INFINITESIMAL VARIATIONS OF THE RICCI TENSOR OF A SUBMANIFOLD

Dedicated to professor Tominosuke Otsuki on his sixtieth birthday

By Kentaro Yano, U-Hang Ki and Jin Suk Pak

§ 0. Introduction.

One of the present authors has recently studied infinitesimal variations of submanifolds of a Riemannian manifold, [5], [6], [7]. See also [1]. The method used is to displace the varied quantities back parallelly from the displaced point to the original point and to compare quantities obtained with the original quantities, [5], [7]. The variation is said to be *parallel* when the tangent space at a point of the submanifold and that at the corresponding point of the varied submanifold are parallel, [7], and the variation is said to be *normal* when the variation vector is normal to the submanifold, [7].

In the present paper we study normal parallel variations which preserve the Ricci tensor of a submanifold of a space of constant curvature and prove Theorem 3.8 using the following result of Sakamoto [4]. (See also [8])

Theorem A ([4]). Let M^n be an n-dimensional connected complete submanifold with parallel second fundamental tensor immersed in an m-dimensional sphere $S^m(a)$ with radius a>0 (1< n< m) and suppose that the normal bundle is locally trivial. Then M^n is a small sphere, a great sphere or a Pythagorian product of a certain number of spheres.

To prove Theorem 4.1 as a main result of the paper, we use the following theorem proved by Lawson [3] (See also [2]).

Theorem B ([3]). Let $M^{n+1}(c,R)$ be the simply connected space of constant curvature c, $S^{n+1}(R)$, R^{n+1} or $D^{n+1}(R)$, depending on whether c is 1, 0 or -1 respectively. Suppose that M^n is a submanifold of $M^{n+1}(c,R)$ over which the Ricci curvature is covariantly constant. Then, if M^n is isometrically immersed into $M^{n+1}(c,R)$ with constant mean curvature, it must be an open submanifold of

- (i) $S^k(r) \times S^{n-k}(\sqrt{R^2-r^2})$ for some r, $R \ge r \ge 0$, and $k=0, \dots, \frac{n}{2}$ if c=1.
- (ii) $S^k(r) \times R^{n-k}$ for some $r \ge 0$ and $k = 0, \dots, n$ if c = 0.
- (iii) $S^k(r) \times D^{n-k}(\sqrt{R^2+r^2})$ for some $r \ge 0$ and $k=0, \dots, n$, or F^n , if c=-1.

Received February 22, 1977.

§ 1. Structure equations of submanifolds.

Let M^m be an m-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\{U; x^h\}$ and denote by g_{ji} , Γ^h_{ji} , ∇_j , $K_{kji}{}^h$ and K_{ji} the metric tensor, the Christoffel symbols formed with g_{ji} , the operator of covariant differentiation with respect to Γ^h_{ji} , the curvature tensor and the Ricci tensor of M^m respectively, where, here and in the sequel, the indices h, i, j, k, \cdots run over the range $\{1, 2, \cdots, \overline{m}\}$.

Let M^n be an *n*-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\{V; y^a\}$ and denote by g_{cb} , Γ^a_{cb} , ∇_c , $K_{dcb}{}^a$ and K_{cb} the corresponding quantities of M^n respectively, where, here and in the sequel, the indices a, b, c, d, \cdots run over the range $\{1, 2, \cdots, n\}$.

We suppose that M^n is isometrically immersed in M^m by the immersion $i: M^n \to M^m$ and identify $i(M^n)$ with M^n itself.

We represent the immersion by

$$(1. 1) x^h = x^h (y^a)$$

and put

$$(1.2) B_b{}^h = \partial_b x^h, \quad (\partial_b = \partial/\partial y^b).$$

Then $B_b{}^h$ are *n* linearly independent vectors of M^m tangent to M^n . Since the immersion is isometric, we have

$$(1.3) g_{cb} = B_{cb}^{ii} g_{ii},$$

where $B_{cb}^{ji}=B_c{}^jB_b{}^i$.

We denote by $C_y^h m - n$ mutually orthogonal unit normals to M^n , where, here and in the sequel, the indices x, y, z run over the range $\{n+1, n+2, \cdots, m\}$. Then the metric tensor of the normal bundle of M^n is given by

$$(1.4) g_{zy} = C_{z'} C_{y'} g_{ji}$$

and has values $g_{zy} = \delta_{zy}$, δ_{zy} denoting the Kronecker delta.

It is well known that Γ^a_{cb} and Γ^h_{ii} are related by

(1.5)
$$\Gamma_{cb}^a = (\partial_c B_b^h + \Gamma_{ii}^h B_{cb}^{ii}) B^a_h,$$

where $B^a_{\ h}=B_{b^i}g^{ba}g_{ih}$, g^{ba} being contravariant components of the metric tensor g_{cb} of M^n and the components Γ^x_{cy} of the connection induced in the normal bundle are given by

$$\Gamma_{cy}^{x} = (\partial_c C_y^h + \Gamma_{ii}^h B_c^j C_y^i) C_h^x,$$

where $C_h^x = C_y^i g^{yx} g_{ih}$, g^{yx} being contravariant components of the metric tensor g_{yx} of the normal bundle.

If we denote by $\nabla_c B_b{}^h$ and $\nabla_c C_y{}^h$ the van der Waerden-Bortolotti covariant derivatives of $B_b{}^h$ and $C_y{}^h$ along M^n respectively, that is, if we put

$$\nabla_c B_b{}^h = \partial_c B_b{}^h + \Gamma_{ii}^h B_{cb}^{jj} - \Gamma_{cb}^a B_a{}^h$$

and

$$\nabla_{c} C_{v}^{h} = \partial_{c} C_{v}^{h} + \Gamma_{ii}^{h} B_{c}^{j} C_{v}^{i} - \Gamma_{cv}^{x} C_{x}^{h},$$

then we can write equations of Gauss and those of Weingarten in the form

$$\nabla_c B_b{}^h = h_{cb}{}^x C_x{}^h$$

and

$$\nabla_c C_y^h = -h_c^a{}_y B_a{}^h$$

respectively, where h_{cb}^{x} are the second fundamental tensors of M^{n} with respect to the normals C_{x}^{h} and $h_{c}^{a}{}_{x}=h_{cb}{}_{x}g^{ba}=h_{cb}{}^{y}g^{ba}g_{yx}$.

Equations of Gauss, Codazzi and Ricci are respectively

$$(1.11) K_{dcb}{}^{a} = K_{kji}{}^{h} B_{dcbh}^{kjin} + h_{d}{}^{a}{}_{x} h_{cb}{}^{x} - h_{c}{}^{a}{}_{x} h_{db}{}^{x},$$

$$(1.12) 0 = K_{k i i}{}^{h} B_{acb}^{k j i} C^{x}{}_{h} - (\nabla_{d} h_{cb}{}^{x} - \nabla_{c} h_{db}{}^{x})$$

and

$$(1.13) K_{dcy}{}^{x} = K_{kji}{}^{h} B_{dc}^{kj} C_{y}{}^{i} C_{h}^{x} + (h_{de}{}^{x} h_{c}{}^{e}{}_{y} - h_{ce}{}^{x} h_{d}{}^{e}{}_{y}),$$

where

$$(1.14) K_{dcy}{}^{x} = \partial_{d} \Gamma_{cy}^{x} - \partial_{c} \Gamma_{dy}^{x} + \Gamma_{dz}^{x} \Gamma_{cy}^{z} - \Gamma_{cz}^{x} \Gamma_{dy}^{z}$$

and

$$B_{dcb}^{kjia} = B_d{}^k B_c{}^j B_b{}^i B^a{}_h$$
, $B_{dcb}^{kji} = B_d{}^k B_c{}^j B_b{}^i$, $C_h^x = C_y{}^i g^{yx} g_{ih}$,

 K_{dcy}^{x} being the curvature tensor of the connection induced in the normal bundle.

§ 2. Infinitesimal variations of submanifolds. [7]

We now consider an infinitesimal variation of M^n of M^m given by

$$(2.1) \bar{x}^h = x^h + \xi^h(y) \varepsilon,$$

where $g_{ii}\xi^{i}\xi^{i}>0$ and ε is an infinitesimal. We then have

$$(2.2) \bar{B}_b{}^h = B_b{}^h + (\partial_b \xi^h) \varepsilon,$$

where $\bar{B}_b{}^h = \partial_b \bar{x}^h$ are *n* linearly independent vectors tangent to the varied submanifold at the varied point (\bar{x}^h) .

If we displace $\bar{B}_b{}^h$ back parallelly from the point (\bar{x}^h) to (x^h) , then we obtain

$$\tilde{B}_b{}^h = \bar{B}_b{}^h + \Gamma_{ii}^h(x + \xi \varepsilon) \xi^j \bar{B}_b{}^i \varepsilon$$

that is,

$$(2.3) \widetilde{B}_b{}^h = B_b{}^h + (\nabla_b \xi^h) \varepsilon,$$

neglecting the terms of order higher than one with respect to ε , where

$$\nabla_b \xi^h = \partial_b \xi^h + \Gamma_{ii}^h B_b{}^j \xi^i.$$

In the sequel we always neglect terms of order higher than one with respect to the infinitesimal ε .

Thus putting

$$\delta B_b{}^h = \widetilde{B}_b{}^h - B_b{}^h,$$

we have

(2.6)
$$\delta B_b{}^h = (\nabla_b \xi^h) \varepsilon.$$

If we put

(2.7)
$$\xi^{h} = \xi^{a} B_{a}^{h} + \xi^{x} C_{x}^{h},$$

we have

(2.8)
$$\nabla_b \xi^h = (\nabla_b \xi^a - h_b{}^a{}_x \xi^x) B_a{}^h + (\nabla_b \xi^x + h_b{}_a{}^x \xi^a) C_x{}^h.$$

When $\xi^x=0$, that is, when the variation vector ξ^h is tangent to the submanifold we say that the variation is *tangential* and when $\xi^a=0$, that is, when the variation vector ξ^h is normal to the submanifold we say that the variation is *normal*.

From (2.5), (2.6) and (2.8), we have

$$(2.9) \widetilde{B}_b{}^h = \lceil \delta_b^a + (\nabla_b \xi^a - h_b{}^a{}_x \xi^x) \varepsilon \rceil B_a{}^h + (\nabla_b \xi^x + h_b{}_a{}^x \xi^a) C_x{}^h \varepsilon.$$

When the tangent space at a point (x^h) of the submanifold and that at the corresponding point (\bar{x}^h) of the varied submanifold are parallel, we say that the variation is *parallel*. [7].

From (2.9), we have

PROPOSITION 2.1 [7]. In order for a normal variation of a submanifold to be parallel, it is necessary and sufficient that

$$(2. 10) \nabla_b \hat{\xi}^x = 0,$$

that is, the variation vector $\xi^x C_x^h$ is parallel in the normal bundle.

When the submanifold is a hypersurface, a normal variation is given by $\bar{x}^h = x^h + \lambda C^h \varepsilon$, C^h being the unique unit normal to the hypersurface and λ a function. In this case (2.10) reduces to $\nabla_b \lambda = 0$ and we have

PROPOSITION 2.2 [7]. In order for a normal variation of a hypersurface to be parallel, it is necessary and sufficient that the normal variation displaces each point of the hypersurface the same distance.

Denoting by $\overline{C}_y{}^h m-n$ mutually orthogonal unit normals to the varied submanifold and by $\widetilde{C}_y{}^h$ the vectors obtained from $\overline{C}_y{}^h$ by parallel displacement of $\overline{C}_y{}^h$ from the point (\bar{x}^h) to (x^h) , we have

(2.11)
$$\widetilde{C}_{y}^{h} = \overline{C}_{y}^{h} + \Gamma_{ji}^{h}(x + \xi \varepsilon) \xi^{j} \overline{C}_{y}^{i} \varepsilon.$$

We put

$$\delta C_y^h = \widetilde{C}_y^h - C_y^h$$

and assume that δC_y^h is of the form

(2.13)
$$\delta C_y^h = (\eta_y^a B_a^h + \eta_y^x C_x^h) \varepsilon.$$

Then (2.11), (2.12) and (2.13) give

(2.14)
$$\bar{C}_{y}{}^{h} = C_{y}{}^{h} - \Gamma_{ji}^{h} \xi^{j} C_{y}{}^{i} \varepsilon + (\eta_{y}{}^{a} B_{a}{}^{h} + \eta_{y}{}^{x} C_{x}{}^{h}) \varepsilon.$$

Applying the operator δ to $B_{b}{}^{j}C_{y}{}^{i}g_{ji}=0$ and using (2.6), (2.8), (2.13) and $\delta g_{ji}=0$, we find

$$(\nabla_b \xi_y + h_{bay} \xi^a) + \eta_{yb} = 0$$
,

where $\xi_y = \xi^z g_{zy}$ and $\eta_{yb} = \eta_y{}^c g_{cb}$, or, putting $\nabla^a = g^{ba} \nabla_b$,

(2.15)
$$\eta_{y}^{a} = -(\nabla^{a} \xi_{y} + h_{b}^{a}{}_{y} \xi^{b}).$$

Applying the operator δ to $C_{z^j}C_{y^i}g_{ji}=\delta_{zy}$ and using (2.13) and $\delta g_{ji}=0$, we find

(2. 16)
$$\eta_{yx} + \eta_{xy} = 0$$
,

where $\eta_{yx} = \eta_y^z g_{zx}$.

From (2.12) and (2.13), we have

(2.17)
$$\widetilde{C}_{y}^{h} = \left[\eta_{y}^{a} B_{a}^{h} + (\delta_{y}^{x} + \eta_{y}^{x}) C_{x}^{h} \right] \varepsilon.$$

§ 3. Variations of the curvature tensor.

In this section we compute infinitesimal variations of the Christoffel symbols, the second fundamental tensors and curvature tensor of the submanifold.

Suppose that v^h is a vector field of M^m defined intrinsically along the submanifold M^n . When we displace the submanifold M^n by $\bar{x}^h = x^h + \xi^h(y) \varepsilon$ in the direction ξ^h , we obtain a vector field \bar{v}^h which is defined also intrinsically along the varied submanifold. If we displace \bar{v}^h back parallelly from the point (\bar{x}^h) to (x^h) , we obtain

$$\tilde{v}^h = \bar{v}^h + \Gamma_{ji}^h(x + \xi \varepsilon) \xi^j \bar{v}^i \varepsilon$$

and hence putting $\delta v^h = \tilde{v}^h - v^h$, we find

(3.1)
$$\delta v^h = \bar{v}^h - v^h + \Gamma_{ii}^h \xi^j v^i \varepsilon.$$

Similarly we have

$$\delta \nabla_c v^h = \overline{\nabla}_c \bar{v}^h - \nabla_c v^h + \Gamma_{ii}^h \xi^j \nabla_c v^i \varepsilon$$
.

that is,

(3.2)
$$\delta \nabla_{c} v^{h} = \nabla_{c} \bar{v}^{h} - \nabla_{c} v^{h} + (\partial_{k} \Gamma_{ji}^{h} + \Gamma_{ki}^{h} \Gamma_{ji}^{l}) \xi^{k} B_{c}^{j} v^{i} \varepsilon$$

$$+ \Gamma_{ji}^{h} [(\partial_{c} \xi^{j}) v^{i} + \xi^{j} (\partial_{c} v^{i})] \varepsilon.$$

On the other hand, from (3.1) we have

(3.3)
$$\nabla_{c} \delta v^{h} = \nabla_{c} \bar{v}^{h} - \nabla_{c} v^{h} + (\partial_{J} \Gamma_{ki}^{h} + \Gamma_{ji}^{h} \Gamma_{ki}^{t}) \xi^{k} B_{c}^{J} v^{i} \varepsilon + \Gamma_{ji}^{h} [(\partial_{c} \xi^{j}) v^{i} + \xi^{j} (\partial_{c} v^{i})] \varepsilon.$$

Thus forming (3.2)—(3.3), we find

(3.4)
$$\delta \nabla_c v^h - \nabla_c \delta v^h = K_{kji}{}^h \xi^k B_c{}^j v^i \varepsilon.$$

For a tensor field carrying three kinds of indices, say, T_{by}^{h} , we have

$$(3.5) \qquad \delta \nabla_c T_{by}{}^h - \nabla_c \delta T_{by}{}^h = K_{kji}{}^h \xi^k B_c{}^j T_{by}{}^i \varepsilon - (\delta \Gamma^a_{cb}) T_{ay}{}^h - (\delta \Gamma^x_{cy}) T_{bx}{}^h,$$

where $\delta \Gamma^a_{cb}$ and $\delta \Gamma^x_{cy}$ are variations of Γ^a_{cb} and Γ^x_{cy} respectively.

Applying formula (3.5) to B_b^h , we find

$$\delta \nabla_c B_b^h - \nabla_c \delta B_b^h = K_{kji}^h \xi^k B_c^j B_b^i \varepsilon - (\delta \Gamma_{cb}^a) B_a^h$$

or using (1.9) and (2.6)

$$\delta(h_{cb}{}^xC_x{}^h) = (\nabla_c \nabla_b \xi^h + K_{kji}{}^h \xi^k B_c{}^j B_b{}^i) \varepsilon - (\delta \Gamma^a_{cb}) B_a{}^h,$$

from which, using (2.13),

$$(\delta h_{cb}{}^x) C_x{}^h + h_{cb}{}^x (\eta_x{}^a B_a{}^h + \eta_x{}^y C_y{}^h) \varepsilon$$

= $(\nabla_c \nabla_b \xi^h + K_{ki}{}^h \xi^k B_c{}^j B_b{}^i) \varepsilon - (\delta \Gamma_{cb}^a) B_a{}^h.$

Thus we have

(3.6)
$$\delta \Gamma_{cb}^{a} = (\nabla_{c} \nabla_{b} \xi^{h} + K_{kii}^{h} \xi^{k} B_{c}^{j} B_{b}^{i}) B^{a}_{h} \varepsilon - h_{cb}^{y} \eta_{y}^{a} \varepsilon$$

and

$$\delta h_{cb}^{x} = -h_{cb}^{y} \eta_{y}^{x} \varepsilon + (\nabla_{c} \nabla_{b} \xi^{h} + K_{kji}^{h} \xi^{k} B_{c}^{j} B_{b}^{i}) C^{x}_{h} \varepsilon$$

from which, using (1.12) and (2.8),

(3.7)
$$\delta h_{cb}{}^{x} = \left[\xi^{d} \nabla_{d} h_{cb}{}^{x} + h_{eb}{}^{x} (\nabla_{c} \xi^{e}) + h_{ce}{}^{x} (\nabla_{b} \xi^{e}) - h_{cb}{}^{y} \eta_{y}{}^{x} \right] \varepsilon$$

$$+ \left[\nabla_{c} \nabla_{b} \xi^{x} + K_{kji}{}^{h} C_{y}{}^{k} B_{cb}^{ji} C_{x}{}_{h} \xi^{y} - h_{ce}{}^{x} h_{b}{}^{e}{}_{y} \xi^{y} \right] \varepsilon.$$

Substituting (2.8) and (2.15) into (3.6) and using equations (1.11) of Gauss and (1.12) of Codazzi, we get

$$\begin{split} \delta \varGamma_{cb}^{a} &= (\nabla_{c} \nabla_{b} \xi^{a} + K_{dcb}{}^{a} \xi^{d}) \, \varepsilon \\ &- [\nabla_{c} (h_{bex} \xi^{x}) + \nabla_{b} (h_{cex} \xi^{x}) - \nabla_{e} (h_{cbx} \xi^{x})] \, g^{ea} \, \varepsilon, \end{split}$$

or, equivalently,

(3.8)
$$\delta \Gamma_{cb}^a = \left[\mathcal{L} \Gamma_{cb}^a - \nabla_c (h_b{}^a{}_x \xi^x) - \nabla_b (h_c{}^a{}_x \xi^x) + \nabla^a (h_{cbx} \xi^x) \right] \varepsilon,$$

where $\mathcal{L}\Gamma^a_{cb}$ denotes the Lie derivative of Γ^a_{cb} with respect to ξ^a [6], that is,

$$\mathcal{L}\Gamma_{cb}^a = \nabla_c \nabla_b \xi^a + K_{dcb}{}^a \xi^d$$
.

For the varied submanifold, the curvature tensor of the submanifold can be written as

$$(3.9) \bar{K}_{dch}{}^{a} = \partial_{d} \bar{\Gamma}_{ch}^{a} - \partial_{c} \bar{\Gamma}_{dh}^{a} + \bar{\Gamma}_{de}^{a} \bar{\Gamma}_{ch}^{e} - \bar{\Gamma}_{ce}^{a} \bar{\Gamma}_{dh}^{e}.$$

Thus denoting by $K_{dcb}{}^a + \delta K_{dcb}{}^a$ the curvature tensor and by $\Gamma^a_{cb} + \delta \Gamma^a_{cb}$ the Christoffel symbols of the varied submanifold, we have

$$\begin{split} K_{d\,c\,b}{}^{a} + \delta K_{d\,c\,b}{}^{a} = &\partial_{d} \left(\Gamma_{cb}^{a} + \delta \Gamma_{cb}^{a} \right) - \partial_{c} \left(\Gamma_{db}^{a} + \delta \Gamma_{db}^{a} \right) \\ + & \left(\Gamma_{de}^{a} + \delta \Gamma_{de}^{a} \right) \left(\Gamma_{cb}^{e} + \delta \Gamma_{cb}^{e} \right) - \left(\Gamma_{ce}^{a} + \delta \Gamma_{ce}^{a} \right) \left(\Gamma_{db}^{e} + \delta \Gamma_{db}^{e} \right), \end{split}$$

from which

$$\delta K_{dcb}{}^a = \nabla_d (\delta \Gamma_{cb}^a) - \nabla_c (\delta \Gamma_{db}^a).$$

Substituting (3.8) into this and using (1.14), we find by a straightforward computation

$$(3.10) \quad \delta K_{dcb}{}^{a} = \left[\mathcal{L} K_{dcb}{}^{a} - \nabla_{d} \nabla_{c} (h_{b}{}^{a}{}_{x} \xi^{x}) - \nabla_{d} \nabla_{b} (h_{c}{}^{a}{}_{x} \xi^{x}) + \nabla_{d} \nabla^{a} (h_{cbx} \xi^{x}) \right. \\ \left. + \nabla_{c} \nabla_{d} (h_{b}{}^{a}{}_{x} \xi^{x}) + \nabla_{c} \nabla_{b} (h_{d}{}^{a}{}_{x} \xi^{x}) - \nabla_{c} \nabla^{a} (h_{dbx} \xi^{x}) \right] \varepsilon,$$

where [6]

$$(3.11) \qquad \mathcal{L}K_{acb}{}^{a} = \nabla_{d} \mathcal{L}\Gamma_{cb}^{a} - \nabla_{c} \mathcal{L}\Gamma_{db}^{a},$$

from which, using the Ricci identity,

(3. 12)
$$\delta K_{dcb}{}^{a} = \left[\mathcal{L} K_{dcb}{}^{a} - K_{dce}{}^{a} h_{b}{}^{e}{}_{x} \xi^{x} + K_{dcb}{}^{e} h_{e}{}^{a}{}_{x} \xi^{x} - \nabla_{d} \nabla_{b} (h_{c}{}^{a}{}_{x} \xi^{x}) + \nabla_{d} \nabla_{b} (h_{c}{}^{a}{}_{x} \xi^{x}) + \nabla_{c} \nabla_{b} (h_{d}{}^{a}{}_{x} \xi^{x}) - \nabla_{c} \nabla^{a} (h_{db}{}_{x} \xi^{x}) \right] \varepsilon.$$

which implies that

(3.13)
$$\delta K_{cb} = \left[\mathcal{L} K_{cb} - K_{ce} h_b^e{}_x \xi^x + K_{dcba} h^{da}{}_x \xi^x - \nabla^a \nabla_b (h_{cax} \xi^x) + \nabla^a \nabla_a (h_{cbx} \xi^x) + \nabla_c \nabla_b (h_e{}^e{}_x \xi^x) - \nabla_c \nabla^a (h_{bax} \xi^x) \right] \varepsilon.$$

Thus we have

Proposition 3.1. An infinitesimal variation of a submanifold gives the variation (3.12) to the curvature tensor and consequently it preserves the curvature tensor if and only if

$$\mathcal{L}K_{dcb}{}^{a} = K_{dce}{}^{a} h_{b}{}^{e}{}_{x} \xi^{x} - K_{dcb}{}^{e} h_{e}{}^{a}{}_{x} \xi^{x}
+ \nabla_{d} \nabla_{b} (h_{c}{}^{a}{}_{x} \xi^{x}) - \nabla_{d} \nabla^{a} (h_{cbx} \xi^{x}) - \nabla_{c} \nabla_{b} (h_{d}{}^{a}{}_{x} \xi^{x})
+ \nabla_{c} \nabla^{a} (h_{dbx} \xi^{x}).$$

Proposition 3.2. An infinitesimal variation of a submanifold gives the variation (3.13) to the Ricci tensor and consequently it preserves the Ricci tensor if and only if

$$\mathcal{L}K_{cb} = K_{ce} h_b^{e_x} \xi^x - K_{dcba} h^{da}_x \xi^x
+ \nabla^a \nabla_b (h_{cax} \xi^x) - \nabla^a \nabla_a (h_{cbx} \xi^x)
- \nabla_c \nabla_b (h_e^{e_x} \xi^x) + \nabla_c \nabla^a (h_{bax} \xi^x) \right].$$

COROLLARY 3.3. For an infinitesimal normal variation of a submanifold, we have

(3. 16)
$$\delta K_{cb} = \left[-K_{ce} h_b^e{}_x \xi^x + K_{dcba} h^{da}{}_x \xi^x - \nabla^a \nabla_b (h_{cax} \xi^x) + \nabla^a \nabla_a (h_{cbx} \xi^x) + \nabla_c \nabla_b (h_e^e{}_x \xi^x) - \nabla_c \nabla^a (h_{bax} \xi^x) \right] \varepsilon$$

and consequently a normal variation of a submanifold preserves the Ricci tensor if and only if

$$(3.17) -K_{ce} h_b^{e_x} \xi^x + K_{dcba} h^{da_x} \xi^x - \nabla^a \nabla_b (h_{cax} \xi^x)$$

$$+ \nabla^a \nabla_a (h_{cbx} \xi^x) + \nabla_c \nabla_b (h_{e^x} \xi^x) - \nabla_c \nabla^a (h_{bax} \xi^x) = 0.$$

From Proposition 2.1 and Corollary 3.3, we have immediately

COROLLARY 3.4. An infinitesimal normal parallel variation of a submanifold preserves the Ricci tensor if and only if

$$[K_{acba} h^{da}_{x} - K_{ce} h_{b}^{e}_{x} - \nabla^{a} \nabla_{b} h_{cax} + \nabla^{a} \nabla_{a} h_{cbx}$$

$$+ \nabla_{c} \nabla_{b} (h_{e}^{e}_{x}) - \nabla_{c} \nabla^{a} h_{bax}] \hat{\xi}^{x} = 0.$$

We now prepare a lemma for later use.

Lemma 3.5. If a submanifold M^n of a Riemannian manifold M^m admits m-n linearly independent infinitesimal normal parallel variations, then the connection induced in the normal bundle is of zero curvature.

Proof. By Proposition 2.1, a normal parallel variation satisfies $\nabla_b \xi^x = 0$, from which

$$0 = \nabla_d \nabla_c \xi^x - \nabla_c \nabla_d \xi^x = K_{dcu} \xi^y$$
.

Thus if M^n admits m-n linearly independent infinitesimal normal parallel variations, then we have $K_{dey}^x=0$, which proves the lemma.

We now suppose that the ambient manifold M^m is a space of constant curvature c. Then we have from (1.11), (1.12) and (1.13),

$$(3.19) K_{dcb}{}^{a} = c \left(\delta_{d}^{a} g_{cb} - \delta_{c}^{a} g_{db} \right) + h_{d}{}^{a}{}_{y} h_{cb}{}^{y} - h_{c}{}^{a}{}_{y} h_{db}{}^{y},$$

$$(3.20) \qquad \qquad \nabla_d h_{cb}{}^x - \nabla_c h_{db}{}^x = 0$$

and

$$(3.21) K_{dcv}^{x} = h_{de}^{x} h_{c}^{e}_{v} - h_{ce}^{x} h_{d}^{e}_{v}$$

respectively.

From (3.18), (3.19) and (3.20) we have

$$[h_{cay} h_{db}{}^{y} h^{da}{}_{x} - h_{c}{}^{d}{}_{y} h_{de}{}^{y} h_{b}{}^{e}{}_{x} + h_{e}{}^{e}{}_{y} h_{cd}{}^{y} h_{b}{}^{d}{}_{x}$$

$$+ nch_{cbx} - h_{dex} h^{de}{}_{x} h_{cb}{}^{y} - ch_{e}{}^{e}{}_{x} g_{cb}] \xi^{x} = 0.$$

We now prove the following

LEMMA 3.6. Let M^n be a minimal submanifold of a space M^m of constant curvature c. If the submanifold M^n admits m-n linearly independent infinitesimal normal parallel variations preserving the Ricci tensor of M^n , then the length of the second fundamental tensor is constant.

If, moreover, $c \leq 0$, then M^n is totally geodesic.

Proof. First of all, by Lemma 3.5, we have $K_{dey}^{x}=0$ and consequently by (3.21)

$$h_{de}^{x} h_{c}^{e}_{y} - h_{ce}^{x} h_{d}^{e}_{y} = 0.$$

Thus, M^n being minimal, we have from (3.22)

$$(3.23) nch_{chv} = \alpha_{vx} h_{ch}^{x},$$

where we have put

$$\alpha_{yx} = h_{dey} h^{de}_{x}.$$

Applying ∇_d to (3.23) and taking skew-symmetric part with respect to d and c, we find

$$(3.25) \qquad (\nabla_{a} \alpha_{yx}) h_{cb}{}^{x} - (\nabla_{c} \alpha_{yx}) h_{db}{}^{x} = 0$$

because of (3.20), from which, M^n being minimal,

$$(3.26) \qquad (\nabla_d \alpha_{vx}) h_c^{dx} = 0.$$

If we transvect h^{cby} to (3.25) and make use of (3.24) and (3.26), then we have

$$(\nabla_d \alpha_{yx}) \alpha^{yx} = \frac{1}{2} \nabla_d (\alpha_{yx} \alpha^{yx}) = 0,$$

from which we see that $\alpha_{yx}\alpha^{yx}$ is constant.

Now, from (3.24), we find

$$\alpha_{yx}\alpha^{yx} = h_{dey}h^{de}_{x}\alpha^{yx}$$
,

from which, using (3.23)

$$\alpha_{yx}\alpha^{yx} = nch_{dey}h^{dey} = nc\alpha_y^y.$$

Thus α_y^y is also constant. The last assertion follows immediately from (3.24) and (3.27). This completes the proof of the lemma.

Finally we prepare the following lemma.

LEMMA 3.7. Let M^n be a minimal submanifold of a space M^m of constant curvature c. If the submanifold M^n admits m-n linearly independent infinitesimal normal parallel variations preserving the Ricci tensor of M^n , then the second fundamental tensor is parallel.

Proof. We compute the Laplacian ΔF of the function $F = h_{cb}^{\ x} h^{cb}_{\ x}$, which is globally defined in M^n , where $\Delta = g^{cb} \nabla_c \nabla_b$. We then have

$$\frac{1}{2}\Delta F = g^{ed}\left(\nabla_{e}\nabla_{d}h_{cb}^{x}\right)h^{cb}_{x} + \left(\nabla_{c}h_{ba}^{x}\right)\left(\nabla^{c}h^{ba}_{x}\right).$$

By using the Ricci identity and equations (3.20) of Codazzi, we can easily find

$$\frac{1}{2} \Delta F = K_c^a h_{ba}^x h^{cb}_x - K_{ecba} h^{ea}_x h^{cbx} + (\nabla_c h_{ba}^x) (\nabla^c h^{ba}_x)$$

with the help of Lemma 3.5 and $g^{cb}h_{cb}^{x}=0$, where K_{c}^{a} is defined to be $K_{c}^{a}=K_{cb}g^{ba}$ and, as we can see from (3.19), is given by

(3.28)
$$K_c^a = c(n-1) \delta_c^a - h_c^e{}_x h_e^{ax}$$

under our assumptions. If we substitute (3.19) and (3.28) into the expression above of $\frac{1}{2}\Delta F$, then we have

$$\frac{1}{2}\Delta F = nch_{ba}{}^x h^{ba}{}_x - \alpha_{yx} \alpha^{yx} + (\nabla_c h_{ba}{}^x)(\nabla^c h^{ba}{}_x),$$

from which, taking account of Lemma 3.6 and (3.27),

$$\nabla_c h_{ba}^x = 0$$
,

which proves the lemma.

Combining Theorem A, Lemmas 3.5, 3.6 and 3.7, we have

Theorem 3.7. Let M^n be a simply connected and complete minimal submanifold of a space M^m of constant curvature c. If M^n admits m-n linearly independent infinitesimal normal parallel variations preserving the Ricci tensor of M^n , then M^n is totally geodesic if $c \le 0$, M^n is $S^n(r)$ or $S^p(r_1) \times S^{n-p}(r_2)$ if c > 0, where $S^n(r)$ denotes an n-sphere of radius r > 0.

§ 4. Variations of hypersurfaces preserving the Ricci tensor.

In this section, we consider a normal parallel variation $\bar{x}^h = x^h + \lambda C^h \varepsilon$ of a hypersurface M^n , where λ is a positive function and C^h the unit normal to M^n . In this case (2.10) reduces to $\nabla_b \lambda = 0$ and (3.13) to

(4. 1)
$$\delta K_{cb} = \left[\mathcal{L} K_{cb} - \lambda K_{ce} h_b^e + \lambda K_{acba} h^{da} - \nabla^a \nabla_b (\lambda h_{ca}) + \nabla^a \nabla_a (\lambda h_{cb}) + \nabla_c \nabla_b (\lambda h_e^e) - \nabla_c \nabla^a (\lambda h_{ba}) \right] \varepsilon.$$

In the sequel we suppose that the normal parallel variation of a hypersurface with constant mean curvature of a space of constant curvature preserves the Ricci tensor. Then we have from (3.19), (3.20) and (3.22)

$$(4.2) (h_e^e) h_{cd} h_b^d + (cn - h_{ed} h^{ed}) h_{cb} - ch_e^e g_{cb} = 0.$$

Since the mean curvature h_e^e is constant, we have only to consider two cases $h_e^e=0$ and $h_e^e\neq 0$.

In the first case, we have from (4.2),

$$(4.3) h_{ed} h^{ed} = nc or h_{cb} = 0.$$

In the second case we have

$$(4.4) h_{ce} h_b^e = k h_{cb} + c g_{cb},$$

where we have put

(4.5)
$$k = \frac{1}{h_e^e} (h_{de} h^{de} - nc).$$

Differentiating (4.4) covariantly along M^n , we find

$$(4.6) \qquad (\nabla_a h_{ce}) h_b^e + h_{ce} \nabla_d h_b^e = (\nabla_d k) h_{cb} + k \nabla_d h_{cb},$$

from which, taking skew-symmetric part with respect to d and c and using the fact that $\nabla_d h_{cb} - \nabla_c h_{db} = 0$, we have

$$(4.7) h_{ce} \nabla_d h_b^e - h_{de} \nabla_c h_b^e = (\nabla_d k) h_{cb} - (\nabla_c k) h_{db}.$$

Interchanging indices d and b in (4.7), we get

(4.8)
$$h_{ce} \nabla_b h_d^e - h_{be} \nabla_c h_d^e = (\nabla_b k) h_{cd} - (\nabla_c k) h_{bd}.$$

Adding (4.6) and (4.8) and using $\nabla_d h_{ce} - \nabla_c h_{de} = 0$, we find

$$(4.9) 2h_{ce} \nabla_d h_b^e = k \nabla_d h_{cb} + (\nabla_d k) h_{cb} + (\nabla_b k) h_{cd} - (\nabla_c k) h_{db}.$$

If we transvect g^{db} to this and use the fact that h_e^e is constant, then we have

$$(4.10) h_c^e \nabla_e k = \frac{1}{2} h_e^e \nabla_e k.$$

Moreover, transvecting (4.9) with $h_a{}^c$ and taking account of (4.4) and (4.10), we find

(4.11)
$$kh_{a}^{e}\nabla_{d}h_{be} + 2c\nabla_{d}h_{ba} = (kh_{ba} + cg_{ba})\nabla_{d}k + (kh_{da} + cg_{da})\nabla_{b}k - \frac{1}{2}h_{e}^{e}(\nabla_{a}k)h_{db},$$

from which, transvecting g^{ab} and using (4.10)

$$\left[kh_{e}^{e}+2c-\frac{1}{2}(h_{e}^{e})^{2}\right]\nabla_{a}k=0$$
,

from which, h_e^e being a constant, we have k=constant on M^n . Thus (4.9) and (4.11) imply that

$$(4.12) (k^2+4c) \nabla_d h_{cb} = 0.$$

Thus, if $k^2+4c\neq 0$, we have $\nabla_d h_{cb}=0$. If $k^2+4c=0$, then we see from (4.4) that

$$(h_{cb} - \frac{1}{2}kg_{cb})(h^{cb} - \frac{1}{2}kg^{cb}) = 0$$

and consequently $h_{cb} = \frac{1}{2} k g_{cb}$ which implies that $\nabla_d h_{cb} = 0$. Therefore in any case we have

(4.13)
$$\nabla_d h_{cb} = 0$$
,

from which, using the equations of Gauss, we see that the Ricci tensor is covariantly constant. Thus we conclude that

- (i) If $h_e^e = 0$, then $h_{ed} h^{ed} = nc$ or $h_{cb} = 0$,
- (ii) If $h_e^e \neq 0$, then $h_{ce} h_b^e = k h_{cb} + c g_{cb}$, k = constant and $\nabla_d h_{cb} = 0$.

Therefore by Theorem A (See also Chern, do Carmo and Kobayashi [2]) we have

Theorem 4.1. Let M^n be a complete hypersurface with constant mean curvature of a unit sphere. If an infinitesimal normal parallel variation $\bar{x}^h = x^h + \lambda C^h \varepsilon$, $\lambda > 0$, preserves the Ricci tensor of M^n , then M^n is a sphere S^n or $S^r \times S^{n-r}$.

BIBLIOGRAPHY

- [1] BANG-YEN CHEN AND K. YANO, On the theory of normal variations, to appear in Journal of Differential Geometry.
- [2] S.S. CHERN, M. DO CARMO and S. KOBAYASHI, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and related fields, Springer-Verlag, (1970), 59-75.
- [3] H. B. Lawson, Jr., Local rigidity theorems for minimal hypersurfaces, Ann. of Math., 89 (1969), 187-197.
- [4] K. SAKAMOTO, Submanifolds satisfying the condition K(X, Y)K=0, Kōdai Math. Sem. Rep., 25 (1973), 143-152.
- [5] K. Yano, Sur la théorie des déformations infinitésimales, J. of the Fac. of Sci., Univ. of Tokyo, 6 (1949), 1-75.
- [6] K. Yano, The theory of Lie derivatives and its applications, North-Holland Publ. Co., Amsterdam (1957).
- [7] K. Yano, Infinitesimal variations of submanifolds, Kodai Math. J. 1 (1978), 30-44.
- [8] K. Yano and S. Ishihara, Submanifolds with parallel mean curvature vector, J. of Diff. Geom., 6 (1971), 95-118.

Tokyo Institute of technology and Kyungpook University