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Introduction* The object of the
present paper is to discuss the conver-
gence of the sequence of probability
distribution functions and properties
of its lirnit distrioution mainly by the
aid of Fourier transforms

o
 In ξ 1, we

discuss the convergence of a sequence of
monotone non-decreasing function or
distribution functions. It is well
known that Levy's continuity theorem
plays a central role

o
 We shall make some

remarks concerning this theorem* In ί 2,
we shall give another proofs of some
known theorems appealing to th'e , the or ems
in $ l ί In 5 3 we discuss the properties

of the mean value Wttj) = | ^ 5 τ J f
(ί>ίt

of a characteristic function (Fourier-
Stieltjes transform) j- of a distribution
function. And we shall prove Levy's
theorem on continuous infinite convolu-
tion

1« Convergence pf^a sequence off mono-
tone functions or <Jiβtributi_on
functions.

Let Rι(*) be a non-decreasing function
(n = l,2, --•• )f and its Fourier-Stleltjes
transform be

•r ~°°

Wθ suppose that /\<x)
 i s
 normal izeds

We first prove the following theorem
which is essentially due to S*Bochner"

J

Theorem l
o
 Let

* M
f

M being independent of
converges to a function
all values t' , then

(i) F*.te)~ fh(o) converges to a
decreasing function foe) , and
is also of bounded variation,

(ii)

(1.4) Ut)

holds for almost all £ , and

If τ
Λ
(t)

for almost

(lii) we have

Following proof is due to bϊ?
o
 T Uί- ̂ er' <

Integrating the both sides of (1.1). we
have "

We choose fy so that A k M/ZZ , where
t is any given positive number„ 3γ

Helley theorem, there exist a subsequence
ifhtfdOi

 anc
^ a monotone function fcκ\

such that p
 (κ)

 converges to
 Γrx

"

for all X , ώ d it holds
 A(<)

Since

we have

(1.8)

An.d we get

• (
t

Thus by (1.7), (1.8) and (1.9)

l A
which results, letting

Differentiating with respect to t , we
get

15



for almost all t . Inversion formula
(1,5) can be proved by usual method from
this fact* Hence fez.) is determined
uniquely by /ft ) * If we choose any
subsequence of f

n
(x) » there exists a

subsequence F,cz.)
 o f t h i s

 subsequence

such that FttjΆ- F.tzϊ—* F(Ό e ?

(i) is thus prόVed ^The proofs of (1.4)
f

(1.5) is implied in above arguments*

ψ
H
ίt)

f
n

is a distributionRemark* If
function or fy—)

?o
 F

n
tends to a monotone,function p

(
^

This is seen from the fact that since
FKCO) i

s
 bounded, we can choose a sub-

h
FK)

sequence ft
κ
 of indices such that

converges .

F
n
 to)

We can now prove Levy's continuity
theorem in a slightly general form*

Let F
n

ζ
*) "be distribution functions

β

Theorem 2
9
 Suppose that the charac-

te.ristic function^ f
n
cί ) .of a distribu-

tion f\(**) converges to a function
for almost all t * and that fatT~~ is
continuous at έ = a s
Then £»<O converges to

4.(°^ being, 1
a certain dls- "

tribution function Rz) and fit) i s
equal to the characterist ic function of

at almost allT« By Siβorβm
to f(%) and there

(1.20)

that

for almost all t

and such F(X) is uniquely determined.
We have to prove Fffoo)- /r^^)^ ί

 o

such that (

o , we have

We take a sequence
and (1.10) holds at t -

Letting

Inversion α f l l m a n d j l s l e g l t 4 m a t e

S k JJF*)*- Th Theorems is

Let Fn
CJ(
) be a convolution

)

Then the characteristic
of f α ; is «fr) f

l W

above theorem, if i^it)
function lit) , j-ct)
< Ό and fa) =: / , then
volution C;* e^*
distribution /to
shown that in this case
concerning £if) are

function ,£»(£)

converges to a
is continuous at
the infinite con-
converges to a
But it will be
the assumptions
unnecessary, or

Theorem 5» If ΛjgLf & &
ίfr)

converges to a function j-a) for al-
mosJLall t which is not zero on a set
of positive measure, then <?;•*-<&* •*<%& fo
converges to a distribution function^,/^γ;
and consequently (by Levy_theorem) fat)
converges uniformly in every finiteinter-
val to the characteristic function of fM
which is equal to ~~jf((r) almost every-

n

Since
n

77" f
κ
tt) converges,

(1.11)

and by Theorem 1, there exist a non-de-
creasing function 6r

n
cx*) such that

almost everywhere
β

We now take zί* such that (1.12) holds at
t~t* for all values of n , By

(Iβll), for given positive member £ ,
there exists n£ such that

so thatHence we can take

(1.15) CL ,

Now by Theorem 1

16

holds a3jnost everywhere, έr(x) being
a non-decreasing function. On the other
hand



Therefore we have " ^

J
-A

which is, by taking £ such that
^ £ and then taking x > /\i 6

-/̂

letting X-ϊ oo , we see that ^ r o ) >
. Since ε, is arbitrary, €j-c+Λ);=

 ί

U.14)

The sum of the second and third terms of
right hand side is not greater than

(2.1)

or

kjr

L >o

k
, L>o

is called the mean concentration function
of V More general kernel can be
applied for the definition of the mean
concentration function But here we
shall consider the function Cίί) only,
for the-^uitely similar arguments holds
in the following lines

Theorem 4« Let ίXvJ be independent
random variables, and let C*

m
(k) be,

t&e mean concentration function of

is either identically zero or identically

lo

The equivalent fact to this theorem
was proved first by P Levy °° and the one
of the author proved the theorem in this
forπw^ Afterwards he has given a simple
proof .(not published). We shall &ive a
more simple proof, here. Since, we can
write

taking C such that FήJ-C ) < &
X such that X<-A-Cy »

 w θ

A

€τ(xy< fϊ,/zi-AJ
" Λ

it is evident that the function C(k) in
(2.3) is well defined, where j

n
ai) is

the characteristic function corresponding
Xthe c

to X If we put

which it results that €t<-^ )=0 #

$hus €rcx) is a distribution function.
Betice ffUt)« fit) 1* eqμ&l to the cha-
Wίβtβristic. function of €tcx) almost
^^fpywherβ. Theorem 2

9
 then shows our

theorem*

When jk6 ). is the characteristic
ion corresponding to a random vari-
X #

then c/ί6) is either 1 or zero for
every t . By Theorem 1, there exist
non-decreasing functi -na 6Lc*) and

6y such that

And by (2.4), we have



(2.5) Cfky F
If «f(t)=O almost everywhere, thai evi-
dently C(kl

 i a
 identically zero for

K>0 « Contrarily if if ft)* t on a
set E of positive measure, then for t

e
ι

E,

and o(ct
0
)m t Henoe

Therefore

/ =

tτ<m which it results ίrf o ) - ft/- * ) « /
 f

and since / V * V < 5 < J Γ ; * / holds on the
set of positive measure, £Kcj becomes
the unit distribution and consequently
4(t) is 1 almost everywhere* Hence

C(k)~ i identically for k>o

Theorem 5. If Q(k)m f # then for
some number "~ *

converges
^er sequence

,n dlstrlbu-

The latter part of the theorem is
evident, because the case C(k)mo is
the one where <•<*-)=0 almost every-
where, and hence Tΐi^(t) diverges to
sβro for almost all t , from which we
see that 1Γfa)e**

mt
 diverges to zero

almost everywhere.

If ΓfO* I 9 then 7Γ|fncfeJl* con-
verges on a set of of positive mea-
sure* Since \f«(t)f is the charac-
teristic function corresponding to
r^ X.- x; , where χ' n i s s tat is t i-

cally independent of Xn and has a same
distribution function as χ n 'theorem
5 shows that YΛ converges in distribu-
tion* from whlcti we can prove as usual
that JSJkH-*n) converges in distri-
bution,^aking/son the median of X v

Next we shall prove a theorem concern-
ing a series of random variables, which
we state, in terms of infinite convolu-
tions ass

'Theorem 6« fcβt (Π cr) is a diatri*
butIon function and suppose that
<*W*<ίtjg* ••• » F<*> la convergent^ If

e c^rolutio'n gotten by changing the
order of G>*5 * ΨBΛ IS conver-
gent,

(2.6) ^rac)= Fu-4)

holds food for some constant a»

Let the characteristic functions of

ί
ί&)
 respectively.

d
 eluded in

(2.7;

where A*(t; i« also a characteristic
function. Hence we have

Letting k-̂  «ι # we have

(2.8) |fct>|* ί Ijrol

Similarly we have

(2.9)

Hence

(2.10)

Suppose that \ict)\>f, (f^|>o for

A
 \tl<X, $ which is poβΛble for
|f£~! Evidently kjt)-> kit) (

(2.11)

By (2.10),

(2.12)

Kow if we put

then usual arguments cti show that there
exists a subsequence HmJx) such that

"i«
α
) converges to a αistrlbution

function H<x) . Thus &J£) con-
vergea uniformly in every finΛe intβr-

18



val to the characteristic function
of Hex) , and A*M» A W in
By (2(tl3*}# /A*ft)|=5/ Qtt<&) and
thi£ iεφlies that fcVj*e

Λe
 for

some β( Since j<t)= f(t)£<t)
-«β <t<o0 $

 w β
 have ϊ

 $

which is equivalent to (2,6)

5 Continuous infinite convolution*

Let frX) be a distribution func-
tion and tit) be a characteristic
function of puo And let X«,(Vcq,/,
••i»— ) fee point spectra of /tot) and A,
be the saltus at X* . Then it is well
known

( 3 a )
 &

And hence

(3 2)

cessi

j

_
75F

and sufficient condition
e contl Lty of

also known that
It is

j(3.3)

Above results holds also for a founded
non-decreasing function pcx) We begin
with the following simple theorem*

Theorem 7 If a distribution func-
tion F+€X) convygea to a
distribution, then

then for some

(3.6)

For if contrarily
then

< t for all

which contradicts (3 6>#

How we choose a subsequence T X#

of Jjζ*^ «uch that £

to ^

If I is finite, for arbitrarily small

converges

We have

Or letting $-» *

which contracts the continuity of ptx)

N xt if
by (5.6)

or " *?**--*<*> $ then

which shows

(3 4)

Let the set of point spectra of £<JO
be xTi^oA.t. ) and fir* be the
corresponding ealt.ua To prove (3 4) it
is sufficient to show that χ

k
//;

ιu
f-^

 o
(n*+*) . If there exists,Tor some
positive £ , a βequence /n

κ
i such

that

(5.8)

Since

Letting K -i «9 , f <*> j /- ε
 #

Hence f(*m)£i-ε $ which contra-
dicts the fact /Γ<JO is a distribution
function.

The case | * - •• is similarly treated*
Thus the theorem is proved*



It is obvious that the converse of the
theorem does not hold But if F

n
 ex) is

a convolution sequence, then it is shown
that the converse is also true

Theorem 8. If
being a distribution, and

converges to a distribution function f<χ) ,
then £he necessary and sufficient condi-
tion for that &<*>) Is continuous > is
ΪR{\ίif\—

>0
 * where" j-

Λ
ct) is the cha-

racteristic function of £,'*)

It is sufficient to show sufficiency*
If we denote the characteristic function
of Cktx) by %ct)

 9
 then f

n
(t)= TT,

n
f

H
(t)

and L(t) converges to the characteristic
function {(t) oL fcx) uniformly in every
finite interval. And ##« %*'
Since \<P

u
it)\* I 9

 w θ h a v β

-τ

-T

and hence letting T -> °°

Since the left hand side tends to zero

Theorem 9» If ^ ^ ^^αo*-- *<r^«)
tends to a distribution £(*)

 f
_.tftβn

where i^ and f axe onaracterlaiilc
functions of r<x) and prx; respec-
tlvely>

 Γ n

Before proving the theorem, we shall
state the known facts

 w
a s

Lemma 1. Let i(t) be a characteri
stic function and its mean concentration
function be

We shall now prove the theorem. De-
noting the characteristic function of

and let the mean concentration of ί^
be C(k in) Then by Lemma 1 and the
fact ,*|*£ I f.

 fm
. i H jit being iTfjt),

we have ' ̂
 J A |

C(k ; If I
1
}.

Since
we have

^ ί > for

Letting A->-0 > by Lemma (iii), we get

which proves the theorem.

Theorem 10. It holds:

functionso
being characteristic

It suffices to show the case n = z
If ^<z) ωid ĈJT̂  are the distribu-
tion functions corresponding to itct)
and f̂ (t) respectively, then the cha-
racteristic function of the symmetrized

distribution F«<x)*ζhFκ(-x))= FH<x)
(«*'>*:> is Mj- and the saltus

at tne origin of JJXΪ IS yTf{\^\
Let the point spectra of ψ^xϊ be χv

WJ

(v =.
 Oj 1t

 . ^ and £ = o

l
and let the saltus of fyx) at *

A/**
3
 Then we have

iH) be

(3.8) (Soil)

(1) C(ί) la a non-decreasing func
tion for k>o

(11)

(111)

ι

fen
80

where &<(%) is a continuous, bounded
non-deereasing function from which it
results



Since
above

TTt\e
CλC
) -oif U O the

How let M be the module made of
the point spectra of &'*> or the set
of all real numbers of the finite sum
Xoe^/Γ » *' being integers.

When if ^ e Mr and *, v-ς + +Z*~° >
then necessarily •?, * ̂ c= . .-. « ̂  -

o
 *

we say that the modules M
0
**^ κJϊ.4, - .. n \

are linearly independent* ^

Theorem 11 . If modules M
are linearly Independent, then

saltus of
'*«> , then

If ft, Is the
a point spectrum :

,n )

at

C*») £

where the onter summation >> means
to sum up over all values of^>y

κ

which can be represented as 3*—-ζf*
*:-•*>£*.

 s i n c e
 M^Jo are linearly in-

dependent, ^
κ
 can only be represented

Λo lfi---- - -t ̂  in unique way Thus
the above expression is

Concerning the continuity of an in-
finite convolution, the following Levy's
theorem is known W Let /^α) be a
distribution function and m** tf,"

1
^ 6

ίif)
 ,

A fι/»β,-ι, *, - } being a saltus at a
point spectrum

Theorem 12, Suppose that the Infinite
convolution /)Czj*Jξα)» converges
to a distribution fie*) Then the
necessary and sufficient condition for
that prx) is continuous, is that

(3.13)

la divergent to zero.

We shall prove the following theorem
equivalent to Theorem 12.

Theorem 15« Let the characteristic
function of f

H
cx) fcβ £^> / Then

the necessary and sufficient condition
for that the Infinite convolution
Fnc)ss KGc)#ξoc)* - - - be continuous » 1$
that

(3.14)

is divergent to zero.

Since

it is obvious that Theorems 12 and 13 are
equivalent to each other.

Lemma 2. Le_£ foΛ<} be a monotone
sequence of positive nuτnbeτ»

g

t iti b I /to a positive number. ΪF ,
t
 .

 #al</
,

converges, theβ F,CxM)* ZπM)*
is also convergent to a distribution func«
tlpn.

Let X«< be a chance variable having
a distribution fox) and X

κ
 be inde-

pendent mutually. Then by assumption
is convergent with probability 1.

Now

(3.15)

converges to
And if [fc j<
i ranclo

fcn. being ^^
zero with probability 1. [fc j<^
(with probability 1, M being a ranclom
variable independent of n ), then the
second term of the right side of (3.15)
does not exceed in absolute value

(with probability 1).

Hence ^ O ^ X K tends to zero with pro-

bability 1.

We shall now prove the Theorem 13.
Suppose that fix) is continuous. Then
by Theorem 8, TKSsir- ί

n
|*}-—* *

Hence by Theorem 9, 7ϊ*#Γ{|fd*$—* °

Next conversely suppose that (3.14)
diverges to zero. With notations in
Theorem 11, we consider the module ^

(l<)
 .

Since the set of numbers of M
< κ )
 is

enumerable, the set of f< « ,..<*! such
that *'



to* *>*< * € M 7 * Λ **ί*<O
i» of measure «ero in n-dtmβnaional space
Therefore there exist α/*1 •# C ι such
that «0j* - .f<X^ °

 f o r a 1 1

Λ«"ιι, «*r.*, • • *.-n Further since
(c<? ιC«C*Vco β) has sane property,

we can take «£> as

where *,«*• « c f**) Since, put-

ting 4«

also has the above property of . . ,
• • >€t™) . Hence the modules made of
point spectra of F,<*/k,)> — .... . -,
linearly independent. Since <n is arbi
trary, any finite number of such modules
corresponding to Ft(*/Ut &<*/fck),
are linearly independent. Thus by Lemma

is convergent and since the characteristic
function of Q-cαf) is ^kfkθ

which i s , by Theorem 11

for ?ftfιj< * f l f f }
holds generally for every constant A*
Since by assumption Ht/^f} •- H?fll*n

€K*> l a continuous-to,
p /^

la continuous.

Now we take
^ and we let

Instead of above

tends to 1 and
spondinThen corresponding *

If we put
then we have

S ^ being
such that ^
possible, the
tive ^ ,

If we take t>%p
which is

br aίΓ arbitrary posi-

except in the case of probability 7 ,
where we take tf such that IS^I* Af
(tf l l )wlth probability /̂  y and
take /» so large that /-^/

Now we have

Since we see that Y
mhave t

Since the distribution of Xψ is conti-
nuous, for any x and sufficiently^
Small Si t , the second term of the last
expression is less than η Hence we

t

which proves our assertion*
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