By Hirosi TODA

This note is a summary of the announcement in June meeting of the Japanese Mathematical Society, and its full discussion will appear in the Journal of Institute of Polytechnics, Osaka City University.

Our theory depends upon the homology theory of abelian groups of Eilenberg-MacLane [3], particularly upon the calculations of H(A(Z, n)).

Our final results are stated as follows; the n-dimensional homotopy groups $\pi_{\kappa}(S')$ of r-spheres S'are completely determined for the following pairs; (n, r) (r + 3, r), (r + 4, r), (s + 5, s) for $r \ge 1$ and $s \ge 5$, and furthermore their generator may be constructed by means of Hopf constructions, suspensions and compositions [6].

Consider a CW-complex K_r with all the vanishing homotopy groups except $\pi_r(K_r) \approx Z_{\infty}$ (Z_r indicates the cyclic group of order r). Then the (singular) homology groups of K_r are isomorphic to those of A(Z, r), which have finite generators [3] [4]

Realizability of such K_r follows from a theorem of J.H.C. Whitehead [7]. But later we need a special K_r which is the simplest in the sense that it has the minimum number of ncells, (See fig. below).

Lemma 1. Let K_{τ}^{n} be the n-skeleton of K_{τ} , then we have the following isomorphism:

$$H_{n+1}(A(Z,r)) \approx \pi_n(K_r^{n-1})/\Im_{\pi_{n+1}}(K_r^n,K_r^{n-1}).$$

By making use of this lemma, we can construct several maps, by combination of which we can represent any generator of $\pi_n(S^r)$.

In order to prove their essentiality, we need the following lemmas.

Let i_n be the generator of $\pi_n(S^n)$ represented by the identity map, and let \P_n be the generator of $\pi_{n+1}(S^n)$ $(n \ge 2)$, then the generator of $\pi_{n+2}(S^n)$ is $\P_n \circ \P_{n+1}$. Let p, q be quarternions of unit absolute value, and let q. be a quarternion whose real part vanishes. Then the products p.q and p.q. p induce the mappings $S^3 \times S^3 \rightarrow S^3$ and $S^2 \times S'$ $\rightarrow S^3$ of types (i_3, i_3) and (i_4, h_6) respectively, the Hopf constructions of which represent the elements \mathcal{V}_4 of $\pi_7(S^4)$ and α_3 of $\pi_6(S^3)$ such that their generalized Hopf invariants are H(\mathcal{V}_4) = i_7 and H(α_3) = η_8 respectively [2][6]. Let \mathcal{V}_4 and α_6 be the (n - 4)- and (n - 3)-fold suspensions of \mathcal{V}_4 and α_3 respectively.

In the previous paper [5], we proved that the product [i,, i4] is equal to 2 $\mathcal{V}_4 - \alpha_4$ in $\pi_7(S_4)$. As corollaries we have

Lemma 2. 2 $Y_n = \alpha_n$ for $n \ge 5$.

and

Lemma 3.
$$[\gamma_4, \gamma_{14}] = \kappa_4 \circ \gamma_7 = \gamma_4 \circ \gamma_5$$

 $\alpha_n \circ \gamma_{n+3} = \gamma_n \circ \gamma_{n+4}$
 $= 0$
for $n \ge 5$.

According to the calculation of product $[i_{4Y+1}, i_{4Y+1}]$ in [61, we obtain

Lemma 4.
$$[i_s, i_5] = V_5 \circ \eta_8$$

 $V_{n^0} \eta_{n+3} = 0$
for $n \ge 6$.

Applying the generalized Whitehead product of Blakers-Massey and of the author to quarternion projective space, we have $[V_4, 1] k(V_4 \circ V_7)$ for some integer k. Also an application of the generalized Freudenthal invariant [6] gives

Lemma 5. 2 ($Y_n \circ Y_{n+3}$) = 0

for $n \ge 5$.

Direct construction of homotopy leads us to the following lemma due to M.G. Barratt and G.F.Paecher [1]; Lemma 6. There exists an element β_n of $\pi_{n+s}(S^n)$ such that

for $n \ge 3$.

Essentiality of $\eta_n \circ \eta_{n+1} \circ \eta_{n+2}$ was shown in [5] with the generalized Freudenthal invariant of the author's, but in this consideration we can show the essentiality without use of any Freudenthal invariant.

iii)
$$\pi_{nts}(S^n) = 0$$
 for $n \ge 7$,

- iv) $\pi_{n+6}(S)$ has 2 or 4 elements for $n \ge 8$,
- v) $\pi_{n+\tau}(S)$ is the direct sum of Z_{15} and a group of elements $2^{\frac{1}{2}}$ for $n \ge 9$.

Calculations in lower dimensions lead to

Theorem II. In lower dimensions $\pi_{\kappa}(S^{r})$ has the following types and generators,

n	6	7	6	7	8	9	7	10	11
r	3	4	2	3	4	5	2	5	6
$\pi_n(S^r)$	Z12	Z. + Z.2	Ζ2	Ζ2	Z ₂ + Z ₂	Z 2	Z 2	Z 2	Zoo
generators	¢3	V4 , X3	$\eta_1 \circ \alpha_3$	N3014	74 . 1/5 , 1/4 . 77	V5 oV3	120 730 14	V5 · 73 · 74	[16, 15]

Now there exists an element of order 3 in $\pi_{\rm rest}(S^n)$ (cf. 4). Considering the relation between the suspension homomorphism of A(Z, n) and the suspended space of complex projective space, we can realize the elements of order 3 by Hopf construction. We have

Lemma 7. α_n is of order 6k

(k : integer).

The construction of K_{τ}^{*} and the calculation of $\pi_{n}(S^{*})$ are accomplished alternatively and stepwise. For a suitably higher dimension K_{τ}^{**} is designed in the following figure:

Consequently we have

Theorem I.

- i) $\pi_{nts}(S^n) \approx Z_{24}$ for $n \ge 5$,
- ii) $\pi_{n+1}(S^n) = 0$ for $n \ge 6$,

(*) Received July 7, 1952.

[1] M.G.Barratt and G.F.Paecher, A note on $\pi_{v}(v_{n,m})$ Proc. Nat. Acad. Sci. U.S.A. 38 (1952) 119-121. [2] A.L.Blakers and W.S.Massey, Homotopy groups of triads I, II, Ann. of Math. 53 (1951) 161-205 and 55 (1952) 192-201.

[3] S.Eilenberg and S.MacLane, Cohomology groups of abelian groups and homotopy theory I, II, III, Proc. Nat. Acad. Sci. U.S.A. 36 (1950) 443-447, 657-663 and 37 (1951) 307-310. [4] J.P.Serre. Homologie singuliere

[4] J.P.Serre. Homologie singuliere des espace fibres. Ann. of Math. 54 (1951) 425-505.

L51 H.Toda. Some relations in homotopy groups of spheres. Jour. of Poly. Osaka. City Univ. 2-2 (1952) (in press).

[63] G.W.Whitehead. A generalization
of Hopf invariant. Ann. of Math. 51
(1950) 192-237.

771 J.H.C. Whitehead. On the realizability of homotopy groups. Ann. of Math. 50 (1949) 261-263.