F be a holomorphic automorphism of
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a simply-connected mormal domain D. Then there exist holomorphic maps
by of R, onto R.u, such that

ff(i)(zlv ] zn) = hzf(i)(fi(zb Tty zn))'

For a precise characterization of all holomorphic automorphisms of a sim-
ply-connected normal domain, we consider a holomorphic map @;..., = (@1, **+, ¢n)
of D into a product space of Riemann surfaces Ry, ---, R, defined by projec-
tion maps ¢, - -+, ¢», and we denote the image of @i..., by Mi..., = @...n(D).

We now define a notion of an admissible system of 7% holomorphic func-
tions.

DEFINITION 3. A system of n functions fi(Zi, *++, Zn)y ***y Sn(Z1y =+ 5 Za)
holomorphic in D is said to be admissible when

Tilesy or 2o, Folen oy ) = S22 0 i D,

If (41, +++, 3x) is @ permutation of (iy, -+, i), then (fiy, -+, f5,) and (fiy, ++ -,
Jfi,) are regarded as the same admissible system.

We consider for all admissible systems taken from (fi,:--, fy) the maps
D;....,, defined by @iy, --+, ¢;,. We have a set of all M,...,, and the number
of M,,...., is at most ( z ) If F' is a holomorphic automorphism of D, then

by Lemma 1 F' induces a holomorphic automorphism Ay X+« X hpeyy Of
Ry X+ X R, onto itself such that

f]k = hllr(il)(fn) (jk = T(il))'

Hence, if (fi (21, <++, 20), +-+, f1,(21, - ++, 2,)) is an admissible system, then
(fri(Ray o2y Zn)y =+ ~,f]n(z1, <+, Z,)) is also admissible, and
Moy =9i.... (D)
M,.... =hu— i Mz veetn)y 1oevtm 1eevtn ¢
J1cetdn ()( 1 n) {Mll-nin:@nmm(p)-
Thus we have:

LemMmaA 2. {M,...,} is a set of M,..., defined by admissible systms.
Let F' be a holomorphic automorphism of D, then F induces a holomorphic
automorphism {h..c;} of the product space Ry X -+« X R, such that each h,iocip
X+« X Ripes,y @ @ holomorphic map of M,,...., onto M,,..., .

For a characterization of holomorphic automorphisms of a simply-con-
nected normal domain D, the following Lemma 3 is essential.

LEMMA 8. Let @yy.ccon=(Piy, +*+, ¢1,) be a holomorphic map of D into
Ry X oo X Reyy then (M., Piy..op) ©8 @ holomorphic basis for the map @;,....,.

Proof. We first remark that, if H is a holomorphic automorphism of
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Ry X+ X R, such that
H(Ml..-zn) =M~71"‘]n

holds for admissible systems (f.,, ---, f.,) and (f,y, -+, f,,), then H induces a
locally one-to-one holomorphic map of D —{z; J(f., -+, f.,) =0, J(f5, -+,
f,) =0} onto itself.

The global rank of @;,...,, is n, and therefore the existence of a holo-
morphic basis has been proved by Stein [10]. Let ® be a holomorphic map
of D onto an analytic space X and (X, @) be a holomorphic basis for the map
@D;y...,. Then @;...., and @ are holomorphically dependent on each other,
that is,

Rank (@,...,,) = Rank (@, ®,,....,) = Rank (®).

On the other hand, from Definition 2 of a holomorphic basis, there exists a
holomorphic map % of X onto M,,...,, such that

¢i1...zn =Xo0.
Therefore
Rankx=n

at every point (2) with Rank (9;....,(2))=n. Now fi;---f,, are holomorphic
in D, therefore the fibres of ®;y...., over a point p of M,,...., consist of only
a finite number of analytic sets. This shows that the set X (p) consists of
a finite number of points in X and X is a proper map. By a theorem on
holomorphic maps (see Cartan [4], Theorem 1) X is locally homeomorphic
except the set

{p; peE @il"‘zn[‘f(ﬁil"‘sz)) = 0:[}.

Hence we have local holomorphic inverses Xz¢p, of X in a neighborhood U(p)
of pEM,,..... The aggregate of all %z(,, With pEM,,...., — [Piy.... {J(Dsy....)=0}]
defines a many-valued holomorphic map of M,...., — [(Dil...zn{J@il...ln) =0}] onto
X —[0{J(®) = 0}].

Now we prove that M,... is simply-connected. Consider any -closed
curve C on le...ln. We may suppose that C consists of the image of ordinary
points of the holomorphic map &;,....,, since the dimension of singularities of
M.,...., is at most 2n—3. Then the inverse image of C by &,;...., consists

of a finite number of curves Ci, ---, C,. Two end points (z!) and (2?) of C;
are equivalent with respect to the functions fi;(z1, <<+, 2n), **+, i, (21, =+ *, 22),
ie.,

JFu@) =129, « -, [, =F.,(2%)

and there exist » points (%), ---, (z'») in D and 2n curves Cy, ---, C;, Ci/,
.-+, Cy,’ such that C;, and C;/ (k=1, .-, n) satisfy the relation (1) of a holo-
morphic basis. Therefore we have a closed curve C;;'C,C;’, which is retrac-
tible to a point in D. Now we consider the image of C.;'CiC;/’ by @,,....,. It
is retractible to a point by a deformation F(p,t) (0=<t=<1). The restriction
of F(p,t) on C is a deformation of C. Thus M.,...,, is simply-connected.
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Therefore the aggregate {Xz(,} defines a one-valued holomorphic function x*
on M,...., — [P...;,{J(Dy....,) = 0}] with its value in X.

Now we prove that x™* is a continuous map of M,,...,, onto X. For this
it is sufficient to prove that x™' is continuous on {9;,....,(J(®;....,) =0)}. Sup-
pose contrarily that x7!is discontinuous at a point po € {D;;....,(J(Ds;....,,) = 0)}.
Then there exist two distinet sequences of points {p,} and {p;} both converg-
ing to p, such that

z = lim (X" Y(p,)) # lim (X~ Y(ps)) = &, z, 2 X.
% is holomorphic at # and %, we get
2(2) = 2(lim 27(p,)) = X (lim 27(p5)) = X(Z) = Po.
Therefore for disjoint neighborhoods U(x) and U(%), there exist two neighbor-
hoods Uj(po) and Us(py) such that
10100 (Us(P0) = [Diger1a{ T (Di..0) = 03]) C Ulw),
27300 (Ua(D0) = [Piyorcin{ (D)) = 0}]) € U(R).
In the intersection Ui(po) — [Dig...0py{S(Dis..rr) = 0}] and Ua(po) — [Dige.rn{(Dss..0r,)

=0}] there exists at least a point p for which %! is one-valued in a neigh-
borhood of p. On the other hand, we have

%E}(po)(p) € Ulx), XE;<pO)(p) eUx)
This contradicts the one-valuedness of %! proved above. Thus we have a

continuous map of M,,...., onto X. By a theorem of removable singularities,
we have a holomorphic map x™* of M,,...., onto X such that

@ = @iln-ln o Z'I.

Thus (X, 9) and (M,,....,, D;....,) are equivalent and our Lemma 3 has been
proved.

3. Now we can state the following

THEOREM 1. Let D be a simply-connected mormal domain. Then for
each holomorphic automorphism of D there exists a holomorphic auto-
morphism of {M,...,}. Conversely, any holomorphic automorphism H of
Ry X X Ry

w, = h”@)(wi), w; € %l, w, e ERJ,

which s also a holomorphic homeomorphism of {M.,...,}, induces a holo-
morphic automorphism of D.

Proof. The first assertion is the same as Lemma 2. Therefore we prove
the second. We first prove that a holomorphic map 9....,: D—M,..;, is a
holomorphic homeomorphism. Suppose contrarily that there exist two dis-
tinet points (29, (2') €D such that @,...,,(2°) = @;,....,(2"), then (2°) and (') are
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equivalent. By Lemma 3, (M.,....,, @i...;,) is a holomorphic basis, therefore
there exist a point (2) and two curves C, and C; such that C, connects the
point (2°) to () and C; does the point (2!) to (z) and A((z), (2); (2%, (#1))/(M.,...1,,
D;y...1;,) holds. Now in a neighborhood U(z) of (2) there exist two points (2%
and (%) such that (2%) lies on Co, (?%) on C; and @,...;,(2%) = 9y....,(?%) and
therefore J(9,....,(2)) =0. On the other hand, since (z) is an ordinary point
of @;,....,, we have J(@;,...; (2)) #0. This is a contradiction.

Now we consider a holomorphic map of D defined by
F,=05., 0Ho®;..4,

which is a holomorphic automorphism induced by H. It is necessary to prove
that F., and Fi=0...0,oHo®Py,...;, are the same holomorphic automorphism
of D. But we can see this easily by considering two systems {A,.>} and
{hx:ctr} defined by F;; and Fy, respectively. Thus our theorem has been
proved.

Theorem 1 gives us a complete characterization of all holomorphic auto-
morphisms of a simply-connected normal domain, and can be used for con-
struction and determination of rigid simply-connected normal domains.

By using the same terminologies as in theorem 1, we have

COROLLARY 1. A mecessary and sufficient condition that a simply-con-
nected normal domain is rigid is that all holomorphic automorphisms H
in theorem 1 are identical maps.

4. We consider a holomorphic homeomorphism of a normal domain onto
another. Let D and D’ be simply-connected normal domains defined by
SR, o0y 22)=Ti8) (0 =1, - -+, p) and f)/(2y, - ++, 22) =7,/(¢) (4 =1, - -, q), respec-
tively, then we have two sets {M,,....,} and {M,/...,,} and two sets of maps
Dyt D—>M,,...i, and @1..., : D'—M,...,,. If F is a holomorphic homeomor-
phism of D onto D’, then we have a holomorphic homeomorphism of M,,...,,
onto Mj...,, defined by

’ —1
@.71"'.771 OFO Q‘l"‘ln

and p=q (see Rothstein [7]).
Conversely, we can state the following

THEOREM 2. Any holomorphic homeomorphism H of R;X:--X R, onto
§R1IX'°'X§RP’Z
W, = hpecy(wy), J=1(4), w;eR, w,/eR/,
which is also a holomorphic homeomorphism of {M....,} onto {M)]..,},
induces a holomorphic homeomorphism @., cHo®..., of D onto D'.

The proof of this theorem is obtained by the same method as that of
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theorem 1.

By use of this theorem, we have a necessary and sufficient condition for
the possibility of a holomorphic homeomorphism between two simply-connected
normal domains.

COROLLARY 2. A mnecessary and sufficient condition that a simply-con-
nected mnormal domain D can be mapped one-to-ome holomorphically onto
another D’ is that there exists at least a holomorphic homeomorphism H
in theorem 2.
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