CONFORMAL MAPPING OF MULTIPLY CONNECTED DOMAINS, I.

By Yusaku KOMATU and Mitsuru OZAWA

0. Introduction

In general theory of coniormal
mapping of multiply connected do-
mains, various types of speclal
domains have hitherto been used as
canonical ones; in particular, for
instance, whole plane slit along
paralle: segments, whole plane or
circular disc or annulus slit along
raaral segments or circular arcs,
etc, It is a basic problem in the
theory to establish the existence
ol' conformal mapping ot a given
domain onto such a canonical domain
of respective type as well as to
assert the uniqueness of mapping
under sultable normalizing condi-
tions. It is also an important
problem to discuss various kinds
of distortion concerning the fami-
lies of univalent functions in a
gliven canonical domain, some or
which is not only interesting by
itselr but also usetul as a clue
ol' existence proof.

With respect to canonical do-
mains of the above mentioned types,
these provlems have been investi-
gated from various polnts of view;
cf., for instance, Komatu £3] .

The existence proofs have first
been given by Hilbert [ 17, Koeve
{1,2,6,7,81 and Courant {1,2] or

by Koebe [ 3,4,5], especially based
upon a potential-theoretic method
or upon the so-called continuity
method, respectively. On the other
hend, the extremal properties be-
longing to such canonical domains
have been clarified, with respect
to distortion, by de Possel [ 11 ,
Grétzsch [1,21, Rengel L 11 and
others, and turther been noticed

to be available f'or establishing
the existence procf. Indeed, the
exlstence proot ol' mapping onto
such a canonical domain has also
been succeeied by means ol purely
function-theoretic methoas alone;
cf. de Possel [1], Rengel (21,
Crotzsch [31 . Such a proot may
be regarded as a direct generaliza-
tion of that of Riemann's mapping
theorem concerning simply connected
domains published by Radé [1]

whicn is due to L. Fejér and F.
Riesz.

Now, there are further types
of canonical domains sucn as, tor
instance, whole plane slit along
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two sets oi parallel segments being
perpendicular each other, whole
plane slit along racdial seygments

as well as circular arcs, etc., The
exlstence ol coniormal mapping onto
such a canonical domain has also
been shown by Koebe [ 3,4,51 by
means of continuity method or po-
tential~-theoretic method.

In the present Note we shall
clarify the extremal properties,
with respect to distortion, be-
longing to such canonical domains
by means ol which we shall then
notice that the existence prootf of
conlormal mapping onto such a ca-
nonical demain can be reduced to
the problem in case ol extremely
lower connectivity, in 1act, the
one concerning the essentially
lowest connectivity. We shall
further discuss the corresponding
problems with regard to the related
types of canonical domains, espe-
cially, parallel strip slit along
horizontal and vertical segments
in detail.

Although thrcughout the present
Note we restrict ourselves to
case of 1'inite connectivity, some
ol the obtalned results will imme-
diately be extended to case ot in-
tinite connectivity.

1. Whole plane slit along
horizontal and vertical
segments.

Let us consider an m-ply connec-
ted domain D 1laid in the z-
plane the boundary ot which is
supposed tc be composed of m dis-
Joint continua C; (4=1, - -, m) .
Let Ff(z) be a lunction univa-
lent In D . In general, the
image ot D by mapping w = £(z)
be denoted by and the boundary
component of /A corresponding to

C, be denoted by [, . The
assumption that every boundary com-
ponent of D 1is a continuum does
not restrict the gencrality. Other-
wise, i.e., i1 some o1 them are
isolated points, they are merely
removable singularities of mapping
function, and hence the proolem
will then reduce to a case ol lower
connectivity.

We now aenote by ,A: the family
consisting of all = -ply connected
domains A whose ) boundary



components G3=1, -, P are
segments wiﬁﬁ gradient « , and
by AY the family consisting of
all n-ply connected domains A
whose m — p boundary components

(3 =p+1L, s ~m) are segments
wfth gradient A ; being an
integer such thab 0= P£n . In
particular, A% = ‘A% is re-
garded ss the family conslsting of
ell univalent images of D .

Let %_ be an arbitrarily
fixed point in D . Suppose that
the functions F(z) in consi-
deration, being univalent in D ,
are normalized by the condition

lim (fz)- 3 =0.

2> Xy (:F zn)

In case %, =00 , the condition
must be repluced by a modified
one, l.e.,

lim (fem-2z)=0

Z > oo

We then denote by fb (z,) and
F (za) the ramilies consisting
ol normalized functions which map
D onto domains belonging to A
and A“ , respectively.

It is evident that neither of
the families f’(z) and j“ (z))
is empty for every possible values
of o and P . In particular,
FoZm) = FiX(20) consists
of all normalized functions univa-
lent in D . On the other hand,
as is well- known, the tamily
Fl 2y = P cxn ) consists of
the unique function mapping D ,
under the prescribed normalization
at Z, , onto whole plane slit
along parallel segments with gra-
dient « ; cf. de Possel [1] .
Morecover, the functlion telonging
to the tamlly SF77°(Z.) with any
A 1is expressible by those with
specxal o 's; in ract, dencting
by F(Z; X, &) , in general,
the unique function belonging to
Fl(z) , the identical re-
lation

:F(Z)' Z,,}o()

= ed(f(l ) X s 0)cas ol - iJC[Z; Za, ’K/ﬁ)sin.o()
holds good; cf. Grunsky L 1] or
Schiffer (1] . This fact may be
slightly generallized. Indeed,

the same remains true also it we
supoose, in general, F(Z, 2,;&)

€ F'x) A B A) for any P,

wnile the zeneral exlstence thsorem
f'or such runctiona is a maln pur-
pose ol the present Note.
F=F0x;2,)

ILet now be any
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function cefined in D and sa-
tisfying the preassigned normali-
zation at Ze .+ All such func-
tions being admitted, we then in-
troduce a functional defined by

z=1%,,
arfi= [f'&l (.‘f(l; Z,) = 'i—“;‘ ]

Consequently, any admissible func-
tion is expanded around 2, in
the form

Flz;2) = E—};;f alf](z—2)+ ",

the dotted part being composed of
the terms of degrees higher than
unity. In case 2Z,= oo , an
evident modification must, of
course, take place; namely, {/(z-7%,
must be replaced by % .

We first state a rundamental
distortion theorem concerning
ofLf1 , ylelding a generalization
ol' a theorem due to de Possel {17,

Theorem 1. If F(Z; Z.)¢€ f;“ez)
and ¢(z z,.) € j; (z,) » then

R als14 R alél;

the equality here is valid only i1
F=¢ -

Proof.
due to Grunsky [17.
the definltion of J”"‘(z and

P () , we imnediately
deduce the functional relations,
satisfied along boundary components,
of the form

=-f+z‘o;.

We shall tollow a method
In view of

(zeC, j=1, p)

and

¢=¢—z£ (z<C; ;f+i )

7, and § denoting real con-
stants. We may suppose that the
basic domain is a bounded one en-
closed by regular analytic closed
curves; otherwise, it is only ne-
cessary to resort to a customary
procedure cf intermediate auxiliary
mappings. The functions and

being then regular also on
the whole boundary, we get, by
means of Green's formula,

Jy 1§ - ¢'l1¢w
,;-1 2»] (F-¢)(f-9"dz
z—hjc '+ Bo/-F b GF) dz,

y=1
where denotes the arsal

dw,
element d..‘?(,d/;}, y ZXZ=x+iy,



Ne now estimate the curvilinear
integrals in the right-hand side.
It is evident that

o 1 -,
2: —_— Fflaz £ 0;
K 2L Jp

=1 4
in fact, the left-hand side ex-
presses exactly the negatively
computed area of the complementary

set of the image of D by the
mapping w = F(x) . Because
of the same reason, #f being
merely replaced by ¢ , We see

that
~ 1 —
; z C' (P(P/d.z. é 0.
3=t 4

Since # and ¢ are, of course,
one-valued, we get, for =L P

{ = ., ,
ZZfC a‘W/z——-z—tfc Cf+27)duz
3 7

B 'TLJCJ_N'M =1%fcj¢f'dz

and
{ ’ L
= %Mu:EfCMJ‘
S T oy _ 4 /
i #4f - o= L ese
4

we get similarly, I‘orj:fu»i,--—, m

',ji[f%)?‘P'dfl=ii—Lfo¢¢
s

4 Tdd —— /
24 J‘CJJCM> N i%f‘¢=ﬁ£¢fdl

2

and
: f $f'dz =
24 C;

{ o
;EJ;:;(¢-2L£§){AZ
1
= }:fc ¢5'dz
d

We thus obtain

{ T T
;;r;zfs(f¢+4>f)dz
=2R (£ 2] o¥u)
“4=17C

By means of residue theorem, we
further get supposing Z o F o

if qS{'sz
G

— & ‘—1
_)% %(—2_1—1”1- al¢] (Z'Zn)*‘)(m?*“[ﬂ*"‘)dz

= 2T e (qff]-a_[cp])

Hence, we deduce the relation

[99)
8]

ﬂplf’—¢’!‘d~«>z £ 2R (af$1-alf])

wiiich implies immeaiately the
inequality stated in the theorem,
The equality sign there can evi-
dently appear only i1 §'= ¢’ ,
from which the ldentity £ = ¢
must follow in view of the assigned
case Zo, = 9o can be treates with
an eviaent moairication, The

prool has thus been completed.

From the last inequality con-
tained in the above proof yields
a more precise result. Namely,
we can state the following torol-
lary.

Corollary 1. Under the same
assumption as in the Theorem 1,
we have

Ral6]- Ra(flz 5= (QrF1+Q147)

where 10 [F] denotes, in gene-
ral, the area of complementary set
of the image of D by mapping
w=F .

This corollary is further a
generalization ot a theorem due to
Tsuji [1] stating that the unique
function ¢ (2, 00) of
30"(003 (= j:’ (c0)) satisiles the
inequality

{
Raldl 2 z%fz

where {2 denotes the area of com-
plementary set of the basic domain

D Dbeing supposed to contain the
point at intinity; In fact, we may
take ;f(z) )= Z in the corollary
with 2z, = oo and then get

alfl=o0, QI§1=0Q; Q[¢]1=

Corollary 2. 1If ¢ (2, z,)

4 P A
€ kf};'n/‘z(:‘-m),\ :-[—; (z,,) (P:o,)L)»u/ 'rb),
then

Ral$ )2 Ralg] (=1,

/a0
Proof. 1In view of ¢¢ﬂ G,ﬁ;,(zm)
and ¢, € £, (20 ) € £ P (20 )

the proposition rollows immediate-
ly from the theoremn.

By making use of the above
proved theorem, we can now charac-
terize the functicn which maps a
gliven m -ply connected domain onto
whole plane slit along horizontal
and vertical segments, i.e., onto
a domain of the type 371“1(1”)

A 37” (2.) , by its extremal
property which is by itsel. avail-
able for existence proor of such
a mapping.



In order to perform the existen-
ce prooi entirely, it will remain
only to give an existence proor in
a airect manner concerning the
coutly connected domains; namely,
the proof of existence theorem in
general case can thus be reduced
to that in doubly connected case
which will be supposed lor a while
as known.

e now precece the general exi-
stence theorem by a lemma stating
a special case.

Lemma., Let any m=-ply connec-
ted domain D 1in the Z -plane be
given, the boundary of which is
composed of " continua C
(3=1,..-, m) . Then, D can ve
manped conrormally and univalently
in such a manner that m -1 com-
ponents C, (4=1, -, m-1) cor-
respond to vertical slits and the
remaining component (C,  corres-
ponds to a horizontal slit. More-
over, at an arbitrarily rixed point
24 interior to D , the mapping
function w = ¢ (z, 2z, ) - can be
subject to a normalization such as

4’(1; Z¢)=E—}‘E‘+0(1) (z- Z,,)

—— in case %, o , the con-
dition being, oI course, replaced
by ¢(z;0)=2+0(L) (z>00) —.

The mapping function is uniquely
determined by this normalizing
condition. In other words, the
ramily jﬁ_l (Za) N jiol (Zw)
consists ol a unique tunction.

Proof. We consider a varia-
tional problem to minimize the
tunctional R aclfl, any r'unction

F belonging to ° (z») being
admitted as an argument function.
Since the tamlly %, (z,) 1is
normal in the Montel's sense and
compact, a solution of the problem
does surely exist. Let
= ¢(z, Z,,) be a minimizing runction,
i.e.,

Kaw]‘-fMjgx Ra[i]) pe ¥’ (2

We shall show that also ¢
e £.*(z,) . For that purpose,
we now suppose the contrary,
i.e., that ¢ did not belong to

FFC24) . Then, the image
of at least one among 3
=1,., m-1), Ca-y say,”by the

mapping W= @P(Z; Ze) would
not be a vertical slit. Let the
image of C, be denoted by I;
We denote by

A= w+ —— “X]

expansion being valid around

w = o0 , the function muapping

the cdoubly connocted domain enclosed
by two continua I.., and [
univalently in such a manner that
these boundary continua correspond
to a vertical and a horizontal slit
respectively. Here, use is maae

ot the existence in doucly connected
case! Then, in view cf Theorem 1
— M, %Z,,%2; ¥, ¢ 1in the theorem
being replaced by 2,0,w, X, w,
respectively —, we get

RalX] < Ralwl=o0.

the equality sign in the last in-
equality being excluded because or
XWwW) = w o It is evizent
that X (¢(z; z, ) € (%)
while we get

RalX ) =RalX]+Rald] < Ral$]
which contradicts to the extremality
ef ¢ . Thus, we must really nave

*/2 ‘%) &nd hence ¢

m—1
f_/f(z,.)r\ fn-i (%).

Next, in order to show the uni-
queness of the mapping ifunction, we
denote by ©*(z; z,) wh any func-
tion belonging to FI AT, (20) .
The dirference ¢*— ¢ is then
regular and bounded throughout D
and possesses constant real parts
along C (3=1,--, m~1) and a
constant’ imaginary part along C',L
Hence, we must have

P - =[o- 41"

Cf. also the uniqueness proo: ror
Theorem 2 stated below.

0\."‘1

4e are now in positicn to state
a general theorem on existence as
well as uniqueness ol' the Iunction
mapping a given domain onto wnole
rlane slit along perpendicular seg-
ments.

Theorem 2., Any m=-ply ccrnected
domair D bounded by m continua
C(;—i o, m ) can be mapped
conlormal]y and unlvalently onte

hole plane slit along horizontal

rq vertical segments in such a
manner that its P boundary compo-
nents CJ (4 = p) correspond to
vertical®slits and the remaining
m — p cormponents C (4 > P> cor-
respond to horizontal slits.
Moreover, under the normalizing
conditior at a fixed point 2z,
interior to D , the mapping is
uniquely determined. In cther
worcs, the family j”"/(z YA f”ﬁz”)
for any P with o Spsm con-
sists of a uniquely determinate
function.



Proof. The theorem is well-
knewn in case p= 0 or p=mn
as de Possel's one and shown in the
lemma also in case p=m-—-1
Ne may suppose ¥ > 0 . The ramily
5V7“1(zn being normal and com-
pacc the varlational problem

Roaldl= Ma/x cbég(;x/(zz,,)

Ralfl,
fff;"ﬁgn
possesses surely a solution ¢
= ¢(z; z”). In order to show that
also (2w) ¢ we sup-
pose tae coné}ary. f, for in-
stance, bt 1 were not a horizon-
tal slit, then it 1s possible,
based upon the preceding lerma,
to map the (p+1) -ply connected
donain enclosed merely by [“(J i,
-, b, p+1) univalently in subh
manner that the p continua
g (4= p) corresponds to a hori-
zontal slit, the mapping function
X (w) Dbeing supposed to be nor-
malized at w= oo « Since
W) % w , 1t follows, in

vitw i that

0= Ralwl< RalX]

Theorem 1,

and consequently, for a function

X($(%; 2 € F,™ 2,
Ra[y(®)]=RalX]+Ral$]> Rale].

Thls contradicts to the maximizing

character ot ¢ . Ipus, it is
asserted that ¢ € f; (2,) and
hence ¢€f* (z YA //’a(z”)°

We next prove thne unigueness of
d(z; 2,5) . Let &%(z; z,)
be also a runction belonging to

(Zw)/\ f—"(zab) ° *hen, by
me&hs of Theorem 1, we get

Rale] s

and
Rald*]l s Ralél

and Hence the equality R aL[¢*]
= R ald] Therefore, again in
view of Theorem 1, we assert.

¢ = 4,

the desired result.

Rald*]

We have hltherto consldered the

families §%(z.) and ez

merely tor special values 01 X ,
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i.e., tor ol=m7/2 and 4=0 ,
and entered upon the discussion

ot existence oi a non-empty family
f”‘ (Zw) A f‘ (Z.) . But,
by means of a quite similar proce-
dure, the result can be modified
in a somewhat general form. For
instance, corresponding to Theorem
1, the tollowing proposition will
ke verified.

Theorem 3., Let &« and [ be
any real constants, and let tur-
ther  f(z; 2,) € £,%(z,) and

P(z; 2,) € y7p(z~) « Then
=R (RIS R (€Fatgl)

the equality sign is valid only
ir f=¢ .

The Theorem 2 is generallzed
in a corresponding manner, stated
as itollows,

The ramily f; (z,)
, for every set or
I8 A and
a unique func-

Theorem 4.
A f” (Zs)
possible values of
&) , consists of
tion.

The results obtained in the
present section will further be
generalized in a following manner.
Let & (k=t,.--, R, & £m) be
any real number. Then, the problem
establishing the existence of
mapping of an M -ply connected
domain D onto whole plane slit
along segments with #& gracients
in such a manner that, among m
boundary coriponents C} , the
assigned b (k=t,-, &, S p=m)
components correspond to segments
with gradient o, can be reduced
to the problem in & -ply connected
case, i.e., the problem establish-
ing the existence of mapping of a
% -ply connected domain onto whole
plane slit along £ segments with
gradlents o, ( k=1, ---, B) ,

The uniqueness proor is easy.

2. Whole plane slit along
radial segments as well as
circular arcs.

We consider again a domain D
cf the same character as in the
preceding section and denote by
/A , in general, its ccnformsl
univalent image. Further, let the

boundary components or be de-
noted by =1, .-, ﬂu) and
those of A° by [ G=1,- ,m),
respectively. J

de now denote by R, the

tramily consisting of all m -ply
connected domains A whose p
boundary components [ (4=1,--, P



ie on radial halt- lines ar ur—
respectively, and by
fanily consisting or alf vu ply
connected domains zﬁ whose m—p
boundary components I7 (g=p+1
see, M) lie on rad&al half-

lines a¥Yyw = % respectively.

We further introdpce the
families and K simi-
larly by taking the concentric
circles |w|= c; instead of
the radial half-lines drg w=c;
in case of R, and ,Kr s
respectively

!

Here also P 1s supposed to
pe eny integer such that 0= P .
In particular, R,= Ru=K, ="K,
is regarced as the family ol all
univalent images of D . It may
also ve noticed that we may sup-
pose without loss of generality
all the boundary components C

to pbe ccntinua but not isolated
points.
Iet %, and %, be two dif-

tferent points interior to D ,
being arbitrarily 1ixed. Suppose
that the functions £(Z) univa-
lent in D are normalized by the
condltions

7. =0 (z>z)

In case Z, = o0 , the second
condition must be replaced ty a
modified one, namely

(2-200),

fezy-z=0)
We then derote by R, (zh Z,),
"Ry o, Z), B, (%o, Zow) and ﬁ(zu Z,)
rp Iamilies consistino ol all
normalized runctions whicn map D
univalently onto domains of D
/ P s K¢ and /KP R re-"’
spectively.

Evidently, neither ot those fa-
milies is empty. 1In particular,
the family’]{ (Zo Zpo )= ’R (%0, 2oo)
_.lﬁ: (7,7 )___ B (%, %) Zonsists

univa-
well-

ot all normalized functions
lent in D . It is also a
known fact that each of the fami~
lies R, (%, %)= "R, (%, )
and &, (x,, Z,)= A, (%, 22) con=
sists of a unigue function mapping
D , under the prescribed nor-
malizing conditions at 2, and Ze
onto whole plane slit along radial
segments or circular arcs alone,
respectively; cf, Rengel [2 7.

Theorems concerning extremality
on distortion of the derivatives

of the last mentioned mapping
frnctions at Z, , due to Gr8tzsch
[1,21 end Rengel [ 1], are well-
known. They now can be generalized
to a rundamental distortion theorem
statec¢ in the following rorm.

If FZ %,2,) € Ry(z,%,)
z)e/.;t(z Zw) s

Theorem 1.
and ¢ (z; %,
then

lf’(z"f %, 2| £ (602, %, Zm)‘)

the equality is valid only if
t=¢ -

Proor. We shall tollow a method
due to Rengel [1] . We consiaer
an annulus r <|iw|< R con-
taining the whole boundary of the
image of D by the mapping
¢(z; 2,%.)« We then denote
by

9y < lwl < Q(ROR

the smallest annulus which contajins
the doubly-connected ring domain
enclosed by the image curves of

\wl= 7 and \w|=R by the
composed mapping w
=§ (7N W %, 2); 7, ,Z,) « It is
easily seen that
f (Za} U;Za)

901> 5%, 7, %0 (r>+0)
and

QR)-> 1 (R—> ),

We now observe the parts ot the

images of by the mappings w=¢
and w = f contained in the annuli
r<iwl< R and 47<|wl<QR ,
respectively. We cut these parts

along positive real axis and then
map the thus obtained domains —

eventually pieces consisting of
some domains —— by the principal
branch of logarithm:

w= ¢ (=, 2. ,24)




Pad

—— e

()] n)

m

lsQ]

Z=X+:iY = lew,  W=U+V=lgw,

respectively. The part G 1vy!
inside the rectangle lor < X< lygkng
‘0 < Y< 2m which 1% originatéd
from D 1is mapped by

W=k (¢ (enl; 2, 2.), %, %)

univalently onto a part contained
in the rectangle lgqv< U< IgQR ,
0< V <2m , whence it i'cllows
lmmediately the inequallty

W i*
[ 14 oy < 2l 25

We now consider in the Z -plane
a segment or eventually some seg-
ments, Oy say, lying on a
vertical line with abscissa X

(lgrce X < lg R. ) anu inside tne
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above rectangle. 1Then, the image
of such a segment or segments hus
a total length not less than 27 ,
except a finite number of oy
with abscissas which coincide with
those of vertical lines bearing
the slits originated tfrom circular
slits in the w-plane. Moreover,
therc exists an X -interval of a
length a 1tor any X of which the
length of W-image of Iy is
always greater than 27 +c¢ ,
provided f # ¢ ; a and ¢
being certain t'ixed positlive num-
bers. In tfact, ot&7rwi e, it is
easily seen that aW /d would
remalin real in a subdomain and
hence, in view of tne assigned
normalizing conditions, W=

which would imply f = ¢ . By
making use of Schwarz's inequality,
we get

2n ff, | 44 ZMZ
_ fngAX-z'rc Jd_ )% ZAY
X
R 2
foox J e[ e
gk Y
J e ] 1)
g X

2 (]g% - a)(zvt)lﬁ— a Gm+c)

v

IV

> (21 ) lg}- + 4Tac,
Y
Ne therefcre obtaln the inequality

21t-rm{g%%§:>(szlg%}—+4ﬂt¢g

namely
QK) ac
Is ™ 7 T
Let now Y and R. tend to +(
and o0 , respectively. Since

a and C can be
this limit

the quantities
taken as t'ixed ones,
process implies

¢z, %, 20 |, 2

>
S50z, 2, =l 2@ 70

We thus assert that the inequality
stated in the theorem holds gcod
and further in the strict sense

unless F =% ¢

The just provea theorem can
also be stated in an equivalent
lorm as follows,

Theorem la., If 9 (x; %, %)



€ £, (%, 2, &nd ¥(Z;z, 2,)
e /'R‘; (Zoj Ze) * then

192052, 20| Z |9/ (2} 20, 2.0,

the equality is valld only ir

= °

Corollary 1. Under the same
assumption as in the theorem, we
have

[$(2,; 20, 2,0)]
e zo,zm)le/xp(—z}—,tﬂ[lgf])}

where () [Lgfl denotes the
logarithmic® area of the comple-

ment of the image of D by the
mapping w=F o

Corolliary <. Ir ¢ (2; 2Z,, )
€ Ry (2o,2) N Ry (20, 2) 'p= 0,4, ),
then

|¢‘,/_,,_ (Z; 2o, 20| 2 |4>f:(z”- 7o, 2,

(p=1, -, »).

CorollaryIZa. If 4’“5Zg,lm)
€ Ryn, 700 n Ry (20,700 (p=0,t,- ),

"‘}?/.1 (Z,) Z,, ZN)I —é- ‘W;(z“; z"/ zao)‘
(P=1; e, M),

The distortion theorem having
thus been established, the argu-
ments quite similar to those in
the preceding section are here
also valid in orcer to prove the
existence of a mapping onto whole
plane slit along radlal segments
and circular arcs together, i.e.,
ontp a domain of the type R (Zo, Z,)
A @y (2,, Zwo) « Here the Ixi-
stence prootl in general case can
also be reduced to that in doubly
connected case.

It will be almost unnecessary
to describe the procedure ot proor
again in detail. We state here
merely the corresponding results.

Lemma. The family R, (%, Z,)
/ o
A By (2,,2) consists of a unique
function.

Jheorem 2, The family Ry (%0, 2,,)
N fp (%, Z0) tor any P with
0 £p £ m consists of a unique
tunction.

The fact stated in the lerma
exprecses, of course, a special
case ol that in the theorem.

In the present section we have
hitherto discussed merely the
case of whole plane slit along
radial segments and circular ares,
The discussion for cases ol a cir-
cular disc or an annulus, instead
of whole plane, cut along sycn
slits can alsc take place in quite
similar manners. Then, & slight
modification will be necessary
concerning normalization.

As normalizing conditions, we
may take in case of a circular
dise Iwi< R :

'z'oeD; f(zo)zO;
[(2)|<R (2¢D), If(rl=R (z€Cy);
a’fgacl(lﬁ,)=0 (crr ¢ ( f(zt)zk))_

and in case of an annulus r <|wi<R .
T <Ifl< R (z€D);
lfl=R (ze()), Ifl=1x (ze C.);
zeCy, fz)=R (o 2,eC,, f(z)=1),

In these cases, the general
exlstence problems can completely
be proved out provided that the
problem concerning domain of
connectivity 3 or 4 respectively
has been done. But, if an argu-
ment due to Grotzsch [4] is taken
into account, the problems in
general cases can both be turther
reduced to that discussed in the
present section, i.e., that con-
cerning doubly connected case.

On the other hand, if the pro-
blem on a circular disc slit along
radial segments and circular arcs
has been wcrked out, those on
whole plane and an annulus can
then be obtained by usual procedure
of' constructing suitable quotients,
With respect to a result on cir-
cular disc corresponding to corol=-
lary 2 of Theorem 1, cf. Bergran
{11, p. D 35.

Similar results can also be ob-
tained with regard to the problem
where one of radial slits is re-
placed by a segment or a hallf-line
starting from a finite point not
coincident with the origin and
reaching the origin or the point
at infinity or by a half-line
starting from the origin and reach-
ing the point at infinity. We
further get, in particular, the
mapping onto a slit parallel strip
i1 we ccmbine the mapping by loga-
rithmic function with the last
mentionec one. Such a mapping will
be discussed in detail in the next
section; cf. also Ozawa [1,z7.



On the other hand, Grunsky [1]
as well as Koebe [ 8] considered,
instead of radial or circular slits,
also the slits lying on a system
ot logarithmic spirals ot a given
inclination which have the origin
and the point at inrinity as common
asymptotic points. The latter may
be regarded as a generalization of
the former. 1In fact, such a system
ol logarithmic spirals is expressed
by an equation ot the rorm

argw — ong[w[ =c,

where o« denotes the inclination,
i.e., the tangent (gradient) of the
constant angle between the spirals
of the system and radius vectors
centred at the origin and ¢ de-
notes the constant specilying a
splral of the family. The spirals
will reduce to halr~lines or cir-
cles centred at the origin according
to a speclalization =0 or

ok = oo , respectively.

Now, making use of a method due
tc Grunsky, the problem of mapping
a given domain onto whole plane
slit along arcs of logarithmic
spirals of two systems with assigned
inclinations orthogonal each other
can easily be solved by combining
the mappings conslaered in the
present section. We can indeed
state the tollowing theorem, which
has already been provea by Koebe
{871 1in a more general trorm but by
a quite diiferent way.

Theorem 3. Any M -ply connected
domain DD bounded by 7 continua
C,(3=1,-, m) can be mapped
conformally and univalently onto
whole plane slit along arcs of lo=-
garithmic spirals of two systems
in such a manner that its P boun-
dary components C; (§ < $) corre-
spond to slits or a system with
an assigned inclination & and
the remaining m —p components
C& (§ > P) correspond to slits
cf” another system orthogonal to
the former, i.e., with the incli-
nation —41/K . Moreover, under
the habitual normalizing conditions
at fixed points Z, and Z, Iin-
terlor to D , the mapping is uni-
quely determinate.

Prcoi’s The method which has
been used by Grunsky to prove an
extreme case pP= 0 or an equlva-
lent case p="7- 1l.,e., the case
where spirals of one system alone
are ccncerned, is valid with ilew
modiflcaticns also for general
case 0 £ p<m . Namely, for any
given. 4 , making use of the
uniquely determinate functions
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4;?(1, T, %) € Ry (%, Za)n R (2, 70),
‘\Vr (Z/ 1n,7-u,) € ﬁr (Zo, Zn)/‘ IR? (1"’/ Z“’)/

we now introduce two tunctions f?
and QP defined by

.Pib (z;' Zo, Zaa)
/
= $(x, 2, %) 2«}/,(2; 2, 70"

QP(Z) %, Ze)
= dab(z, z,, z,,,)l/lq}’/z; Z,, ,2‘”)4/,.2

the branches of square roots in
the right-hand sides being deter-
mined in such a manner that _g
satisfies the same normalizing

conditions at 2, and Z, as
» or Y, and further that @,
attains the value 1 at Z, o

It is evidently seen that P, and
are both one-valued in D ,
that possesses a zero point
and a pole only at %, and %2, ,
respectively, both being of the
first order, and that Qr posses-
ses nelther zero point nor pole.
By inverting the det'ining equations
for g and QP , we immediately
have

— - ~4

Now, since arg ana lgl‘f{,‘
remain constant along each or
C, (4= P> , we get the rela-
tions of the form

&= argfr-ratrg Q,
A—J = lngPl" lg’arl)

54 =lh-ay (=grd
(zeCi j=p)
Similarly, since lg‘¢}f and

axg remalin”constant along
cach of C, ( 4 >P) , we further
get the relations or the form

= lglBl+L1q)],
aLJ = A’tg_fi—— a’!g&f,;
lgQ=-Lh=7 (G=qridy)
(zeC;, 3>Pp
We shull then show that the

desired mapping function
given by the relation

is



f(z, %, Z00)

= Bz 2, 20) Qy(2; %, 2a)%
where the constant £ 1is defined
as
2Lk
k= e o = tan k

’

L
and QT denotes the branch
taking the value 1 at Zoo .

It is evident that the so de-
fined function satisties the
assigned normalizing conditions
at % and %X, . Its behavior
on the boundary is as follows,

For any xe¢ Cj Gp) »

lg‘f= IgP-’- ilgo?
= 151’ + " lgf - ;'b;e 2k
=2e" ’J((e“"lgff,)—~’§e
and hence
argf - dlglfl

= 2sink- R (e~ lg P).-”7(
-tank (2cos k- R (e'“‘lg_ﬁ}
—ﬂ(i%

= sk R(Get)
4

ez;u))

that is, the image of each C; (Gj <p)
lies on a logarithmic spiral of
inclination o , Similarly,

for any zeC Ci>1)
lgf = lgP} -+ ﬁlg@.r
2T p _
= lgf - £ lg-Pf, r{;e
- K 2Lk
= 20" J( lgli,)'ze
and hence
argf + 7 lglfl
= 2csK- J(e Klgf) ](Jehk
+ etk (-2sinx ](e‘““JgP )
- K(’b}ﬁhk»
= —cosec K- ’K(?&e"‘)}
that is, the image of each C;(3>P)
lies on a logarithmic spiral’of
inclination —1/x which 1is

orthogonal to one of inclination
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Since the function Q, ,
as already mentioned, possesses
neither zero point nor pole, it
is obvious ,that the tunction
f =5Q, is, like § ,
schlicht in respective neighror-
hoods ot the points %, and Zs, .
Hence, in view of the behavior of
F on the boundary ot D, we
conclude that the image of D by
the mapping W= f(%; %o, Zw)
covers the whole plane just once
except arcs of logarithmic spirals
in question; that is, the function
maps D univalently onto
whole plane slit along arcs of lo-
garithmic spirals of two systems
in the desired manner.

The uniqueness ot tne mapping

may be shown as tollows. In fact,
let F* Dbe any function having
the same properties as with

respect to the mapping character.
Then, the quantities

¥ *
arp £ - | £
T—:'arg-f*— o Jg{-f*( - (argf ~d lg’ I‘H)

and

‘Mg— + “lglf [
:.—‘a.rgf + ;l- lg{-f*[ - (azg{+ —i—lgl-fl)

remain constant along any C; (3= p)
ancd any C, (3 > p) , respective-
1y. Since the quotient +f*
neither vanishes nor becomes infi-
nite, we see from a quite similar
reason as above that it reduces to
a constant. Based upon the norna-
lization at 2, f* must coin-
cide 1denticauy with ¥ . Thus,
the theorem has completely been
proved.

3. Parallel strip slit along
perpendicular segments.

We agaln consider an Mm-~ply
connected domain D possessing m
continua C, (=1,., n) as boundary
components. With regard to its
univalent image A  with corre-
spcndlng boundary components 5‘ N
we now introduce following nota-
ticens.

We denote by Sf the family
consistinb oi all such domains
that I is composed of twc pa-
rallel lines Jw=tm/2, -0 < Rw<+00
and the I (4=2,---,$) are vertical
segments contained in the strip

[le<'7c/9~ , and similarly by
SP the family consisting of



all such domains A that I[] 1is
the same as above and I (4
=ptl,-,m) are vertical®segments
contained in the strip |Jwl|<T/Z.

We further define the tramilies
T, and T, similarly by taking
horizontal segments instead of
vertical ones in cases of S,
and E# , respectively.

Here p 1is supposed to be an
integer such that { <p<s»m , 1In
particular, S, =8, = T, ='T..
1s regarded as the family consist-
ing ol all univalent images of D
contained in the strip [Jwl<mT/2
which 1s bounded by II alone.

Let Z, and 1z, be any fixed
dit'ferent boundary elements lying
on C, . Suppose that the func-
tions f(z) wunivalent in D be
normalized by the conditions

Jp Ri=e i Rft = e

We then denote by ﬁ;’(z,, Zn)
Mo (e, 22D s Uy (2w, z2)
& T (2w, 23) the Tamilies
of normalized functions wnhich map
D onto domains ot . ., 'S, ,
T, and ’7; , respectively.

Ve now observe the simply con=-
nected demain bounded by C; alone
and containing D in its interior.
We then map it onto the parallel
strip | Jwl<m/2 in such a
manner that g, and 2, corres-
pond to +00 = +00 + 40 and
—~0= o0 + i0 , respectively,
the mapplng being determined uni-
quely except a translation parals
lel to the real axis. If this
mapping function is restrictecd
into the pasic domain D, it be-

longs to ’6:(1,.,, 25) (= /3:{2,,’2;)
= T X, 22)="] (2., 23))

Because of the just notlced fact,
we may suppose, for the sake or
brevity, that the given domain
itsely 1s of the type R
i.e,, a sub-domain of the strip
1 Izl < ©/2 among wnose bhcun-
dary components  Cj colncides
witn Jx = +w/2,~0<RZ<+oo and the
remaining C, (j=2, -, m )
are contained In the strip. Ac-
cordingly, we take z,= +00 and
Z, = —e0 , and we shall write
merely “J,° etc. instead of

4
’D; (.'.w) .v.oo) elc.
We first prepare a lemma.
Lenma i. In a domain D or

the just mentioned type, any
function w= f(z) belonging to

Ty satlsties asymptotic relations
expressed by

feo=2z+ 4 [f1+0(L)

(zeD, Rz ->to0);
being real constants.
4 1 g
Proof. We put Z—: ez and
= ¢ . Then, the function
def'ined by

W=F'(Z)zexff(1g2),

the logarithm denoting 1ts prin-
cipal branch, is regular_and uni-
valent in the domain e? opb-
tained from D by 7 =e* .,
In view of inversion principle,
F(Z) remains analytic also
in the domain containing 0 and
[=2] as interior points which
is bounded by the image curves
es « Moreover, we have

F(oy=o, F (00) = 00,

and the orders of zero point Z==O
and of pole [ = oo are both equal
to 1 . Since by the mapping

W = F(Z) the positive imagi-
nary axes correspond each other,
the derivatives F(0) and F’(00)
must both be real and positive.
Hence, putting

Flo= e

/ £
s Fleo)=e™
both quantities 4, = 4, [F]
are also real. On the other hand,
we have

F/0)= [£87]°7% fim ™"

ZH>—00
(w= JC(Z)))
and hence, for KZ->-w
w—2zZ £
€ = e tod),

yielding an asymptotic relation
feor—2= 4 [f]+ocl),
In a similar way, we get, Ior

Rz —» +oo s
f) -z = £, 0F 1+ o),

As Immediately seen from tre
above mentionea proot, more precise
asymptotic relations

f()= 2+ 4 [f1+ 0 (e:t’Rz)
(Rz—> £ o00)

may te derived. Remembering fur-



ther the analytic continuability
across the boundary component

. » We see that the last limit
relations remain to hold, for
each { , uniformly in |Jz|<m/z
as ‘Rx - + 00 .

We now introduce a quantity
defined by

prfl = 4081 4(f]
szl_ig; (f)- f-2)-2%7),

F Tbeing any runction or /P
The tundamental distortion theorem
can then oe stated as follows,

Theorem 1. If F(z)€ ’J; and
$(2) € '?& , then

pLIT £ ple],

the equality is valia only it
f=¢ +c¢ , ¢ being a real
constant.

Proot's. By means or the trans-
formations 7 = exp¢(z) and
W= exp f(2) followed by the
inversions with respect to the
imaginary axes of Z- and W -
planes, based upon the inversion
principle, the tunction defined by

W=F(Z)= epf (47(1g7)

can be regarded as the one mapping
the 2(m-1)-ply connected domain
which is bounded by m —~1 continua
in the / -plane originated from

C; (3=2,--, m) and their inver-
ses with respect to the imaginary
axis onto the domain in the W -
plane which is obtalned in a simi-
lar manner. In view of fe ﬂ“’ ,
the boundary continua in the Z-
plane originated from C Ca=2,-,p)
as well as their inverses with
respect to the imaginary axis are
all radial slits centred at the
origin, On the other hand, in view
of ¢ %, the boundary con-
tinua in the W -plane originated
from C} (y=p+1,---, m) as well as
thelir 1nverses with respect to
the imaginary axis are all circular
slits around the origin. Hence,
by Theorem 1 of §2 — taking
20n-12;3 L, 0,0 ; 7, F(2)/ o)
instead of » ; 2, z, , %, ;

£ , ¢ there, respectively

-—, We got
s | Fwl

4
F(0) anec F'(w) are really
both real quantities. The equality

in the last inequality is valid

only ir

F(Z)/F'tw)y= 7

Now, the expansion or FQ/Z)around
= (0 becomes

F(Z)= exp (¢"(ng)+&&1+0(1)}
=exp (IgZ - 4.0¢1+0)+ 4 (f1+0 (1)
=Zexf(4.[ﬂ-4.[4:]+o(i)) (75 0)

and that around Z=ao becomes

F(Z) = o (47 (1g7) + 4, [f1+0(D)
= ey (lgz- 4,067+ o)+ 4[f1to)
= Lenp (4,01~ £, 8] +0t1) (T ).

We thus have

Fllo= exp (01— £047)
and

f ,(oo)z 2xp (A.F1- 4, (97),

Consequently, the above inequality
1< IF0)/F > implies

4,(£1- 4,041 s L_[f1- £ (4],

whence the desired result pf[f]
$pre7

The equality sign can appear
as noticed above, only if F(2)
= [le)] . We then get in turn

eT‘P'faP-l(ng))E Flto)Z,
FC&™ (1g )= 1g 7 + 1g F o),
f(= p(z) + lg F/(e0),

here lg F o) = 4, 0f1-4,[¢] being
a real constant.

The result just proved can also
be stated in an equivalent form
as follows,

Theorem la. It J(z) € Z/, and
'\P(Z) e f’()‘; , then
pl1 2 pIvd
the equallty is valid only it 2

=Y+ 4 , beinz a real
constant,



Under the same
we have

Coroliary 1.
assumption as in Theorem 1,
more precisely

proI—plfl 2 Q141

. [f1 denoting the area of the

part, contained in the strip
Jwl< /2 , of complement

ol the image of D by w=f(2) .

Proof. We consider the image
of D by 7= expd(z) and its
inverse with rcspect to imaginary
axis. By means of corollary 1
ot Thecrem 1 of § 2, the union of
these doma'ns are mapped by W

!
=F(Z)/F@o)onto a set whose com-
plement has a logarithmic area

g2 [Lg (F/ F'w))] satistying
exp (35 2 Lg (F/F )]

F/
2 1/ [ | = o0 (pre1-pan)
whence it follows
PL81-pLf1 2 35 O (F/Ftw)].

But, since the inversions with
respect to imaginary axes in Zﬁ
and W -planes have taken place, we
have

QU 6/ Ftn]=20.651,

ylelding the required inequality.

Corollary 2., Ir ¢, (%)

?

G%D\7 (p=1,--, m) , then
p(ﬁqlzp[%] (p=2,--, »).
Corollary za. If (%)
m) , then

€3 Gt
By IS pIRT (p=2,

Thus, the distorticn theorem
having been established, the exi-
stence proof of a mapping onto a
strip slit along perpendicular seg-
ments, i.e., a donain of the type
! can be pertformed
quite sinilarlv as in casc of the
preceding sections. And, the exi-
stence proof in general case can
now be recuced to that in triply
connected case. It will suiiice
merely to state the corresponaing
results,

Lemma ii, The Lamily 7, A 7
conslists of a functicn uniguely
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determined except any translatilon
parallel to the real axls (anv
real additive constant;,

Theorem 2, The framily T/\ ’l
for any p with 1£p<m ' cont
sists of' a function uniquely ae-
terminea except any transluticn
parallel to the real axis,

01 course, the ract stated in
the lemma corresponds to a special
case of that in the theorem itselt

Nhile, as already stated above,
a gecneral existence probler. can ve
reduced to triply connected one,
the particular case where a mapping
onto a parallel strip siit alcng
horizontal or verticel segments
alone, i.e., a domain cl' ‘he type

T ="79 or T.="' , respec-
tively, is in question, can further
be reduced to coubly connected one,
By means of auxiliary mapping by
exponential function as in the
above proot of Theorem 1 and inver-
sion with respect to the imaginary
axls, the last particular case can
be reduced to a well-known theorem
concerning the mapping ot a 2(n—-1)-
ply connected domain onto whole
plane slit along radial segments
or circular arcs alone; the domains
in question being especlally sym-
metric with respect to imaglnary
axis. But in such a particular
case the functicn @) of I or

Z. which is uniquely determinea
except any real adaitive constant
can alsc be characterized in a
direct manner by the variational
problem X ]
L] /Vlel%’} pLf
or

pLoT= Mar pLfd,

respectively, the ranve cl admis-
sible argument functions f(Z)  be-
ing the same tamily 77 = ¥, .
Consequently, the genersl existence
proot can thus be reduce to doubly
connected one.

On the other hand, any ring dec-
main, that 1s, a doutly connected
domain possessing two disjoint
continua as boundary, car be mapped
conrormally and univalently onto
an annulus, i.,e., a ccncentric cir-
cular ring; the fact having been
proved in various ways; ci'. Cara-
théodory [1] , Teicamuller [1] ,
Komatu [47 , etc. TFurther, the’
function wnich maps an annulus onto
whole plane slit along rauial seg-
ments or circular arcs alone can
explicitly, by means ci elliptic
Tunctions; cf's Komatul[ 1]l . Con-
sequently, by combining an elermen-
tary transfcrmation, the mapping
onto a parallel strip slit along a
horizontal or vertical segment can



also be written down in an explicit

ﬁ?rm; cf. also, tor instance, Kubo
17.

Moreover, in a proof of general
existence theorem concerning 7.
or 7, , based upon a variational
method, only the doubly cornnected
case (m=2) of theorem I will be
used, as noticed above. The exi-
stence theorem is, in general,
essentially equivalent to Grdtzsch-
Rengel's distortion theorem. But,
in a particular case oif connecti-
vity two, there exlsts a iurther
equivalent distortion theorem;
cf. Komatul[21. Hence, in order
to prove the general existence
theorem in such a case, the last
mentioned distortion theorem will
also sufiice.

It may be noticed that a poten-
tial-theoretic prool for existence
ol mapping onto a parallel strip
slit along a horizontal segment

has {ecently been gilven by Kubo
[11.
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