KODAI MATH. SEM. REP.
Nos. 5-6, Dec., 1949.
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This note is concerned with the
problem to determine the class of Lie
groups generated by two elements. H.
Auerbach showed [1l] that compact
Lle groups belong to this class. Here
it will be shown that connected semi-
simple Lie groups belong to this class.
The writer is indebted to Morikuni
Gotd for his suggestive conversations
about the problem.

Let |, be a semi-simple Lie algebra
over a field T  of characteristic ©
and let &,,---, R, be a base of the
maximal abelian subalgebra contalning
e regular element of L. . Let T Dbe
the algebraic closure of F and let L
be the Lie algebra obtained from [s
by extending the field ¥ to F . It
is well known that L has the follow=-
ing structure. There exists a system
of vectors of a _{-dimensional eucli-
dean space f{«,B,---} called the
system of root vectors, and to each «
we can correlate an element €« of

Lg 80 that &, ---,Rz,€x, €4, consti-
tute a base of Lg and the structure
formulaes of [,z has the following
form.

[Rx .eo‘]'_-' (X A) €y ’
L . £ .
where f, -_—jé;_ Ay and (X A)=Z GN

o . (@+p%0~ neta noot),

[ed,e,,]=[

/vostp eou-ﬁ ; (450 —a noot ),

and

[eo:, e-«.] = ﬁoﬁ

Root wectors are distinct among each
other and 1f ol 1s a root vector then
—oC 18 also a root vector. There
exist root vectors o« .-, ¥’ such
that[esw €.x»], « - + , [ Bo®) <<~ e_«w]
are linearly independent.

Theorem 1. Let Ls be a semi-simple
Lie algebra over a field F of charac-
teristic O . Then there exist two
elements a and € such that the mi-
nimal subalgebra containing & and &
is L), . is generated by a and
46' '3

Proof, Let m Dbe the dimension of
L, ,we first consider L# . Take fia
such that ((x—8)X)%0 for each pair
of root vectors o and A . Denote
fix=C and S ey =d . Then

sg =['C; d-] = Z(“)\) eu, )
$e =[c,[e, d1] = Z @€, ,

-

/-—.—-b\
Sn-:[c,." [c’d_].n]zz(“x)&e“’

AS ((X-B)XN)Y%O0 , d, S,,S2,~~+, Sa-g-¢
are linearly independent and contained
in the minimal subalgebra L* of LF
containing ¢ and d . Therefore L¥
contains each €4 , hence contains also
Ceuth,l qird, i=1,2,--L. Thus L¥=Lg.

To summarize the above results,
there exist finite numbers of monomials
Pixyy=0---[x.y31---1, i=1,2,~~ &,
such that each element of Ly is a
linear combinetion of P;(c.d) .
Take a base P,,---,P. of L , and

n H n 3
. i
con‘stiltute PL(E‘ 4 B ';}:_1 Ui ,3.) , where
§’, 7 are indeterminate elements.
n ) n 2 ™ *
i ip Y= X
Then R(Z ¥R, Z7F)=2 0k

where fi"‘ are polynomials with respect
to g, ¢ (j=1,---,n)over F . Put

M (&, &%, )= We can write
C=‘§ CEP; , d,=‘=£' d‘P; , where ¢’ d*

Then the rank of
e dl--- ) is

are elements of F .
the matrix M (c!, --.-,

g

M, Hence there exist a',---,a™ g§',...,%
of F such that the rank of M(a,, -,
an; #,---,4™) 1is also n . Put
a=Faip , £=3 8P , then

L, is generated by a and 4 .

Lemma 1. Let L, be a Lie algebra
and L, be an ideal of L contained
in the center of Lh . If L/L, is

nilpotent, L, 1is also a nilpotent Lie

algebra,

From the assumption, there

Proof.
L_'Un)

exists an integer m such that
=C*~[L,L1LI---3LIC L,. Hence
Lo .



Let &£ be a local Lie group. We
say that £ 1is approximated by discre-
te subgroups when there exists a se-
quence of discrete local subgroups Hg
of & such that Hac Hen and F He
covers ?ﬁ neighborhood of the identity

e of .

Lerma 2, Iet £ be a local Lie
group approximated by discrete sub-
groups. Then &£ 1s nilpotent,

Proof. Take a sufflcliently small
neighborhood U of € satisfying
the following conditions

U C Y2 Hg

\2)y We can introduce in U the coordinates

system such that for every elements x
snd 4 of U

'Iy’x-:y~t'<_l§m(lxl;lgl))

where x| is the euclidean distance
between x and € .

Let M Dbe the dimension of £ , then
there exists an integer -m such that
Y contains m points p,--

P,,, auch that sufficiently small ele-
ments of ¥ can be written as P™p2e..
..-p2* , where P 1is the one-para-
meter sub, ‘group of £ passing P such
as Let x be the point of
H.,.., which is not € and whose distan-
ce from € 1is the minimum., Then from
the condition (2) ¢ is commutative
with every element of He A U in
particular Pr, -, Pn .

'Pixp‘."-.—_x fr i=1,2,---, .

Since the one-parameter subgroup passing
¢ 1is unique,

PP x? fa i=12,--m.

Hence x™p;x™) '==P‘ " F‘rom the same
argument x> p,A(x>y'=p;* . There-
fore x* 1s commutative with p** p/2
- P4, and this shows that x> is
contained in the center of £ .

Now we prove the Lemma 2 by the
induction with respect to the dimension
of £ . Since the number of elements
of Ha 1s finite, it 1s easy to show
that ¥, /x™ 1is also approximated by
discrete subgroups and from the assump-
tion of induction ¥ /x> 1is nilpotent.
On the other hand x> 1s contained
in the center of ¥ . By Lemma 1, X
is nilpotent.

Theorem 2. Suppose & 1is a con-
nected semi-simple Lie group. Then
there exist two element and $
such that the minimel closed subgroup
containing o and § s & . ( &

- 10 -

is generated by o and £ ).

Proof. From Lemma 2 1t is known
that there exists two one-parameter
subgroups a* and 4™ such that &
is generated by a* and 6> . De-
note by Hg the closed subgroup ge-
nerated by a’"“" and
easy to verify that

3 H, C H&,,C“‘
[T QH,, = G,

Let H: be the component of the
identity in Hz . Then HE C Hem
C+-- o Since HE 1s a connected
closed subgroup of G , there exists
k such that H=H2 =HS=--+, and

FIC

so for every element £ of Hge |, %
=1.2,"""
-~
&  hAHRCH

From (4) and (5) H 1is a closed nor-
mal subgroup of G and G/H is ap-
proximated by discrete subgroups £21

He/Hs = He/H (£ 2 1K) . By
Lemma"é &/H 18 nilpotent, but on
the other hand G 1is semi-simple,
and so G/H 1is semi-simple also.
Hence G/H = {e} s and G=H
This shows that G 1s generated b+

" 1/ x
a%‘ and %/’ .
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