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§ 0. Introduction.

One of the present authors has recently studied infinitesimal variations of
submanifolds of a Riemannian manifold, [5], [6], [7]. See also [1]. The method
used is to displace the varied quantities back parallelly from the displaced
point to the original point and to compare quantities obtained with the original
quantities, [5], [7]. The variation is said to be parallel when the tangent space
at a point of the submanifold and that at the corresponding point of the varied
submanifold are parallel, [7], and the variation is said to be normal when the
variation vector is normal to the submanifold, [7].

In the present paper we study normal parallel variations which preserve the
Ricci tensor of a submanifold of a space of constant curvature and prove
Theorem 3.8 using the following result of Sakamoto [4]. (See also [8])

THEOREM A ([4]). Let M™ be an n-dimensional connected complete submani-
fold with parallel second fundamental tensor immersed n an m-dimensional
sphere S™(a) with radius a>0 (1<n<m) and suppose that the normal bundle is
locally trunal. Then M™ 1s a small sphere, a great sphere or a Pythagorian
product of a certain number of spheres.

To prove Theorem 4.1 as a main result of the paper, we use the following
theorem proved by Lawson [3] (See also [2]).

THEOREM B ([3]). Let M™*(c, R) be the stmply connected space of constant
curvature ¢, S**'(R), R™' or D"(R), depending on whether ¢ 1s 1, 0 or —1
respectively. Suppose that M™ is a submanifold of M™*'(c, R) over which the
Ricci curvature 1s covariantly constant. Then, if M™ 1s isometrically 1mmersed
wnto M™ (¢, R) with constant mean curvature, 1t must be an open submanifold of

(i) S*MXS**(VR*=r®) for some r, R=r=0, and k=0, -, % of c=1.
(i) S*(XR™* for some r=0 and k=0, ---, n 1f ¢=0.
(ii) S*()XD* *(VR*+7r?) for some v=0 and k=0, ---, n, or F*, if c=—L.
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§1. Structure equations of submanifolds.

Let M™ be an m-dimensional Riemannian manifold covered by a system of
coordinate neighborhoods {U; x*} and denote by g;;, I'%, V,, K;;" and Kj; the
metric tensor, the Christoffel symbols formed with g;;, the operator of covariant
differentiation with respect to I'%, the curvature tensor and the Ricci tensor of
M™ respectively, where, here and in the sequel, the indices 4,1, j, 2, -+ run
over the range {1, 2, :--, m}.

Let M™ be an n-dimensional Riemannian manifold covered by a system of
coordinate neighborhoods {V; y°} and denote by ge, I'%, V., K¢® and K, the
corresponding quantities of M™ respectively, where, here and in the sequel, the
indices a, b, ¢, d, --- run over the range {1, 2, ---, n}.

We suppose that M™ is isometrically immersed in M™ by the immersion
1. M"—> M™ and identify i(M™) with M™ itself.

We represent the immersion by

an xh=x"(y%)
and put
1.2 By*=0, x*, (0,=0/0y").

Then B,"* are n linearly independent vectors of M™ tangent to M™ Since the
immersion is isometric, we have

1.3) gao=Blg;i,
where B#{=B/ B,

We denote by C,”m—n mutually orthogonal unit normals to M™, where,
here and in the sequel, the indices x, y,z run over the range {n+41,n-+2,---, m}.
Then the metric tensor of the normal bundle of M™ is given by
(1 4) gzy:Czj Cylgji

and has values g,,=d,,, J,, denoting the Kronecker delta.
It is well known that I'4 and I'% are related by

(1.5) I's=0. By*+1I" Bf) B%,

where B®,=B;'g%g;,, g°® being contravariant components of the metric tensor
go of M™ and the components /% of the connection induced in the normal
bundle are given by

(1. 6) ny:(ac Cyh+F_’7'LchJ Cyi)czhy

where C*,=C,'g¥"g», g¥" being contravariant components of the metric tensor
gy» of the normal bundle.
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If we denote by V.B,” and V.C,” the van der Waerden-Bortolotti covariant
derivatives of B,* and C,"” along M™ respectively, that is, if we put

1.7 V. B,*=0. By*+1'% B#i—I'% B,"*

and

1.8 V.C,*=0.C,*+I" B C—I'g, C,*,

then we can write equations of Gauss and those of Weingarten in the form
1.9 Ve By"=he® C™

and

(1.10) V.C,"=—hy B."

respectively, where h.* are the second fundamental tensors of M™ with respect
to the normals C,* and h.%,=hee g%°=ha?g2%%gyz.
Equations of Gauss, Codazzi and Ricci are respectively

(1.1D Koor® =K ;i" BEii+ha%s hao®—he®sz hay”,
(1.12) 0=K,;;"BEiC*n— g hey® Ve hap®)

and

(1.13) Kiey®=Kpji"BE.Cy  C% 4 (hae® he®y—hee® haty),
where

(1.14) Koey®=045—0. g+ 15,15, — 15175,
and

Bkie=B, chJBbLBa';“ Bi=B,*B./B;, C”hZCy’g”gm,

Kg4c,® being the curvature tensor of the connection induced in the normal
bundle.

§2. Infinitesimal variations of submanifolds. [7]

We now consider an infinitesimal variation of M™ of M™ given by
@.1 Tr=x"+E"(y)e,
where g;;676*>0 and ¢ is an infinitesimal. We then have

2.2) Etzh:Bbh']‘(abEh) &
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where B,"=0,%"* are n linearly independent vectors tangent to the varied sub-
manifold at the varied point (X*).

If we displace B,* back parallelly from the point (%) to (x*), then we
obtain

By*=By"+i(x+Ee)&'By'e,
that is,
2.3) Byr=B,"+(V,&"e,
neglecting the terms of order higher than one with respect to ¢, where

2.9 V" =0,6"+1"5: By €.

In the sequel we always neglect terms of order higher than one with res-
pect to the infinitesimal e.

Thus putting

2.5) 3B,*=B,"—B,",
we have
2. 6) 0B, =(VpEM)e.
If we put
@.7 §r=E§*B,"+£° C,",
we have
2.8 Vo =(Vp§0—h®26%) Ba"+ (Vs €7+ hpa* ) 5"

When £7=0, that is, when the variation vector &* is tangent to the sub-
manifold we say that the variation is tangential and when £°=0, that is, when
the variation vector £&* is normal to the submanifold we say that the variation
is normal.

From (2.5), (2.6) and (2.8), we have

@.9) By =08+ (, 6% — 1,%, 6%) €] Bo "+ (T €7+ hyo™ £2) C e

When the tangent space at a point (x*) of the submanifold and that at the
corresponding point (X*) of the varied submanifold are parallel, we say that the
variation is parallel. [7].
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From (2.9), we have

PROPOSITION 2.1 [7]. In order for a normal variation of a submanifold to
be parallel, it is necessary and sufficient that

2. 10) V,&2=0,
that is, the variation vector £*Ci* is parallel in the normal bundle.

When the submanifold is a hypersurface, a normal variation is given by
Ih=x"4+1C", C" being the unique unit normal to the hypersurface and 2 a
function. In this case (2.10) reduces to V,2=0 and we have

PROPOSITION 2.2 [7]. In order for a normal variation of a hypersurface to
be parallel, it is necessary and sufficient that the normal variation displaces each
point of the hypersurface the same distance.

Denoting by -C_yf m—n mutually orthogonal unit normals to the varied
submanifold and by C,* the vectors obtained from C," by parallel displacement
of C,* from the point (%*) to (x*), we have

@2.11) C,n=C "+ (x+£¢)&7 C e
We put
2.12) oC,r=C,»—C,"

and assume that 6C," is of the form
(2.13) 0C,"=(1,*B"+71,°C;")e.

Then (2.11), (2.12) and (2. 13) give
(2.14) Ch=C,"—T"E Clre+(9,*Ba"+75,C.")e.

Applying the operator § to B,’C,'g;;=0 and using (2.6), (2.8), (2.13) and
0g;;=0, we find

(Vo &yt hoay EN)+145=0,

where §,=&%g,, and %,,=7%,°gw, Or, putting Vo=g%*V,,
(2.15) 7yt ==&+, ).

Applying the operator ¢ to C,;’C,'g;;=d,, and using (2.13) and dg;,=0,
we find

(2.16) Nyt Ny =0,

where 7,,=7,"8.z.
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From (2.12) and (2.13), we have

2.17) C,r =09y B+ @2 +7%) C.]e.

§3. Variations of the curvature tensor.

In this section we compute infinitesimal variations of the Christoffel sym-
bols, the second fundamental tensors and curvature tensor of the submanifold.

Suppose that v is a vector field of M™ defined intrinsically along the
submanifold M. When we displace the submanifold M* by x*=x*>+&"(y)e in
the direction &%, we obtain a vector field #* which is defined also intrinsically
along the varied submanifold. If we displace ?* back parallelly from the point
(Z*) to (x™), we obtain

=g I (x+6e)87 b e
and hence putting dv*=9*—v"*, we find
3.1 ovt=pr—v*+I'%E v e.
Similarly we have
OV =Y, 0"V, 0" +T"%EV, v e,
that is,
3.2 OV "=V, "=V, "+ @, '+ T4 ) E¥B v e
+I'[0.8) v +87 (0. v%)] e.
On the other hand, from (3.1) we have
3.3) Ve ov* =V 0"~V v"+@, [+ ') E* Bl vt e
‘[“F_’;t [(ac E]) V4§ (ac Ui)] .
Thus forming (3.2)—(3.3), we find

3.9 OV v* =V, 00"=K, ;;*E*BJ v’ e.

For a tensor field carrying three kinds of indices, say, T5,", we have
(3 5) avc Tbyh_vcaTbyh:KkjihEchj Tbyl 5_(5Fcab) Ta.yh_(a['fy) Tbxh;

where 6I'% and 6I'%, are variations of I'4 and I'Z, respectively.
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Applying formula (3.5) to B,*, we find
OV By*—V,0By"=K,;;"£*BI By e—(01'%) B,",

or using (1.9) and (2.6)

d(he® CoM)=(Vc Vo &'+ Ky ;" §* B By") e—(01'%) B,
from which, using (2. 13),

Ohey®) Ca+hey® (9:*Bo™+9,Y C,") e

=V &"+K;ji" ¥ BBy e—(01'%) B o™

Thus we have
(3.6 ol'4=(N V" +K;;;"E*BB,") B, e—hey¥ 7% ¢
and
Ohey®=—he? 7," e+ (N V6" + K, " E¥B7B,") C¥ e,
from which, using (1. 12) and (2. 8),
@.7 0ha® =6V hev® +her® (Ve &)+ hee® (Vo) —her? 7,76
FIVe Vo €7+ Ky ji" Cy *BECTh §Y— hee™ ho®y §¥ ] e

Substituting (2.8) and (2.15) into (3.6) and using equations (1.11) of Gauss
and (1.12) of Codazzi, we get

OlG=(N 6+ Kae® Y e
Ve (hoez §5)+ Vo (hees §)— Ve (R 7)1 8%,
or, equivalently,
3.8 OG=[LL%—Vc(h*:E) =V (he®: £+ (hepz §7)] e,
where £I'% denotes the Lie derivative of I'% with respect to &2 [6], that is,
LI'4=N V,E%4+ Ky, &%
For the varied submanifold, the curvature tensor of the submanifold can be
written as
3.9) Kiey*=0,T%—0. %+ T%6—T8 .

Thus denoting by Kg*+0Ks% the curvature tensor and by I'%4+6I'% the
Christoffel symbols of the varied submanifold, we have
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Kaop®+0K e =04 (I'es+01'%)—0c (I'%+01"%)
+(I&+0Is) ([a+0Ie)—U'e+0Ie) (Ia+01%),
from which

0K40%=Vg4 (5ng) -V, (5[13») .

Substituting (3.8) into this and using (1.14), we find by a straightforward
computation

(3.10) 0Ky =[LKses®—=VaVe(hp®2 %)=V Vs (A% ED)+HV gV (hepz E)
+Ve Vo (72 65+ Ve Vo (ha®2 D)=V NV (hava §9) e,
where [6]
(.11 LK30°=Ny LT'%—N, LG,
from which, using the Ricci identity,
(3.12) 0K op*=[ LK er*—Kace® ho°e E°+ Kp® he®2 E5 =g Yy (1%, €7)
+Va Ve (hepe E)+ Ve Vo (ha®2 €)=V (hasz §7) e,
which implies that
(3.13) 0K o =[LKp—Kee hs%2 E5+Kacpa B9 E°
VeV (heazED+HV Vo (hepz §)
+Ve V5 (7?2 %)=V Ve (hpaz E5)] e

Thus we have

PROPOSITION 3.1. An wnfinitesimal varwation of a submanifold gives the
variation (3.12) to the curvature tensor and consequently it preserves the curvature
tensor if and only if

(3.14) LKy =Kgc.* h®E°—Kger® he®2 EF
+Vd vb (hcax 51)_vd Ve (hcbx éz)_vc vb (hda.r Ez)
+V: Ve (hass €7).
PROPOSITION 3.2. An infinitesimal variation of a submanifold gives the

variation (3.13) to the Ricci tensor and consequently it preserves the Ricci tensor
if and only if
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(3.15) LKp=Kehp®2 6" —Kacpa R4 E°
+VV, (heas 5=V Vo (hepa §%)
Ve Vo (he®s€5)+ Ve Ve (Roaz §5)].
COROLLARY 3.3. For an infinitesumal normal variwation of a submanifold,
we have
(3.16) 0Ky =[—Kee h*2 6"+ Kacpa h?* 267
=V (heazE?)+ Vo (Aerz §7)
+Ve Vo (he®267) =V V® (hpaz §) €

and consequently a normal variation of a submanifold preserves the Ricci tensor
if and only if

(3 17) '"Kce hbeI‘SI‘I'chba hdaxsz_va. Vb(hca:ch)
+VeV, (hcbx ENDNFV V(R E5)—V NV (hbar £9)=0.

From Proposition 2.1 and Corollary 3.3, we have immediately

CoROLLARY 3.4. An wnfinitesunal normal parallel variation of a submanifold
preserves the Ricci tensor if and only if

(3 18) I:chba hdax_Kce hber—va vb hcar+va va, hcbz
+vc vb (heez)_vc ve hba x]f”:o

We now prepare a lemma for later use.

LemMmA 3.5. If a submanifold M™ of a Riemannian manifold M™ admuts
m—n linearly independent infinitesimal normal parallel variations, then the con-
nection induced in the normal bundle 1s of zero curvature.

Proof. By Proposition 2.1, a normal parallel variation satisfies V,&*=0,
from which

0=V, V87—V, V& =Ky, " €.

Thus if M™ admits m—n linearly independent infinitesimal normal parallel
variations, then we have K,.,”“=0, which proves the lemma.

We now suppose that the ambient manifold M™ is a space of constant cur-
vature ¢. Then we have from (1.11), (1.12) and (1. 13),

3.19) Kio®=c(038cs—05gan)+ha®y hey? —he®y has?,
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(3.20) Vaheo®™—Vehe®=0
and

3.21) Kicy®=hge™ he®y—hee” ha'y
respectively.

From (3.18), (3.19) and (3.20) we have
(3 22) [hcay hdby hdaz_hcdy hdey hbez‘l" heey hcdy hbd.z
+nChcbx—hdey h® hep?—ches gcb]EI:Oo

We now prove the following

LEMMA 3.6. Let M™ be a mimumal submanifold of a space M™ of constant
curvature c. If the submanifold M™ admits m—n linearly independent infinitesimal
normal parallel variations preserving the Ricci temnsor of M™, then the length of
the second fundamental tensor is constant.

If, moreover, c=0, then M™ is totally geodesic.

Proof. First of all, by Lemma 3.5 we have K,.,“=0 and consequently
by (3.21)

hae® he®y—hee® hay=0.
Thus, M™ being minimal, we have from (3.22)
(3.23) nchay=ayz he’,
where we have put

(3.24) ays=haey h%,.

Applying V,; to (3.23) and taking skew-symmetric part with respect to d
and ¢, we find

(3.25) (vdayx) hcbx—(vcayx) hapy®=0
because of (3.20), from which, M™ being minimal,

(3. 26) (Vo atyz) hot*=0.

If we transvect A°®? to (3.25) and make use of (3.24) and (3.26), then we
have

(Vd az/z)ayz:’%vd (ay.r ayz)zo,

from which we see that a,,a?® is constant.
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Now, from (3.24), we find
Ay AV =Nhgey K a¥%,
from which, using (3.23)
(3.27) Aye @V =nChgey R*Y=nca,".

Thus «,? is also constant. The last assertion follows immediately from (3. 24)
and (3.27). This completes the proof of the lemma.

Finally we prepare the following lemma.

LEMMA 3.7. Let M™ be a minimal submanifold of a space M™ of constant
curvature c. If the submanifold M™ admits m—n linearly independent infinitesimal
normal parallel variations preserving the Ricci tensor of MT", then the second
Sfundamental tensor is parallel.

Proof. We compute the Laplacian AF of the function F=h,"h,, which
is globally defined in M™, where A=g®V,V,. We then have

T AF=g (VT o B+ (Ve hog?) (V).

By using the Ricci identity and equations (3.20) of Codazzi, we can easily
find

%‘AF:Kca hpa” hcbz_ ecoa %%z hobx"‘(vc hbax) (vc hba.z)

with the help of Lemma 3.5 and g h.,*=0, where K., is defined to be
K=K, g and, as we can see from (3.19), is given by

(3.28) KC2=c(n—1)0—h.; h®
under our assumptions. If we substitute (3.19) and (3.28) into the expression

above of %AF, then we have

2 AF=nchye® W%ty =+ (Ve ha®) (T2 A1%,),
from which, taking account of Lemma 3.6 and (3.27),
Ve heo®=0,

which proves the lemma.
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Combining Theorem A, Lemmas 3.5, 3.6 and 3.7, we have

THEOREM 3.7. Let M™ be a sumply connected and complete minimal submani-
fold of a space M™ of constant curvature c. If M™ admits m—n linearly
windependent infinitesimal normal parallel variations preserving the Ricci tensor of
M™, then M™ is totally geodesic 1if ¢=0, M™ 1s S"(r) or SP(r)XS* ?(ry) if ¢>0,
where S™(r) denotes an n-sphere of radius r>0.

§4. Variations of hypersurfaces preserving the Ricci tensor.

In this section, we consider a normal parallel variation X¥*=x*+1C"¢ of a
hypersurface M™, where A is a positive function and C* the unit normal to M™.
In this case (2.10) reduces to V,2=0 and (3.13) to

@1 0K oy=[LKep—AK e hs*+AK 4o h**—V* Y, (2hca)
+va Va. (lhcb)'*_vc vb (Zhee)—vc Ve ('Zhba):l €.

In the sequel we suppose that the normal parallel variation of a hyper-
surface with constant mean curvature of a space of constant curvature preserves
the Ricci tensor. Then we have from (3.19), (3.20) and (3. 22)

“.2) (he) hea ho®+(cn—hea h*®) hey—che® g =0.

Since the mean curvature #h.° is constant, we have only to consider two
cases h.°=0 and h.°+0.

In the first case, we have from (4.2),

“.3) hea h®%=nc or hg=0.

In the second case we have
(4: 4) h-ce hbe:kh6b+6gcb,

where we have put

@.5) k:—hl—e—(hdeh‘“—nc).

Differentiating (4.4) covariantly along M™", we find
(4- 6) (Ve hce) hp®+hee Vahy'=Ng4 k) het RV hep,

from which, taking skew-symmetric part with respect to d and ¢ and using the
fact that Vg hg—Vehey=0, we have

4.7 heeVa hy®—hge Vehy*=Vq4 k) hcb—(vc k) has.
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Interchanging indices d and b in (4.7), we get
4.8) heeNo hg®—hpe N hg*=(Npk) hea— (k) hpg.
Adding (4.6) and (4.8) and using Vg h—V, hse=0, we find
4.9) 2heeNahy®=kVg heyt(Nak) heyt (Vo k) hea—(Vck) hap.

If we transvect g?® to this and use the fact that h.% is constant, then we have

@. 10) BV, b= —;— heV. k.

Moreover, transvecting (4.9) with #,° and taking account of (4.4) and (4.10),
we find

(4 11) khae vd hbe+26vd hba:(khba+6gba)vdk

+(khda+nga)vbk_é‘hee(vak)hdb;

from which, transvecting g?° and using (4. 10)
[kh;+2c—%(h;)2] ¥, k=0,
from which, 4.% being a constant, we have k=constant on M™. Thus (4.9) and
(4. 11) imply that
4.12) (R24-4c) Vg hep=0.

Thus, if k2+4c¢+0, we have Vg  h,=0. If £24+4¢=0, then we see from (4. 4) that
1 b 1 ch ) —
(o ) (10— L) =0

and consequently hcb=—;—kgcb which implies that V;h,=0. Therefore in any

case we have
(4. 13) Vd hcb:O,

from which, using the equations of Gauss, we see that the Ricci tensor is
covariantly constant. Thus we conclude that

(i) If h=0, then h.y h®®=nc or h =0,
(ii) If h.tx0, then h. h,*=Rhe+cge, k=constant and V, A,=0.
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Therefore by Theorem A (See also Chern, do Carmo and Kobayashi [2]) we

have

THEOREM 4.1. Let M™ be a complete hypersurface with constant mean cur-
vature of a wunit sphere. If an infinitesimal normal parallel variation X*=x"+
AChe, 2>0, preserves the Ricci tensor of M™, then M™ is a sphere S™ or

STX ST,
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