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O Introduction

In general theory of comormal

mapping of multiply connected do-

mains, various types of special

domains have hitherto been used as

canonical ones; In particular, for

instance, whole plane slit along

parallel segments, whole plane or

circular disc or annulus slit along

raαial segments or circular arcs,

etc. It is a basic problem m the

theory to establish the existence

of conformal mapping of a given

domain onto such a canonical domain

of respective type as well as to

assert the uniqueness of mapping

under suitable normalizing condi-

tions
 β
 It is also an important

problem to discuss various kinds

of distortion concerning the fami-

lies of univalent functions in a

given canonical domain, some of

which is not only Interesting by

itselr but also useful as a clue

of existence proof.

With respect to canonical do-

mains of the above mentioned types,

these problems have been investi-

gated from various points of view;

cf , for instance, Komatu C3 3

The existence proofs have first

been given by Hubert [IT, Koebe

[1,2,6,7,81 and Courant [1,2] or

by Koebe [3,4,53, especially based

upon a potential-theoretic method

or upon the so-called continuity

method, respectively. On the other

hand, the extremal properties be-

longing to such canonical domains

have been clarified, with respect

to distortion, by de Possel 1 1 1 ,

Grδtzsch 11,2], RengelL 1 ] and

others, and further been noticed

to be available for establishing

the existence proof. Indeed, the

existence proof of mapping onto

such a canonical domain has also

been succeeded by means or purely

function-theoretic methoαs alone;

cf de Possel L11, Rengel [2] ,

Grδtzsch L3 I « Such a prooί may

be regarded as a direct generaliza-

tion of that of Riomann's mapping

theorem concerning simply connected

domains published by Radό [1]

whicn is due to L* Fejer and F

Riesz.

, there are further types

of canonical domains sucn as, for

instance, whole plane slit along

two sets ol parallel segments being

perpendicular each other, whole

plane slit along racial segments

as well as circular arcs, etc. The

existence of comormal mapping onto

such a canonical domain has also

been shown by Koebe ]_ 3,4,51 by

means of continuity method or po-

tential-theoretic method.

In the present Note we shall

clarify the extremal properties,

with respect to distortion, be-

longing to such canonical domains

by means of which we shall then

notice that the existence proof of

coniormal mapping onto such a ca-

nonical domain can be reduced to

the problem in case of extremely

lower connectivity, in lact, the

one concerning the essentially

lowest connectivity. We shall

further discuss the corresponding

problems with regard to the related

types of canonical domains, espe-

cially, parallel strip slit along

horizontal and vertical segments

in detail.

Although throughout the present
Note we restrict ourselves to
case of finite connectivity, some
of the obtained results will imme-
diately be extended to case of in-
finite connectivity.

1. Whole plane slit along

horizontal and vertical

segments.

Let us consider an rt-ply connec-

ted domain P laid in the z-

plane the boundary of which is

supposed to be composed of ot dis-

joint continue C^ C'y- i, - • , ΎL) •

Let j-(Xs) be a function univa-

lent in D • In general, the

image or V by mapping vr
 s
 £(%)

be denoted by A and the boundary

component of A corresponding to

Cj. be denoted by [̂  The

assumption that every boundary com-

ponent of I) is a continuum does

not restrict the generality
o
 Other-

wise, i.e., if some of them are

isolated points, they are merely

removable singularities of mapping

function, and hence the proolem

will then reduce to a case or lower

connectivity.

We now αenote by A^ the family
consisting of all ΫL-ply connected
domains Δ whose /> boundary
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components ζ ($.= L, ••, f) are
segments with gradient oi , and
by /\* the family consisting of
all ot-ply connected domains Λ
whose rn. - p boundary components
Π Cj = />-»-ί, "p '*->} are segments
with gradient ck f> being an
integer such that Q-£ Ϋ ύ '^ In
particular, A^ = Άtw, is re-
garded as the family consisting of
all univalβnt images of D

Let fc^ be an arbitrarily
fixed point in D Suppose that
the functions f (z) in consi-
deration, being univalent in J5 ,
are normalized by the condition

Iim (£(*)- v
 L

r
 ) = 0.v z

 ~
 z
 '

In case 2^ = oo , the condition
must be replaced by a modified
one, i.e ,

- z ) = 0

We then denote by ^ C^) and
ίΓ/Γ Γz-) the families consisting
of normalized functions which map
Ό onto domains belonging to /\*

and Ά* , respectively. '

It is evident that neither of
the families d^CK») and 'f* (z.^
Is empty for every possible values
of o< and p . In particular,
^/(z^) =» ̂ C ^ o o ) consists
of all normalized functions univa-
lont in D On the other hand,
as is *ell-known, the family
c C ^ - ) = '^C*-) consists of
the unique function mapping J) ,
under the prescribed normalization
at Z

M
 , onto whole plane slit

along parallel segments with gra-
dient o( cf de Possel Γl] .
Moreover, the function belonging
to the family J^CZ^) with any
o( is expressible by those with
special oC

f
s; in fact, denoting

by £(%<; X* , oC ) , in general,
the unique function belonging to
cf^Γffc^) 9

 t n θ
 identical re-

lation °°

holds good; cf. Grυnskyll] or
Schiffer C1 1 . This fact may be
slightly generalized. Indeed,
the same remains true also if we
suppose, in general, £(Z; Z^ OL)
e^rO/N^^^tfUfor any ψ ,
wnile the general existence theorem
for such functions is a main pur-
pose of the present Note

e

function defined in £> and sa-
tisfying the preassigned normali-
zation at z^ . All such func-
tions being admitted, we then in-
troduce a functional defined by

Consequently, any admissible func-
tion is expanded around z

Λ
 in

the form

the dotted part being composed of
the terras of degrees higher than
unity. In case %

m
 -=

s
 00 , an

evident modification must, of
course, take place; namely, 1/(2-^)
must be replaced by % .

He first state a fundamental
distortion theorem concerning
(Ll.il , yielding a generalization
of a theorem due to de Possel Cll

Theorem 1. If j(z> *„,) € f?*czj
and ή>(z

}
z^ € ̂ β

α j , then

Let now (z
 ;
 Z

Λ
) be any

the equality here is valid only il

f s Φ
Proof. We shall follow a method

due to Grunsky [13 In view of
the definition of c^'

ιc/a
r*

0β
 > and

9>° (^00 ) >
 W θ
 immediately

deduce the functional relations,
satisfied along boundary components,
of the form

and

3̂. and ^ denoting real con-
stants o We may suppose that the
basic domain is a bounded one en-
closed by regular analytic closed
curves; otherwise, it is only ne-
cessary to resort to a customary
procedure of intermediate auxiliary
mappings* The functions j- and
<p being then regular also on
the whole boundary, we get, by
means of Green's formula,

JJ
p
 \ί'- Φ T ^

X

^ 1

where
element

denotes the areal



#e now estimate the curvilinear
integrals in the right-hand side.
It is evident that

in fact, the left-hand side ex-
presses exactly the negatively
computed area of the complementary
set of the image of V by the
mapping w ~ f C*-) Because
of the same reason, f being
merely replaced by φ , we see
that

)

Since j and φ are, of course,
one-valued, we get, for j«i, , f>,

and

we get similarly, for j = f+ ί/ --,

and

JJ If'-
which implies immediately the
inequality stated in the tϋeoreiru
The equality sign tnere can evi-
dently appear only ii f' Ξ φ

/
 ,

from which the identity f ~. φ
must follow in view of the assigned
case 'Z'vo — °° can be treated with
an evident modification, ϊne
prooi' has thus been cornpleteάo

Prom the last inequality con-
tained in the above proof yields
a more precise result. Namely,
we can state the following corol-
lary

Corollary 1. Under the same
assumption as in the Theorem 1,
we have

- ?u in 2 ̂

where X2 Γ F ] denotes, in gene-

ral, the area of complementary set

of the image of p by mapping

ΎΓ ~ F .

This corollary is further a
generalization of a theorem due to
Tsuji Cl] stating that the unique
function φ (z

/
 oo) of

^V«rt(siw C«Γ>) satisiies the
inequality

where S2 denotes the area of com-
plementary set of the basic domain
Ό being supposed to contain the

point at infinity; In fact, we may
take $(z, O C ) Ξ % in the corollary
with z^ — oo and then get

]=-0

Corollary 2. If φ
h
(z,

^

We thus obtain

By means of residue theorem, we
further get supposing %, φ o

Hence, we deduce the relation

Proof. In vieΛ of (̂ ^ € ̂ ,\(z^)
and φ f ̂

/z
(^ ) c / ^Λcz.j. ) ,

the proposition follows immediate-
ly from the theorem.

By making use of the above
proved theorem, we can now charac-
terize the function which maps a
given ox-ply connected domain onto
whole plane slit along horizontal
and vertical segments, i e , onto
a domain of the type ^ ^ z ^ )
r\'ί^,° (I*) > by its extremal
property which is by itselx avail-
able for existence proof of such
a mapping.



In order to perform the existen-
ce prooi entirely, it will remain
only to give an existence proof in
a aίrect manner concerning the
Goutly connected domains; namely,
the proof of existence theorem in
general case can thus be reduced
to that in doubly connected case
which will be supposed ior a while
as kno*n.

"iΊ/e now preceQe the general exi-
stence theorem by a lemma stating
a special case

Lemma. Let any TL-ply connec-
ted domain D in the z, -plane be
given, the boundary of which is
composed of 'K, continua C^
(} = 1,.--, Ή,) Then, D can be
mapped conformally and univalently
in such a manner that ore — i com-
ponents Cj (}— i, •--, ΎL- i) cor-
respond to vertical slits and the
remaining component C^ corres-
ponds to a horizontal slit More-
over, at an arbitrarily fixed point
fcββ interior to D , the mapping
function w = φ (z, £«, ) - can be
subject to a normalization such as

<t>(*} O = γ~- + o(i) (z-> O

in case Ί
M
 ~ <*>

 t
 the con-

dition being, of course, replaced
by Φ CL) oo)= z +• o CD (x.-*oo} .
The mapping function is uniquely
determined by tnis normalizing
condition. In other words, the

family f?-'? (*-*>* &-ι C*Λ
consists or a unique function*

Proof. We consider a varia-
tional problem to minimize the
functional ULCLCS'}, any function
J- belonging to ^X^^αo) being
admitted as an argument function.
Since the family 'f£_

L
 {*«,) is

normal in the Montel's sense and
compact, a solution of the problem
does surely exist. Let <p
~ψ(Z O be a minimizing function,
i.e./

We shall show that also ψ

6 cfc-T^
51
*^ '

 For that
 P

U Γ
P°

s e
»

we now suppose the contrary,
i.e., that φ did not belong to
fc-^CZ-e,, ) . Then, the image

of at least one among Cj C j,
= i, •-•; *L-I), Cc-i say, by the

mapping w — φ(Z-;
 z
<») would

not be a vertical slit. Let the
image of C

&
 be denoted by I?

We denote by

expansion being valid around
w =^ oo

 f
 the function mapping

the doubly connected domain enclosed
by two continua -ΠUi and f^
univalently in such a manner that
these boundary continua correspond
to a vertical and a horizontal slit
respectively. Here, use is maαe
of tne existence in άouoly connected
case! Then, in view of Theorem 1

Ή., %
OO)
 z- f-, φ in the theorem

being replaced by z, oo, ̂
/
 %

?
 w",

respectively , we get

< ^ 0.

the equality sign in the last in-
equality being excluded because or
OCCv^O ^ W o It is evident

that xcψo-z*,)) 6 T\ <:**>)

while we get
 1

which contradicts to the extremality
of φ . Thus, we must really nave

*/* hence <p

Next, in order to show the uni-
queness of the mapping function, we
denote by Φ*(Z; Z*,)

 π/
 any func-

tion belonging to î .j (z
a
»)r\j\^.

i
 ( Ό .

The difference φ*— φ is then
regular and bounded throughout D
and possesses constant real parts
along C C|= î  ...

 f
 /n.-t) and a

constant imaginary part along C^
Hence, we must have

Cf. also the uniqueness prooi for
Theorem 2 stated below.

Λ'e are now in position to state
a general theorem on existence as
well as uniqueness of the function
mapping a given domain onto wnole
plane slit along perpendicular seg-
ments .

Theorem 2. Any it-ply connected
domain D bounded by ΎL continua
Cj (}— 1, —, TL ) can be mapped
coniormally and univalently onto
whole plane slit along horizontal
ard vertical segments in such a
manner that its J

3
 boundary compo-

nents C. ( j ±r f>) correspond to
vertical slits and the remaining
oi — p components C^ Cj. y f>) cor-
respond to horizontal slits*
Moreover, under the normalizing
condition at a fixed point 2

Λ

interior to D , the mapping is
uniquely determined. In ether
*orcs, the family / Γ

7
'

7
^ ) ^ 'f~

μ
°<Z

m
)

for any f> with / έ ^ έ ^ con-
sists of a uniquely determinate
function.
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Proof The theorem is well-
known in case j> ~ 0 or p= Ή-
as de Possel's one and shown in tne
lemma also in case /> = /*.— t .
We may suppose f > 0 The family

Λj-τt/εγ
2
^ being normal and com-

pact, the variational problem

foxίφl= Max flUCfl, <M£i

possesses surely a solution φ

ss. φ(z
;
 z^)* In order to show that

also φ € 'flV*-) > W θ S U
P -

pose tne contrary. If, for in-
stance, ί

+̂
ί were not a horizon-

tal slit, then it is possible,
based upon the preceding lemma,
to map the (f> +• i) -ply connected
domain enclosed merely by Π Q-ίy

•"•//>/ h+i) univalently in su*ch a
manner that the j* continua
Γ (}g />) corresponds to a hori-
zontal slit, the mapping function
X ( w ) being supposed to be nor-

malized at w = oo . Since
%(w) φ wr , it follows, in

vi&w cf Theorem 1, that

and consequently, for a function

This contradicts to the maximizing
character of φ . Tnus, it is
asserted that φ £ cft^fZ^) and

henc* φe f-f
/
\
φ

We next prove tne uniqueness of

£*o) * Let φ*(Z) z
Λ
)

be also a function belonging to
/v^r^o) r\ 'ί^°Cz^ ^Then, by

means of Theorem 1, we get

and

and hence the equality Tf^(^ί<p J
=
 /

?^ί^Cφ]
 β
 Therefore, again in

view of Theorem 1, we assert,

Φ* = Φ,
the desired result©

WΘ have hitherto considered the

families f/f?*,) and 'rfcz*)
merely for special values of σ( ,

i.e., for ô  == τr/J2L and d •=• 0 ,

and entered upon the discussion
of existence ot a non-empty family

Jy'*'*'(*.*>') /N ̂ V * * ) But,
by means of a quite similar proce-
dure, the result can be modified
in a somewhat general form. For
instance, corresponding to Theorem
1, the following proposition will
be verified.

Theorem 3. Let o( and β be
any real constants, and let fur-
ther -J-(Z; z

Λ
) £ ^

β
7*

e o
) and

x . Then

the equality sign is valid only

n f = Φ
The Theorem 2 is generalized

in a corresponding manner, stated
as follows.

Theorem 4* The family fp (z^)
/^'fp <£<*>) > for every set of
possible values of f>, σC and

f!> , consists of a unique func-
tion

c

The results obtained in the
present section will further be
generalized in a following manner,
Let o^ <Γ/c= i, •-, H, ϋ ^ oα.) be
any real number. Then, the problem
establishing the existence of
mapping of an Ή. -ply connected
domain Ό onto whole plane slit
along segments with A. graαients
in such a manner that, among v\^
boundary components C* , the

assigned k < * = V , *; Z./>«.= *O
components correspond to segments
with gradient oL^ can be reduced
to the problem in "k-ply connected
case, i.e., the problem establish-
ing the existence of mapping of a
"k-ply connected domain onto whole
plane slit along & segments with
gradients oĈ  ( κ.=ct

;
 ---

y
 -£.)

 β

The uniqueness proof is easy,

2. tfhole plane slit along

radial segments as well as
circular arcs

β

We consider again a domain £)
cf the same character as in the
preceding section and denote by
J\ , in general, its ccnformal
univalent image. Further, let the
boundary components of D be de-
noted by C Ci= I-, -

 f
 Ή-) and

those of A by Γ 6, « 1, , oχ) ,
respectively. *

 d

We now denote by Rj, the
family consisting of all

 r
n, -ply

connected domains A whose f>
boundary components ΓJ Ĉ  = î - v f

7
)
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lie on radial half-lines axvv^^c
respectively, and by R.j the
family consisting of all or.-ply
connected domains Δ whose Ύ^-~/
boundary components J7 O = H Λ
--- , 'vO lie on raαial half-

lines respectively.

We further introduce the
families K j, and 'K

r
 simi-

larly by taking the concentric
circles |w| = cj. instead of
the radial half-lines arg w=c$.
in case of R_

p
 and 'fL

r
 ,

respectively.

Here also f> is supposed to
oe anγ integer such

 /
that Oά f> ̂  OΛ_

In particular, R_
o
 = ^ = K

o
 =. '/C^

is regarαeά as the family of all
univalent images of D . It may
also oe noticed that we may sup-
pose without loss of generality
all the boundary components C^
to be ccntinua but not isolated
points*

Let 2
0
 and ^ be two dif-

ferent points interior to Ό ,
being arbitrarily fixede Suppose
that the functions -f(Z) univa-
lent in V are normalized by the
conditions

In case 2,^=00 , the second
condition must be replaced by a
modified one, namely

HVΘ then denote by TP^^CZ-o,
^(**, ZJ, &!,(z., zj) and

 p
*

the lamilies consisting 01 all
normalized functions whicn map D
univalently onto domains of D_
%

p
 , K

t
 and 'K , r e - "

spectively^
r

Evidently, neither of those fa-

milies is empty. In particular,

the family %(
Zo>
z
βB
)z "

of the last mentioned mapping
functions at Z

o
 , due to Grδtzsch

Ll,2l and Rengel ill, are well-
known. They now can be generalized
to a iundamental distortion theorem
stated in the following form.

Theorem
and Φ(i;
then

If

the equality is valid only if

Proox
e
 We shall follow a method

due to Rengel [ 1 ] , We consiαer
an annulus r < \y* \ <• R_ con-
taining the whole boundary of the
image of Ό by the mapping
w — φίZ) Zo Zco) We then denote

b

the smallest annulus which contains
the doubly-connected ring domain
enclosed by the image curves of
\w\-^ Ύ and tw|=K. by the
composed mapping α)
« f Cφ-Vw; z.,t

Λ
\ z

o
 z^ . It is

easily seen that

and

We now observe the parts of the
images of J) by the mappings -v̂ = φ
and cυ =n £ contained in the annul!
r < K l < R, and t

r <
l^l<ClR_ ,

respectively. We cut thβ3θ parts
along positive real axis and then
map the thus obtained domains

eventually pieces consisting of
some domains — by the principal
branch of logarithm:

of all normalized functions univa-
lent in ΐ> . It is also a well-
known fact that each of the fami-
lies TfL^Cz., « » ) «

 f
K

o
(Zo, ίioo)

and <&^(%
o
, t^~ <f3L

o
 (Zo, *<*') con-

sists of a unique function mapping
D , under the prescribed nor-

malizing conditions at Z
o
 and

 z
«»

onto whole plane slit along radial
segments or circular arcs alone,
respectively; cf. Rengel C2 ] .

Theorems concerning extremality
on distortion of the derivatives

*,„)

en.
— 00 -»•



z -
1

I

(n)

,___ j

if on

above rectangle. Then, the image
of such a segme.nt or segments has
a total length not less than Z TL ,
except a finite number of <r

x

with abscissas which coincide with
those of vertical lines bearing
the slits originated from circular
slits in the vf-plane. Moreover,
there exists an X -interval of a
length a for any X of which the
length of W/-image of ^ is
always greater than ZTZ •+ c ,
provided f ̂  <φ *- and c
being certain fixed positive num-
bers. In fact, otherwise, it is
easily seen that <LW /&-L would
remain real in a subαomain and
hence, in view of tne assigned
normalizing conditions, \N ~ Z
which would imply f s <j> By
making use of Schwarz* s inequality,
we get

ZΊl IL a

σχ

We therefore obtain the inequality

respectively.
inside the

The part
t l %

univalently onto a part contained
in the rectangle lf<jr< U < %Q.R_ ,
0< V < ίTL , whence it follows
immediately the inequality

We now consider in the t -plane
a segment or eventually some seg-
ments, β~χ say, lying on a
vertical line with abscissa X
(*S

T
<X < !g R. )

 a π α
 inside trie

namely

(MH
ΊC

Let now X and FL tend to +0
and oo , respectively. Since
the quantities Λ. and C can be
taken as fixed ones, this limit
process implies

ZlE>0.
*-)

We thus assert that the inequality
stated in the theorem holds gcod
and further in the strict sense
unless j- :φ fi •

The just proveα theorem can
also be stated in an equivalent
lorm as follows.

Theorem la. If (z
;

- 87 -



thθn }
 z

the equality is valid only ir

3 ψ

Corollary 1. Under the same

assumption as in the theorem, we

have

where jQ [ Lr f J denotes the
logarithmic* area of the comple-
ment of the image of D by the
mapping VΛ =. f •

Corollary

then

If

In the present section we have
hitherto discussed merely the
case of whole plane slit along
radial segments and. circular arcs.
The discussion for cases of a cir-
cular disc or an annυlus, instead
of whole plane, cut along sucn
slits can also take place in quite
similar manners. Then, a alight
modification will De necessary
concerning normalization.

As normalizing conditions, we
may take in case of a circular
disc |v| < R^ :

and in case of an annulus r

r< Iffsok R. (zeVi.

C
t
\ r(ze

Corollary 2a. If ψ'(z %,
0;
 Z

€ ̂ (zo? z«,) A ΊR~p
(z

c
 z^) (A-o l ,

then
 r

 ' ' '

The distortion theorem having
thus been established, the argu-
ments quite similar to those in
the preceding section are here
also valid in orcer to prove the
existence of a mapping onto whole
plane slit along radial segments
and circular arcs together, i e,,
onto a domain of the type VlpίZo Z^
r\

 f
<£Lγ (Z

o
; Zoo") Here the exi-

stence proof in general case can
also be reduced to that in doubly
connected case.

It will be almost unnecessary
to describe the procedure of proof
again in detail. We state here
merely the corresponding results,

Lemma.

function^

The family dL^-i. C
1
**,

consists of a unique

Theorem 2, The family Ίϋf> (**,
r\ '<&p(**, ^ ) for any f> with
0 ̂  f> £s ΎL consists of a unique
function.

The fact stated in the lemma
exprecses, of course, a special
case or that in the theorem.

In these cases, the general
existence problems can completely
be proved out provided that the
problem concerning domain of
connectivity 3 or 4 respectively
has been done

 (
 But, if an argu-

ment due to Grotzsch [41 is taken
into account, the problems in
general cases can both be Γurther
reduced to that discussed in the
present section, i e , that con-
cerning doubly connected case

On the other hand, if the pro-
blem on a circular disc slit along
radial segments and circular arcs
has been worked out, those on
whole plane and an annυlus can
then be obtained by usual procedure
of constructing suitable quotients

9

With respect to a result on cir-
cular disc corresponding to corol-
lary 2 of Theorem 1, cf. Bergπan
I ll , p. D 35.

Similar results can also be ob-
tained with regard to the problem
where one of radial slits is re-
placed by a segment or a half-line
starting from a finite point not
coincident with the origin and
reaching the origin or the point
at infinity or by a half-line
starting from the origin and reach-
ing the point at infinity. We
further get, in particular, the
mapping onto a slit parallel strip
ii' we combine the mapping by loga-
rithmic function with the last
mentionec one. Sucn a mapping will
be discussed in detail in the next
section; cf, also Ozawa ίl,kl .
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On the other hand, Grunsky C 1 1
as well as Koebβ [8] considered,
instead of radial or circular slits,
also the slits lying on a system
oϊ logarithmic spirals of a given
inclination which have the origin
and the point at infinity as common
asymptotic points. The latter may
be regarded as a generalization of
the former* In fact, such a system
of logarithmic spirals is expressed
by an equation of the form

t

we now introduce two functions

and Qu defined by

where c* denotes the inclination,
i.e., the tangent (gradient) of the
constant angle between the spirals
of the system and radius vectors
centred at the origin and c de-
notes the constant specifying a
spiral of the family

0
 The spirals

will reduce to half-lines or cir-
cles centred at the origin according
to a specialization σt =• 0 or
oίs ==• oo

 f
 respectively.

Now, making use of a method due
to Grunsky, the problem of mapping
a given domain onto whole plane
slit along arcs of logarithmic
spirals of two systems with assigned
inclinations orthogonal each other
can easily be solved by combining
the mappings considered in the
present section* We can indeed
state the following theorem, which
has already been proveα by Koebe
Cβ ] in a more general form but by
a quite diiferent way.

Theorem 3. Any Oΐ-ply connected
domain J) bounded by ot, continua

Cj (j. = 1, "
 7

 /
>Ό can be mapped

conformaίly and univalently onto
whole plane slit along arcs of lo-
garithmic spirals of two systems
in such a manner that its p boun-
dary components Cj (j £ f>) corre-
spond to slits or a system with
an assigned inclination (λ and
the remaining y\~— J

3
 components

C, C j ~y f) correspond to slits
of another system orthogonal to
the former, i.e<,, with the incli-
nation — l/o< . Moreover, under
the habitual normalizing conditions
at i'ixed points Z

o
 and Z^ in-

terior to p , the mapping is uni-
quely determinate.

Proor. The method which has
beer, used by Orunsky to prove an
extreme case f =• 0 or an equiva-
lent case f> βs

 /
rt-- i.e , the case

where spirals of one system alone
are concerned, is valid with few
modifications also for general
case 0 ύ γ£n\, » Namely, for any
given f , naking use of the
uniquely determinate functions

the branches of square roots in
the right-hand sides being deter-
mined in such a manner that R,
satisfies the same normalizing
conditions at Z

o
 and Z^ as

(ftp or ψ^ and further that Q.^
attains the value i at Z

Λ
 «,

It is evidently seen that P^ and
dp are both one-valued in V ,

that Pj, possesses a zero point
and a pole only at Z-

o
 and 7,^ ,

respectively, both being of the
first order, and that Q^ posses-
ses neither zero point nor pole*
By inverting the defining equations
for P. and QL , we immediately
have *

 r

Now, since arg <fy ana lσ
remain constant along each of
Cj C% <£ f>^> , we get the rela-
tions oί the form

Similarly, since Jσ-'fyl and
3ofσ ΛJr remain constant along
each of C^ ( j. >-γ) , we further
get the relations of the form

We shall then show that the

desired mapping function f is

given by the relation

- S3 -



where the constant &
as

is defined

* = β ^ oC^tan /c

and Q-f, denotes the branch
taking the value 1 at X^

It is evident that the so de-
fined function J- satisfies the
assigned normalizing conditions
at ^ and 7.^ , Its behavior
on the boundary is as follows.
For any χ^ C: Cΐύ l>) >

i
'

and hence

- dig-If I

Since the function Q.j, ,
as already mentioned, possesses
neither zero point nor pole, it
is obvious that tne function

f =* Ϋ
t
 GLi*- is, like Pf,

scnlicht in respective neighoor-
hoods of the points X

o
 and £«>

Hence, in view of the behavior of
£ on the boundary of D, we
conclude that the image of D by
the mapping w = J-(z

}
 %+, Zco)

covers the whole plane just once
except arcs of logarithmic spirals
in question; that is, the function

J- maps t) univalently onto
whole plane slit along arcs of lo-
garithmic spirals of two systems
in the desired manner.

The uniqueness of the mapping
may be shown as follows. In fact,
let £* be any function having
the same properties as f̂ with
respect to the mapping character.
Then, the quantities

arg-f *- Λ lςlj*\ - (zrg-f - A lξ If I)

and

= - sec/c

that is, the image of eachί?; (j

lies on a logarithmic spiral of

inclination oC . Similarly,

for any z 6 C^ (j > f) ,

¥ -

and hence

that is., the image of each (1 C/>|>)
lies on a logarithmic spiral of
inclination —i/oC which is
orthogonal to one of inclination

remain constant along any Cj (.$•£ f
7
)

and any C^ (} > f>) , respective-
ly. Since the quotient f*/ f
neither vanishes nor becomes infi-
nite, we see from a quite similar
reason as above that it reduces to
a constant. Based upon the norma-
lization at Z^ , "f* must coin*-
cide identically with / . Thus,
the theorem has completely been
proved*

3 Parallel strip slit along
perpendicular segments.

We again consider an y
connected domain D possessing
continua C, O ' ^ V v Ό

 a 3
 boundary

components. With regard to its
uni.yalent image /S. with corre-
sponding boundary components 1^ ,
we now introduce following nota-
tions,

We denote by S^ the family
consisting oί all such domains
that 12 is composed of twc pa-
rallel lines 3*r— kπc/Z, -<χ> < ftυs^eo
and the Γs (}= Z,-~J P> are vertical
segments contained in the strip
| J

w
| < τ c / ^

 9
 and similarly by

'Sp the family consisting of

- 90 -



all such domains Δ that 17 ^ s

the same as above and Π (%
rjH i, •-, Ό are vertical segments

contained in the s tr ip | Jw* I < π/

"We further define the families
ip and

 f
Tf similarly by taking

horizontal segments instead of
vertical ones in cases of S*
and

 /(
ζ. , respectively.

Here /> is supposed to be an
integer such that 1 £ t> £ *n- . In
particular, Sί = 'S*J" = % = 'Ί^
is regarded as the family consist-
ing of all univalent images of V
contained in the strip / JV IΌC/2.
which is bounded by JΓ* alone.

Let Z^ and z^> be any fixed
different boundary elements lying
on C

t
 Suppose that the func-

tions -f(Z) univalent in D be
normalized by the conditions

111* ft f 60 = 4-00, l im fcffr) = -OO,

7y^ satisfies asymptotic relations
expressed by

f(z)= Z t 4
±
[fl + oCθ

being real constants.£• L i ]

Proof. We put Z - e
λ
 and

\/\l = -e^ . Then, the ί'unction
defined by

the logarithm denoting its prin-
cipal branch, is regular and uni-
valent in the domain -e OD-
tained from £> by Z - e

z
 .

In view of inversion principle,
F*(Z) remains analytic also
in the domain containing 0 and

oo as interior points which
is bounded by the image curves
•e^ o Moreover, we have

We then denote by ηΓ ( z*°, Z^) ,

and "ϊpCZn, *') the families
of normalized functions wnich map
P onto domains of SV > 'S*, »
T and

 /
Tb , respectively.

We now observe the simply con-
nected domain bounded by C

t
 alone

and containing D in its interior
o

We then map it onto the parallel
strip I J<w I < TO/2- in such a
manner that z^ and cz:̂  corres-
pond to -i-oo ^.-f-oo + JLO and
~oo = — oo -f. iO , respectively,
the mapping being determined uni-
quely except a translation paral-
lel to the real axi3 If this
mapping function is restricted
into the basic domain J)

f
 it be-

longs to

Because of the just noticed fact,
we may suppose, for tne sake of
brevity, that the given domain

V i tself is of the type $# ,
I . e . , a sub-domain of the s t r ip
I Jz I < ΊC/Z. among wαose boun-

dary components Ci coincides
witn Jtc = ±τc/z,~σo<'#jz<+co and the
r e m a i n i n g C^ C j = *-, - •- ? ^ )

are contained in the s t r i p . Ac-
cordingly, we take z Λ = +<x> and
X^ — — oo , and we shal l write

πWreiy 'JΓ' e t c , instead of
7ΓΓ CΛOQ, - oo ) e t c .

We first prepare a lemma.

Lemma i. In a domain J) of
the just mentioned type, any
function w = f(JO belonging to

and the orders of zero point Z« 0
and of pole Z — oo are both equal
to ί Since by the mapping
W = FCZ)

 t n e
 positive imagi-

nary axes correspond each other,
the derivatives F'(0) and F\oo)
must both be real and positive.
Hence, putting

both quantities 4
±
 -ss -^

are also real. On the other hand,
we have z

£
1
Γ

β

and hence, for

£
w
~ * - **~4 o ct),

yielding an asymptotic relation

fCZ)- Z = £_[f] + σ(ί\

In a similar way, we get, for

As immediately seen from the
above mentioneσ proof, more precise
asymptotic relations

may ϋe derived. Remembering fur-
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ther the analytic continυability
across the boundary component
Q.

L
 , we see that the last limit

relations remain to hold, for
each j- , uniformly in J
as Q^z, -> ±. oo

in the last inequality is valid
only if

We now introduce a quantity

defined by

= lim

f being any runction or '$7 .
The fundamental distortion theorem
can then oe stated as follows.

Theorem 1. If f (t) € Tl and
)£ "?, , then '

ύ

the equality is valiα only iΓ
j « φ -t- c , c being a real
constant.

Proof. By means of the trans-
formations Z- eχ}φfz) and
\V« wtyfCx.) followed by the
inversions with respect to the
imaginary axes of Z- and W -
planes, based upon the inversion
principle, the iunction defined by

can be regarded as the one mapping
the ;Lfa--l)-ply connected domain
which is bounded by *w— 1 continue
in the £ -plane originated from
Cj (}~2,~ > *)O and their inver-
ses with respect to the imaginary
axis onto the domain in the W -
plane which is obtained in a simi-
lar manner. In view of fe Ίf7 ,
the boundary continua in the 2"
plane originated from £\ C}=χX, ,f)
as well as their inverses with
respect to the imaginary axis are
all radial slits centred at the
origin. On the other hand, in view
of φ € /7^> the boundary con-
tinua in the 14/ -plane originated
from Cj. (j~ρ-tl

/
 •-, * O as well as

their inverses with respect to
the imaginary axis are all circular
slits around the origin. Hence,
by Theorem 1 of § 2 taking

z(^-n I, o, oo
 ;
 Z, F(Z)/F'(°o)

instead of *u ct , z
c
 , £«,

/ , φ there, respectively
, we get

F (0) anc F'C*) are really

both real quantities. The equality

Now, the expansion or

- 0 becomes

and that around 2. = <x> becomes

We thus have

and

Consequently, the above inequality

1 ύ IF'(0)/F'(coϊ\ implies

ICfl-l+Cjl έί.Cf Ί- 4-CφΊ,

whence the desired result β [f]

The equality sign can appear,

as noticed above, only if FCZ)

= F'falZ
 We t h β n

 δ
6 t in

here l j f ^ ) = 4,C-f}~^C<pl being
a real constant.

The result just proved can also
be stated in an equivalent form
as follows.

Theorem la. If jCz)
f
Ί th

and

tne equality is valid only if J
ΞL ^ 4- (L , A- being a real
constant»



Corollary L Under the same
assumption as in Theorem 1, we have
more precisely

_Ω, if Ί denoting the area o£ the
part, contained in the strip

I J w I < 7c/ί- , of complement
oi" the image of D by ΎSτ=z

Proof. We consider the image
o r
 D

 b
y Z = «*j>ψr*>

 a n d l t s

inverse with respect to imaginary
axis. By means of corollary 1
or Theorem 1 of § d, the union of
these doma'ns are mapped by \fij
===
 F(Z)/F(<»)onto a set whose com-

plement has a logarithmic area

Sit If CF/ F'CΌ))] satisfying

whence it follows

But, since the inversions^ with
respect to imaginary axes in 2~
and W-planes have taken place, we
have

yielding the required inequality.

Corollary 2. If φ fee)

λ % Q> = l,"v"O > then'

Corollary 2a. If ψp (*•)

1
f
o!T

f
(^i]-

/
^ >

 then

Thus, the distortion theorem
having been established, the exi-
stence proof of a mapping onto a
strip slit along perpendicular seg-
ments, i,e., a domain of the type

'Tp r\ '^f, can be performed
quite similarly as in case of the
preceding sections. And, the exi-
stence proof in general case can
now be reduced to that in triply
connected case. It will suiiice
merely to state the corresponαing
results *

Lemma ii. The i a m i l y ^ _
i
^ X ^

consists of a function uniquely

determined except any translation
parallel to the real axis (anv
real additive constant;,

Theorem 2. The farrdJy ψ A
 f
%

for any \> with I £ }> <*^
 F
 con-

sists of a function uniquely αe-
termineά except any translation
parallel to the real axis,

Oi course, the fact stated in
the lemma corresponds to a special
case of that in the theorem itselr

While, as already stated above,
a genera] existence pro bier., can be
reduced to triply connected one,
the particular case where a mapping
onto a parallel strip slit alcng
horizontal or vertical segments
alone, i.e., a domain cf the type
T^^'ΠΓt

 O Γ
 ^ - ?i > respec-

tively, is in question, can further
be reduced to doubly connected one.
By means of auxiliary mapping by
exponential function as in the
above proof of Theorem 1 and inver-
sion with respect to the imaginary
axis, the last particular case can
be reduced to a well-known theorem
concerning the mapping oί a ifa-ί)-
ply connected domain onto whole
plane slit along radial segments
or circular arcs alone; the domains
in question being especially sym-
metric with respect to imaginary
axis. But in such a particular
case the function φ(z} of

 /
2£ or

v^ which is uniquely determineα
except any real adαitive constant
can also be characterized in a
direct manner by the variational
problem

oT

J
6
 +1

respectively, the range cf admis-
sible argument functions f(Z) be-
ing the sane family T^ = $

t
 .

Consequently, the general existence
prool can thus be reduce to doubly
connected one.

On the other hand, any ring do-
main, that is, a doutly connected
domain possessing two disjoint
continua as boundary, can be mapped
conformally and univalently onto
an annulus, i.e., a concentric cir-
cular ring; the fact having oeen
proved in various ways; cfT Cara-
theodory El] , Tβicnmuίler Π ] ,
Komatu f4] , etc. Further, the
iunction wnich maps an annulus onto
wnole plane slit along raαial seg-
ments or circular arcs alone can
explicitly, by means cf elliptic
functions; cf. Komatu C1 ] Con-
sequently, by combining an elenen-
tary transformation, the mapping
onto a parallel strip slit along a
horizontal or vertical segment can



also be written down in an explicit
Γorm; cf. also, Γor instance, Kubo
[ 1] •

Moreover, in a prooί' of general
existence theorem concerning 7£L
or Ί ^ , based upon a variational
method, only the doubly connected
case (^τ=z) of theorem I will be
used, as noticed above. The exi-
stence theorem is, in general,
essentially equivalent to Grδtzsch-
Rengel's distortion theorem. But,
in a particular case or connecti-
vity two, there exists a further
equivalent distortion theorem;
cf. Komatu Γ2l

 c
 Hence, in order

to prove the general existence
theorem in 3uch a case, the last
mentioned distortion theorem will
also suffice.

It nay be noticed that a poten-
tial-theoretic proof for existence
of mapping onto a parallel strip
slit along a horizontal segment
has recently been given by Kubo
ί 1 3 .
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