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TWO ELEMENTS GENERATIONS ON SEMI-SIMPIJ3 LIE GROUPS
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(Communicated by H. Toyama)

This note is concerned with the
problem to determine the class of Lie
groups generated by two elements. H.
Auerbach showed E H that compact
Lie groups belong to this class* Here
it will be shown that connected semi-
simple Lie groups belong to this class,
The^writer is indebted to Morikuni
Goto for his suggestive conversations
about the problem.

Let L be a semi-simple Lie algebra
over a field F of characteristic o
and let -£

(J
'«*,&e be a base of the

maximal abelian subalgebra containing
a regular element of L- . Iίet F be
the algebraic closure of F and let Lw
be the Lie algebra obtained frorn̂  L
by extending the field "F to F It
is well known that Ljr has the follow-
ing structure* There exists a system
of vectors of a J?-dimensional eucli-
dean space {oc,β, •-» } called the
system of root vectors, and to each oc
wβ can correlate an element e<c of

b
F
 so that &,, **Άe,6*r

e
/*, *** consti-

tute a base of Lψ and the structure
formulaes of Lψ has the following
form.

where

and

Root vectors are distinct among each
other and if oC is a root vector then
— oc is also a root vector* There

exist root vectors <*.u>, *, oc
thatίe

Λ
"f,e-.*™], , c e ^ ,

are linearly independent.

Th
such

Theorem l Let L be a semi-simple
Lie algebra over a field F of charac-
teristic O Then there exist two
elements ou and % such that the mi-
nimal subalgebra containing α and &
is L ( L is generated by α and
4- ).

Proof. Let n be the dimension of
L »we first consider Lψ . Take &

such that U«C-£>X)#o for each pair
of root vectors oL and β . Denote

4 χ = C and Σ &OL ~ di Then

s, =
Γc,

AS UoC-β)X')d(
F
0 , d; S, . S s , - ' , S

n
-i-i

are linearly independent and contained
in the minimal subalgebra L* of Lψ
containing c and <£ Therefore L?
contains each 6^ , hence contains also
C βotώ , β

-oc
u) J , i=i, 2, ",i . Thus L* = Lΐ?.

To summarize the above results,
there exist finite numbers of monomials
Pί(x,y> = L* * E^.^3 ••• ], ι«i,a,—,4,

such that each element of Lψ is a
linear combination of 'Pi(cdi)

 #

of andTake a base p, , - •

constitute p
£
 ( £ l' fy , Σ. ψp. ) , where

\*, U* are indeterminate elements.

where Y
i
 are polynomials with respect

to ξf, it* (/»!.,-- ,n) over F . Put
M ( ξ,,--

/
|
ni

τ
l,," 7?n)

sr
l3

f
ί
K
)» We can write

C = Σ . c ^ , <£~\£ d
ι
γi

 9
 where c' d

ι

are elements of F Then the rank of
the matrix M C c'-, -» , c

1
* d\ - - ot

Λ
 ) is

TL
 #
 Hence there exist α , •*••, α* •$*,•• ,-I

1
*

of F such that the rank of M C α,, .- ,

α^; %\- ,4'*) i s also n. . Put

a=χaιpi 9 Z^ίVPi 9 then

Li is generated by α and -ί

Lemma l Let L be a Lie algebra
and L, be an ideal of LJ contained
in the center of L . If L/L, is
nilpotent, L is also a nilpotent Lie
algebra.

Proof. Prom the assumption, there
exists an integer m, such that LJ ™*

-Z^ΐL.ulLΊ --1L1C L/#. H e n c e
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Let (C be a local Lie group. We
say that & is approximated by discre-
te subgroups when there exists a se-
quence of discrete local subgroups Hg
of Jt such that HA C H*+

t
 and £>

t
 H*

covers a neighborhood of the identity
e of £ .

Lemma 2. Let £, be a local Lie
group approximated by discrete sub-
groups. Then & is nilpotent*

Proof. Take a sufficiently small
neighborhood V of e satisfying
the following conditions

<U
 V

 C
 $

t
 H&

UIV We can introduce in U the coordinates
system such that for every elements x
and y of 1/

where \τc\
between χ

is the euclidean distance
and β

Let ru be the dimension of £ * then
there exists an integer -m such that

H
n Λ
 V contains ΎL points Pι,

» ,tVt such that sufficiently small ele-
ments of & can be written as *>,*" fe*

9
.

* * Pn* > where P* is the one-para-
meter subgroup of £ passing P such
as p**pt Let x be the point of
Hm which is not β and whose distan-

ce from e is the minimum. Then from
the condition (2) oc is commutative
with every element of HQ ̂  \j in
particular Pt > * , p-α

Since the one-parameter subgroup passing
X is unique,

Hence
argument
fore x

P; txxjΓ* \>i . Prom the same
x* p^(oc^Γ1 - P,^ There-

* i s commutative with fc*
and t h i s shows that X x i s

contained in the center of <56

Now we prove the Lemma 2 by the
induction with respect to the dimension
of & Since the number of elements
of H* Is f inite, i t is easy to show
that ^t/x* is also approximated by
discrete subgroups and from the assump-
t i f I d t i 3 E / x i i l t tp

is contained
By Lemma 1, £,

gp p
tion of Induction 3Er/%x is nilpotent
On the other hand i t i d
in the center of £
is nilpotent.

Theorem 2. Suppose €r is a con-
nected semi-simple Lie group. Then
there exist two element α, and 4
such that the minimal closed subgroup
containing α anςL 4 is & . ί 6r

i s generated by α and £ ) β

Proof. l Yom Lemma 2 i t i s known
that there exis t s two one-parameter
subgroups O,λ and -θx such that Q
is generated by α x and £ x

 e De-
note by H# the closed subgroup ge-

nerated by d and
easy to verify that

. It is

<v > Gr .

of
and

Let H* be the component of the
identity in H-fe . Then Hi c H*°+,
C * - Since Hi is a connected
closed subgroup of Q- , there exists
K such that H — HS ^ d

so for every element

H .

From (4) and (5) H i s a closed nor-
mal subgroup of Gr and Q /H i s ap-
proximated by discrete subgroups C2.3

H * / H 1 « H*/H C -ft > K ) . By
Lemma 2 O /H is n i lpotent , but on
the other hand Gr is semi-simple,
and so Gr/Ή i s semi-simple a l so .
Hence <τ/H — t e } > and Gr = H
This shows that ^ i s generated b "

α* and -62

(^) Received Dec. 15, 1949.
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