A THEOREM OF BLOCH TYPE CONCERNING THE RIEMANN SURFACE OF

AN ALGEBRAIC FUNCTION OF GENUS $p \ge \circ$.

By Masatsugu TSUJI

(Communicated by Y. Komatu)

<u>Theorem</u>. Let w = f(z) be an algebraic function of genus $p \ge 0$ and F' be its Riemann surface spread over the z-sphere K. Then F contains a schlicht spherrical disc Δ , which subtends an angle $\Theta = \Theta(p) = \frac{\pi}{p+1}$, if $p \ge 1$ and $\Theta(p) = \frac{\pi}{3}\pi$, if $p \ge 0$.

Proof. Let Z_{ν} ($\nu=1,2,\dots,k$) be the branch points of F and ($\tau_{\nu}-1$) be its order and \mathcal{M} be the number of sheets of F. Then

$$p = \frac{1}{2} \sum_{v=1}^{n} (x_v - 1) - n + 1.$$

Since $f_{\nu} \ge 2$, $f_{\nu} - 1 \ge \frac{f_{\nu}}{2}$, so that

$$\sum_{\nu=1}^{k} \mathbf{r}_{\nu} \leq 4 (\mathbf{p} + \mathbf{n} - 1).$$

We may assume that $z = \infty$ is different from $z_v(v=1,2,...,k)$. Let L, be an arc of the great circle of K, which connects the north pole of K to z_v and we may assume that any two L;, L; do not lie on the same great ciecle. We cut all sheets of F along L, (v=1,2,...,k), then we obtain n spheres K; (j=1,2,...,n) with certain slits L... If z_v does not lie on K; then we remove L, from K; then we obtain n spheres K; (j=i,2,...,n), with a certain number of slits L, along which t_v sheets of F are connected.

Let m_j be the number of slits contained in K_j , then $\sum_{j=1}^{n} m_j = \sum_{\nu=1}^{k} r_{\nu} \leq 4 (p+n-1).$

Let $N = Min(m_1, \dots, m_n)$ and let $m_{\mu} = N(1 \le \mu \le n)$, then

 $nm_{\mu} \leq 4(p+n-i), m_{\mu} \leq 4(1+\frac{p-1}{n}).$

If $p \ge 1$, then $n \ge 2$, so that $m_u \le 2(p+1)$. If p = o and $m \ge 2$, then $m_{\mu} < 4$, hence $m_{\mu} \le 3$. Let L_i , ..., $L_{m_{\mu}}$ be the slits in K_{μ} and θ_i , ..., $\theta_{m_{\mu}}$ be their mutual angles, then $\sum_{i=1}^{m_{\mu}} \theta_i = 2\pi$, hence if we put $(H) = M_{iax} \theta_i$,

then $2\pi \leq m_{\mu} \oplus$, so that

$$\mathbb{H} \geq \frac{\pi}{p+1}$$
, if $p \geq 1$, $\mathbb{H} \geq \frac{2}{3}\pi$, if $p = 0$.

Hence there exists a spherical disc Δ , with its center on the equator of K, which subtends an angle Θ at the center of K and does not contain branch points of F. Hence Δ is a schlicht disc on F, q.e.d.

As a special case p = 0p = 1, we have

<u>Corollary 1</u>. Let F be the Riemann surface spread over the w-sphere, which is generated by a rational function w = f(z). Then F contains a schlicht spherical disc, which subtends an angle $2\pi/3$ at the center of the wsphere.

<u>Corollary 2.</u> Let F be the Riemann surface spread over the w-sphere, which is generated by an elliptic function w = f(z). Then F contains a schlicht spherical disc, which subtends an angle $\pi/2$ at the center of the wsphere.

(*) Received August 13, 1951.

Mathematical Institute, Tokyo University.