TWO ELEMENTS GENERATIONS ON SEMI-SIMPLE LIE GROUPS

By Masatake KURANISHI

(Communicated by H. Tôyama)

This note is concerned with the problem to determine the class of Lie groups generated by two elements. H.
Auerbach showed [1] that compact
Lie groups belong to this class. Here it will be shown that connected semisimple Lie groups belong to this class.
The writer is indebted to Morikuni Gotô for his suggestive conversations about the problem.

Let L be a semi-simple Lie algebra
over a field F of characteristic 0
and let k_1, \dots, k_ℓ be a base of the and net π_1, \dots, π_p be a base of the strength and abelian subalgebra containing
a regular element of L. Let \overline{F} be
the algebraic closure of \overline{F} and let $L_{\overline{F}}$
be the Lie algebra obtained from L
by extend 18 Well Kulture. There exists a system
of vectors of a ℓ -dimensional eucli-
dean space $\{\alpha, \beta, \dots\}$ called the
system of root vectors, and to each α we can correlate an element e_{α} of
 L_F so that $k_1, ..., k_{\ell}, e_{\alpha}, e_{\beta}, ...$ consti-

tute a base of L_F and the structure

form...

form.

$$
\begin{aligned}\n\left[\mathbf{A}_{\lambda}, \mathbf{e}_{\alpha}\right] &= (\alpha \lambda) \mathbf{e}_{\alpha} \quad,\n\\
\mathbf{A}_{\lambda} &= \sum_{i=1}^{p} \lambda_{i}^{i} \qquad \text{and } (\alpha \lambda) = \sum_{i=1}^{p} \alpha_{i} \lambda^{i} \quad,\n\end{aligned}
$$

 $where$

 $[e_{\alpha},e_{\beta}]=\begin{cases} 0 & (\alpha+\beta+0-{\rm\, not\ a\ {\rm\, root\,}}),\\[2mm] \mathcal{N}_{\alpha\beta}\ e_{\alpha+\beta} & (\alpha+\beta+0\ -\ a\ {\rm\, root\,}\), \end{cases}$

and

$$
[e_{\alpha},e_{-\alpha}]=\hbar_{\alpha}
$$

Root vectors are distinct among each
other and if α is a root vector then $-\alpha$ is also a root vector. There
exist root vectors $\alpha^{(1)}, \dots, \alpha^{(d)}$ such
that $[e_{\alpha^{(0)}}, e_{-\alpha^{(0)}}], \dots, e_{-\alpha^{(L)}}, e_{-\alpha^{(L)}}]$ are linearly independent.

Theorem 1. Let L_i be a semi-simple
Lie algebra over a field F of charac-
teristic O . Then there exist two
elements α and θ such that the minimal subalgebra containing a and &
is L. (L is generated by a and &
 \downarrow).

Proof. Let n be the dimension of L, we first consider L_F . Take \hat{h}_{λ}
such that $((\alpha - \beta) \lambda) \neq 0$ for each pair of root vectors α and β . Denote
 $\hbar_{\lambda}=c$ and $\sum e_{\alpha}=d$. Then

$$
S_1 = [c, d] = \sum (\alpha \lambda) \theta_{\alpha},
$$

\n
$$
S_2 = [c, [c, d]] = \sum (\alpha \lambda)^2 \theta_{\alpha},
$$

\n
$$
\vdots
$$

\n
$$
S_R = [\overline{c, \cdots} \overline{c}, d] \cdots] = \sum (\alpha \lambda)^2 \theta_{\alpha}.
$$

As $((\alpha - \beta) \lambda) \neq 0$, d, S_1 , S_2 , ..., $S_{n-\ell-1}$
are linearly independent and contained
in the minimal subalgebra L^* of L_F^-
containing c and d. Therefore L^*
contains each e_{α} , hence contains also
 L^e_{α

To summarize the above results, there exist finite numbers of monomials $P_i(x, y) = [\cdots [x, y] \cdots], i = 1, 2, \cdots, k,$ such that each element of $L_{\overline{F}}$ is a linear combination of $P_i(c, d)$.
Take a base P_i, \dots, P_n of L , and constitute $P_i\left(\frac{r}{j-1} \xi^j P_j, \sum_{j=1}^n \eta^j P_j\right)$, where $\xi^{\dot{i}}$ $\eta^{\dot{j}}$ are indeterminate elements. Then $P_i\left(\sum_{j=1}^n \xi^j P_j, \sum_{j=1}^n \eta^j P_j\right) = \sum_{k=1}^n Y_i^k P_k$, where γ_i^k are polynomials with respect
to ξ^j , η^j ($j=1,\dots,n$) over F . Put
 $M(\xi_1,\dots,\xi_n,\eta_1,\dots,\eta_n)=(\chi_i^k)$ We can write $C = \sum_{i=1}^n c^i p_i$, $d = \sum_{i=1}^n d^i p_i$, where c^i , d^i are elements of \overrightarrow{F} . Then the rank of
the matrix $M(C^1, \dots, C^n; d^1, \dots, d^n)$ is
 π , Hence there exist $a^1, \dots, a^n, g^1, \dots, g^n$
of \overrightarrow{F} such that the rank of $M(a_1, \dots, a^n; \theta^1, \dots, \theta^n)$ is also π . Put $a = \sum_{i=1}^{n} a^{i} p_{i}$, $b = \sum_{i=1}^{n} b^{i} p_{i}$, then L is generated by a and b

Lemma 1. Let L be a Lie algebra
and L , be an ideal of L contained
in the center of L . If L/L , is nilpotent, L is also a nilpotent Lie algebra.

Proof. From the assumption, there
exists an integer m such that $L^{(m)} = \sum_{m=1}^{\infty} [L, L] L \cdot 1 \cdots 1 L] \subset L_{l}$. Hence $=$ $\mathsf{L} \stackrel{\mathsf{def}}{\leadsto}$ $L^{(m+1)} = 0$.

 $-9 -$

Let $\mathcal X$ be a local Lie group. We say that *&* is approximated by discre te subgroups when there exists a se quence of discrete local subgroups Hg of χ such that $H_A \subset H_{k+1}$ and $\overline{\chi_i H_k}$ covers a neighborhood of the identity **e of** *£* **.**

Lemma 2. Let *£,* be a local Lie group approximated by discrete sub groups. Then *&* is nilpotent*

Proof. Take a sufficiently small neighborhood V of e satisfying the following conditions

(1) $U \subset \overline{\bigcup_{k=1}^{\infty} H_k}$,

 \mathfrak{v} We can introduce in \mathbb{U} the coordinates system such that for every elements x and y of U.

$$
|x \, y \, x^{-1} y^{-1}| < \frac{1}{2} \, \min\left(|x|; |y|\right),
$$

where $|x|$ is the euclidean distance between $\mathbf x$ and $\mathbf e$

Let n be the dimension of \mathcal{L} , then there exists an integer *-m* such that H_{m} *V* contains *n* points P_l , \ldots t, such that sufficiently small elements of χ can be written as $P_i^{\lambda_1} P_2^{\lambda_2}$. $\cdots p_n^{\lambda_n}$, where p^{λ} is the one-parameter subgroup of *£* passing *P* such as $p = p^f$. Let x be the point of H_m which is not e and whose distan ce from **e** is the minimum. Then from the condition (2) ∞ is commutative with every element of $H_{\mathcal{C}} \cap \mathcal{U}$ in particular P_1, \cdots, P_n .

$$
P_1 \times P_i^{-1} = \mathcal{X} \quad \text{for} \quad i = 1, 2, \cdots, n.
$$

Since the one**-parameter** subgroup passing x is unique,

 $P_i x^{\lambda} p_i^{-1} = x^{\lambda}$ for $i = 1, 2, \dots, n$.

Hence argument fore x $P_i(x^{\lambda}) = P_i$. From the same $x^{\lambda} p_i^{\mu} (x^{\lambda})^{-1} = p_i^{\mu}$. There λ is commutative with p^{μ} $\cdots p_n$ ^{μ_n}, and this shows that x^2 is contained in the center of x^2 .

Now we prove the Lemma 2 by the induction with respect to the dimension of \mathcal{L} . Since the number of elements
of H_k is finite, it is easy to show
that \mathcal{L}/x^{λ} is also approximated by discrete subgroups and from the assumption of induction \mathcal{L}/x^2 is nilpotent is contained By Lemma 1, *£,* discrete subgroups and from the assump-
tion of induction $\frac{1}{2}$ /x^x is nilpotent On the other hand x^2 is contained in the center of *£* is nilpotent.

Theorem 2. Suppose G is a connected semi-simple Lie group. Then **there exist two element α,** and *4* such that the minimal closed subgroup containing a and $\ddot{\textbf{t}}$ is G . (\ddot{G} is generated by α and β).

Proof. From Lemma 2 it is known that there exists two one-parameter subgroups a^{λ} and b^{λ} such that θ is generated by a^2 and b^2 . De
note by H_g the closed subgroup ge-

nerated by $a^{\prime 2^n}$ and nerated by a^* and b^{**} . It is
easy to verify that

$$
\begin{array}{lll}\n\text{(3)} & \text{H}_k \subset \text{H}_{k+1} \subset \cdots \\
\text{(4)} & \overline{\bigotimes_{k=0}^{\infty} \text{H}_k} = \mathsf{G} \ .\n\end{array}
$$

Let H_{κ} be the component of the identity in H_{k} . Then $H_{k}^{0} \subset H_{k+1}^{0}$ C * - Since *Hi* is a connected closed subgroup of \hat{G} , there exists K such that $H = H_S^2 = H_{K+1}^S \cdots$, and
so for every element R of H_R , R $\begin{array}{c} 0 \\ \text{for} \\ 0 \end{array}$ $\begin{array}{c} \text{and} \\ \text{of} \\ \text{H}_{\& 0} \end{array}$ $=1, 2, \cdots$,

> \bar{h} ^{$\dot{}$} H \bar{h} \subset H . (5)

From (4) and (5) H is a closed nor mal subgroup of Gr and *Q /H* is ap proximated by discrete subgroups C2.3 H*/H 1 « H*/H C -ft > K) . By Lemma *2* O /H is nilpotent, but on the other hand Gr is semi-simple, and so G/H is semi-simple also. Hence $G/H = \{e\}$, and $G = H$
This shows that G is generated b $\frac{1}{2}\kappa$ and $\frac{1}{2}\kappa$

 $(*)$ Received Dec. 15, 1949.

- 0.3 H.Auerbach: Sur les groupes lineaires bornes (III), Studia Math. V. p.43-49.
- C2l H.Toyama: On discrete subgroups of a Lie group KODAI MATH. SEMINAR REPORTS No.2, 1949, p 56«37.

Nagoya University.