
ON AN EIGENVALUE AND EIGENFUNCTION PROBLEM
OF THE EQUATION Δu + λu = 0

BY IMSIK HONG

First of all, we shall observe a phenomenon on a two-dimensional eigen-
value problem of the equation Δu -f \u = 0 about the fixed boundary condi-
tion for a special domain whose boundary consists of a circumference of
a circle and its centre. Let us denote by D such a domain, by C its circular
boundary with radius R and by C* its centre which is also a boundary point
of D.

Next we take a sequence of annuli

A c A c cAiC

exhausting the domain D. The boundary of the annulus Dn consists of two
circular components. Let one of them be C which is the circular boundary
of D, and another be Cn of radius Rn where Hindoo Rn = 0.

Now consider an eigenvalue problem for the domain Dn:

Δu + \u = 0 in Dn,

u = Q on C + Cn,

Let the first eigenvalue and the first eigenfunction be \n and un, respectively.
Then we can readily show that the following phenomenon occurs:

When n tends to oo, the sequence {un} satisfying a suitable normalization
converges to the first eigenfunction of the whole circular domain together
with its centre, namely D -f- C* and the same is true for the eigenvalue,
i. e. \n tends to the first eigenvalue of D + C*.

In fact, let the polar coordinates be denoted by (r, θ) . Then u = a\JJ<*J λ, r)
4- a^Y^~\r} is a general solution for Δu 4- 'λu = 0 which is independent
of θ, where /0 and F0 denote the Bessel functions of the zero-th order, and
#! and #2 are any constants. As u = 0 on C^ and C, so we have the relations

Rn} = 0,

/"λR) =0.

Since /0(VλΓΛ ) -> 1 and F0(Λ/"λΓ/?w) ->• — oo for i?w -> 0, the first equation
implies that az must tend to zero, and hence the limit function of un becomes
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#ι/o(v'"λΓir) where at is to be determined by a certain normalization. From
the second equation there follows /0(v/ X R) = 0, so that the limit function
satisfies the fixed boundary condition on the circular boundary C.

Since we see that /0(0) = 1 Φ 0, the first eigenfunction of the same problem
for a circle never vanishes at its centre. Therefore, C* can not be
regarded as a boundary point of our limit function. But, we may explain
this phenomenon in the following way:

Our limit function satisfies the boundary condition except for a single
isolated boundary point C* (of course, of capacity zero) .

Thus this suggests us to investigate the following more general problem :
Let C be a smooth closed curve, Df be the bounded domain surrounded

by C, and C* be a closed set lying entirely in the interior of Df. We now
consider the domain D whose boundary consists of C and C*. We take
a sequence of domains

A C J D ί C CDnC

exhausting D, i. e. a sequence {Dn} such that limw_>oo Dn = D. Let the bounda-
ry of the domain Dn consist of C and Cn where Cn consists of a finite
number of smooth curves tending to C* as n->oo.

Now consider the eigenvalue problem:

Λu 4- \u = 0 in Dn,

u = 0 on C H- C».

Denote by \n the first eigenvalue and by un the first eigenfunction norma-
lized by

if
JJ

ίfyίσ = 1 and un > 0,

where dσ denotes the area element. Then, what would be the behavior
of un and \n as n tends to oo ? It was Prof. M. Tsuji who has kindly
recommended this problem for study.

In the present paper, investigating this problem, we obtain the following
result:

THEOREM. limn_»oo un = v and Hindoo λw = p exist and are determined in-
dependently of the choice of exhausting sequence. Moreover, the limit function
v and the limit value p satisfy the equation Δv 4- pυ = 0 in D together with the
condition v = 0 on the boundary of D except for a set of capacity zero, where
the exceptional points are identical with those of Green's function for the same
domain Zλυ

1) In particular, if C* consists of a finite number of smooth curves, then the limit
function v and the limit value p are the first eigenfunction and the first eigenvalue, re-
spectively, for the domain D itself.
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Especially if C* is qf capacity zero, the limit function υ and the limit value
p coincide with the first eigenfunction and the first eigenvalue for the domain
jy, i. e. D + C*, respectively.

The proof of this theorem will be given in the several steps as follows.

§ 1. Since our eigenvalue is a monotone domain function decreasing in
the strict sense, so we have

\n > Xfj+i for every n.

Moreover

here μ denotes the first eigenvalue of the domain D'. Hence, there exists
a limit value of λw as #-+oo.

Put

lim \n = p,
7l-*oo

then p^μ. This limit value p is uniquely determined no matter how the
sequence of exhausting domains is chosen. In fact, take another sequence
of exhausting domains

Let the boundary of ~Dn be C and Cn where Cn consists of a finite number
of smooth closed curves. Let corresponding eigenvalues be

λ>l» λg, *"» ^Ίi» '**

and set

lim \n = p.
W-»oo

Since Dn tends to D, there exists a DN such that Z5fc C DN for a fixed D*.,
hence λfc > λ,̂ . Therefore ~f> ϊ> p. On the other hand, fixing Dh we get
p^p, just in the same way. Thus p = p, so that limw-»ooλw = p is determined
independently of the choice of exhausting sequence.

§ 2. In order to investigate the behavior of the function un, we take in
D a domain A bounded by Γ and Cε where Γ consists of a finite number
of closed smooth curves which enclose C* and have the distance 28 from
C*, while Cε is a curve with the distance 6 from C. Moreover, we take in
the domain which is surrounded by Γ and includes C*, a finite number of
curves Γ' with the distance £ from Γ. Then Cε and Γ' bound another
domain A'. If we take an integer m large enough, then all of the Cn with
n > m become to lie outside of the domain A'.

Therefore

A'CA. for n^m.
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Now, we will show that the function un is uniformly bounded in A with
respect to n.

To prove it, let us take an arbitrary point p in A and a circle K of radius
8 about p. Since evidently K is contained in A', and also in Dn, we get,
by Schwarz's inequality

where a denotes the area of the circle K.
On the other hand, we have an equality

n r) Un(P) = -λ

where /0 is the Bessel function of the zero-th order and the integral in the
right hand member is taken over the circumference of the circle about p
with radius r. Multiplying both sides of (2) by r and integrating, we have

( 3 ) un(p) \£JQ(V^r) rdr = -L \8 Γunrdθdr.
Jo Art Jo Jo

From the beginning, let 8 be small enough such that 0 < 8 < J0/V^λ^ where
/o is the first positive zero of the function /0. From the property of /0 we
have, for ε^f^O,

%* r) > JQ(V^r) ^ /β(V"xΓ θ) ΞΞ k > 0.

Then from (3)

and therefore

(4) \un(p )\^j~<

which, together with (1), implies

I un(p) I k ̂  ~2] \χ \un I da- < -|- Vβ".

Hence

( 5 ) I ^(^>)| < - — τ-=- for every n^
kv a

Thus {un(P)J is uniformly bounded in A.

§ 3. ζdUn(P) fax} and {dun(p)/3y} are also uniformly bounded in A. In
fact, 'dun/'dx also satisfies our differential equation, i. e.
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where (x,y) denote the coordinates of p, i.e. p(x,y).
From the same reasoning as in the preceding paragraph, we have the

same kind of inequality for n^m, as (4) in § 2,

•^TΓ-ίίlτt JJi
dσ.

On the other hand, we have the relation

so that

((( c)Un , \* Γ Γ -
I \ \ ^ ασ ) < \ \
VJJjr 3ΛΓ / — JJjΓ •ίi <

This implies

( 6 ) OUn(P) for

Thus {3ttn(p)/3ar} is also uniformly bounded in A
The same is true for {€)un(p}/c)yj.
After all, by the theorem of Ascoli-Arzela, we can select a uniformly

convergent subsequence {un'} from {un} Let us denote its limit function
by v, i.e.

lim
n -*oo

= v n

§ 4. Here we study furthermore about the uniform boundedness of the
sequence {un} in D. Let Dn be a domain whose boundary consists of Cn and
Cx where Cw represents the boundary of Dn as we defined already, while C'
does a closed smooth curve lying in the interior of the domain Dn and
enclosing Cn.

Since Dw 5 A», all of the eigenvalues of the same problem for Dn are
greater than the first eigenvalue λw for Z)w. Therefore the Green's function
Γn(P>q) of the equation Δu + Xww = 0 for Dw is uniquely determined; here

where Hn is the regular solution of Δu 4- \nu = 0 for
By Green's formula

dσ(q}'
where v denotes the inner normal of the boundary of Dn — E, and E is
a small circular domain around p and K is the boundary of E. By making
the radius of the circle E tend to zero, we get
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!*» Γ̂-̂ - ds for

as un = 0 on Cn and Γn = 0 on C» -f O.
In order to obtain an estimation for un in the domain D9l, we introduce

an auxiliary harmonic function φn such that

Δφn = 0 in Bn,

( 7 ) Ψn^Un on C',

^ = 0 on C».

By Green's formula

( 8 >
By making the radius of E tend to zero and from the boundary condition
for φn and Γn, the left hand side of (8) becomes

As Aφn = 0, JJΓn + λnΛi = 0 in Dn — E, so the right hand side of (8) is equal
to ^n$$ΦnΓndσ(q). Therefore by making the radius of E tend to zero,
we get

ΓΓ
un(P) = λ n \ L φJΓndσ.

From this and the maximum principle for harmonic functions, we can obtain
an inequality

( 9 ) I un(p) I < λ» max | φn(q) \ L Γn(p, q) dσ(q).
qeC' JDn

Next we shall estimate Γn(p,q) which is represented as

Γ*(p, q) = - -j- r0(^/^Γrw) + 5 - 7»(#, ̂ ),

where J5 represents the first maximum value of YQ/4 and 7n(p9 Φ & function
which satisfies the conditions

Δu -f λί*w = 0 in Dn

U — B — -T- FO(Λ/ λ^riiα) on the boundary of Bn.

Dn §i Dn assures the unique determination of yn.
Since 7,, is a superharmanic function, its minimum is attained on the
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boundary and hence Ύn(p , q) ϊ> 0.
Therefore we get

(10) 0 ̂  Γn(P. q}<B-± Fo(V'T^)

which has — log r^/2π as the main term. Then we have

AT.

Finally we will give an estimation for the right hand member. If we take
a circle d which contains the domain D' in its interior, then on account of
the property of F0, we have

- 0

- -T ̂ (
4

where k' is independent of n. So we get

Un(p) ^ \ntt max ww(^) .
qeCr/

Moreover, from § 2, Cr can be taken in A such that

max i4n(q) < M, and X t > λ«.
βeϋ7

Thus we obtain an estimation

(11) Un(p) ^ \ikiM in Dn for any n,

where the right hand side is independent of n.
Now the domain defined by

β - Dn - Bn

is surrounded by C and C' only. Then the uniform boundedness of {tin}
in D can be shown just in the same way as the above. Thus, combining
the results of § 2 and this paragraph, the uniform boundedness of {un} in
D has been established.

§ 5. For our limit function v the normalization condition I \ v2dσ = 1 holds

as shown below. By setting

un(p)=—' m

0 in
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the definition of un in Dn is extended into the whole domain D.
Because Un is uniformly bounded in D by § 4,

lim f f Uldσ = ίί lim U*dσ = ίί Λ/<r.
n _>βoJJD JjDr^oo " JJD

But

lim (( U2

ndσ = lim (( njAr = 1.
w-»oo JJ.D W n-»oo JJ.Dn

 W

Hence

(12)

§6. Next we shall show that the limit function v and the limit value p
satisfy the integral equation

(13) u(p) -

where 2τtG(p,q) denotes the ordinary Green's function for the domain D,
and hence

where H denotes a regular harmonic function in D.
In the first step, let p be a fixed interior point of D, then p e Dn for su-

fficiently large n. It is known that (13) holds true for un, λw and Dn, namely

Un(p) = λ,n I \ Gn(p, q) un(q) dσ(q)
JJjE>n

here 2τrGn(p,q) denotes the ordinary Green's function for the domain Dn.
Now by setting

M,,) = \Gn(p'q) ίn D"
I 0 in D-D»,

we have

Un = *.n

and

, q) < MG (p, q),
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by using the uniform boundedness of Un in D.
Because G(p,q) is integrable, so by Lebesgue's bounded convergence

theorem

lim \\®n(P,q}Un(q)dσ(q) = (( lim<§>(p,q)Un(q)dσ(q)
n-^oovJ-ls JJA>7l-»oo

Thus we have

In the second step, it will be seen that the relation still remains to hold
even if p tends to a boundary point. What is to be shown is:

lim u(p) = λ lim if G(p, q) u(q) dσ(q)
C\A\ *~*1'0 χ>-*p0JJ2>

= X (f lim G(p, q) u(q) dσ(q) = X f [ G(p*, q) u(q) dσ(q)
JJD^-^Q JJD

where pΰ is a boundary point of D and

G(p»,q) = limG(pfq).
iJ-*i>o

In fact

1 _

G (p, q) ̂  const- log — , r = M

u(q)<M in A

G(£, )̂ M(^) ̂  const- log — in D.

By Lebesgue's bounded convergence theorem, we get the result required ..
Thus for any point in D and on the boundary point of D,

(15) v(P) = PG(p9 q} v(q) dσ(q)

does hold.

§ 7. For any interior point p of the given domain D, our limit function
and limit value satisfy the equation
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Δu + λw = 0.

In fact, from § 6, for υ and p

Let p(x,y) be an arbitrary interior point of D and K a circle about p small
enough to be contained in D. Then

P\\DG(p,q)v(q)d<r(q} = P§^κG(p,q}v(q) dσ(q] + p^jG(P,q}v(q) dσ(q) .

Denote the first and the second integrals in the right hand member by Λ
and 72, respectively. Then

'-\T f* f* C±ί~* C^2 Γ
OJ Λ I I Q\J / \ ι / \ G' JLΛ

-^ = JJ^^Γ v(q} dσ(q]' "a?-=

The same is valid for a2/ι/ajy2, i.e.

Therefore

as JG = 0 in D — K
As for 72, it is well known

so that

Q in Z).

Moreover, when p tends to a boundary point, v(p] tends to zero except for
a set of capacity zero. In fact, from § 6

G(pQ,q)v(q)dσ(q)

where linv^G (/>,#) = G(p0,q), since we know that G(p0,q) becomes zero
except for a set of capacity zero.

For the special case where the closed set C* is of capacity zero, the
limit function v is identical with the first eigenfunction of Df = D + C*.
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§ 8. What is left to be proved is the uniqueness for the limit function v.
As in the last part of § 1 where the uniqueness of p was proved, taking
another sequence of exhausting domains

Let the corresponding first eigenfunctions be

and v be a limit function of it. We shall prove v — v.
First consider the case where C* consists of a finite number of smooth

closed curves. In this case, because the boundary curve is smooth every-
where, G(pQ,q)~Q for all p0 on the boundary. Therefore from (15), v
satisfies the fixed boundary condition. Hence v and p are the first eigen-
function and the first eigenvalue of D. From the well known property of
the first eigenvalue of such a domain, p must be simple, and the first eigen-
function must be unique, i. e. v = v.

The above fact shows us that the first eigenfunction has the continuity
relation on the domain provided the boundary of the domain consists of
smooth curves.

Now we return to the general case, where the boundary does not need to
consist of smooth curves only. Suppose that v φ v in D. Then there would
be a point p such that

and for sufficiently large integers m, n and a small positive number 8,

So we would get

(16)

But, on the other hand, we have

(17)

where η can be any small positive number making m and n large enough,
by the above mentioned continuity relation between the first eigenfunction
and the domain, as the boundaries of Dm and Dn consist of smooth curves.
Then (16) contradicts (17).
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Therefore v = v, which proves that our limit function v is determined
independently of the choice of exhausting sequence. Thus our theorem has
been proved.

At the conclusion of this paper, the author wishes to express her grati-
tude to Prof. M. Tsuji for his kind suggestions and continuous encourage-
ment and also to thank Prof. Y. Komatu for his considerate advice at all
times.
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