ON INFINITE CONVOLUTIONS.

By Tatsuo KAWATA end Masatomo UDAGAWA

Introduction. The object of the

present paper 1is to discuss the conver-
gence of the sequence of probability
distribution functions and properties

of its limit distrioution mainly by the
aid of Fourier transforms, In § 1, we
discuss the convergence of a sequence of
monotone non-decreasing function OT
distribution functions. It .1s well
known that Levy’s continuity theorem
plays a central role, We shall make some
remerks concerning this theorem. In § 2,
we shall give another proofs of some
known theorems appealing to the theorems
in § 1. §In & 3 we discuss the properties

o
1
wify =L, EF_JT et
of a characteristic function (Fouriler=-
Stieltjes transform) F of a distribution
function. And we shall prove Levy’s
theorem -on continuous infinite convolu-
tion.

l. Convergence of a gequence of mono-

tone functions or distribution
functions.

of the mean value

Let /‘;.(x) be a non-~decreasing function

(n=12, ---- ), and its Fourier-Stieltjes
transform be
00
xt
(1.1) her= [ e*dfa, |

-og
We suppose that ,C; «x) 1s normalized:

(1.2) Fao)y= 7{hxro)t Fux-o)},

We first prove the following theor(ra‘m
which is essentially due to S.Bochner’

Theorem 1, Let
X0
(1.3) JdEoy s m,
~00
M Dbeing independent of m . If  fuf)
converges to a function {(t) for almost
all values t , then

(1) Fa&)- Fco)

converges to a none

decreasing function Fex) s and  Feq
is also of bounded variation,
(11)
(1.4) a((t)=j€"' o Foo
~ag

holds for almost all ¢ , and

(1i1) we have
A J-xXE
(1.5) = Ll [ =€
Fo = N YNl ce KOt
Following proof is due to ki, TaUgzeri,

Integrating the both sides of (Le1), we
have

¢ b
(16) _ [
!ﬁ(’dl‘(—-w . J/L;o() .
We choose 4 so that A 2nrfke , wiere

€ 1s any given positive number, 3y
Helley theorem, there exist = subsequence

{£, 00} end a monotone function Fax)
such that Fuix) converges to

for all X , e4d it holds o)
A ot A
(1.7) je“-/ exe,
J < J/f,;(x)/-‘;;i :!:\ et (029
Since
(2
[Jﬁ(«)[ £ /[,S(x) M,
we have g
(1.8) A jf /t
n;;’: fu(“)ﬂ[‘( = / {c«)«(x
5 ,
And we get °
w A xt o ,-A
e -/
U*j”"‘“ﬁ'z /,ga)lgzd* Ao
A -m A s A

ol
2
(1.9) g —-Amjdﬁ(x)g‘zl‘?_sa
-“ A

Thus by (107)’ (le&) andé (109)

t A exe
e -1
Uafm)la—jA = t(F(x)] <é
which results, letting 4 —

’

J:}aolu = j sy {feo

<X
~00

Differentiating with respect to ¢ , we
get

Ft) = :o/occd/fa)



la
for almost all ¢ o Inversion formu
(1,5) can be proved by usual method from
this fact. Hence frx) 1s determined
uniquely by ftt) « If we choose any
subsequence of A (x) ,Pthezie exéstsugnce
subsequence Foex) Of this subseq

thati Jr T . e
?Iilc)!his thus pRet0d /e he b iR of (1.4),
(1e5) is implied in above argumentse

Remark. If [, 1s a distribution
function or Fal-00)=0 , [fr(sror=1, Ft)
tends to a monofeone,fundétich (X o
This is seen from the fact that since

Foto) is bounded, we can choose a sub-
sequence 2, of indices such that f;“[p)
converges.

We can now prove Levy’s continuity
theorem in a sllightly general form.

Let  F,«x) be distribution functions.

Theorem 2. Suppose that the charac-
tgristic_function Ffat) of a distrlbu-
tion F(x) converges to a function
for almost all , and that A& 1is
continuous at £€=o s 4¢(0) being 1
Then  Fax)__converges to a certaln dis-
tpibution function [fux) and  f€) 1s
equal to the characteristic function of

at_almost allt. By Teorem 1,Fn®converges
to £(x) and there exists fF such that

D
(1.20)  ft)=[ e Fa
8 :

for almost all ¢

and such Fx) ig unlguely determined,
We have to prove Fltea)~ Flrx)= 1

We take a sequence {,, such that to
and (1,10) holds at E=tn

Fltn) = :Z“ o Y0y FeO

Letting £, ~° , we have

o0

1 = a»:n ‘/eixllm‘{;_{l)
o0

Mma0

~ [dp) = Fosm)~ Frean

Inversion of lim ang 5 is legitimate

since  [Zrmy<coo o  Thus Theorem 2 1g
proved, -

Let _Chcx)y bve s distribution func-
tion and its characteristic function be

16

Pt) « Let fx) be a convolution
of GLax) (4=1,2,-m)s

Fn‘l)-':GT*G;*- %G00 )

Then the characteristic function _#¢)
of Fx) 1s Py - --fie) o By the
above ’i;heorem, f.f f.¢¢) converges to s
function f(¢) ,  f¢) 1s continuous at
=0 and fg) =/ , then the infinite con=
volution GsGx -- - converges to a
distribution Fay o But it will be
shown that in this case the assumptions
concerning f¢)  are unnecessary, or

n

Theorem 3, If _ fut)= J filt)
converges to a function Ft) for al-
most all ¢ which is not zerd on a set
of positive measurs, then Gxas #OE f,
converges to a distribl.}tion function Feo)
and consequently (by Leévy theorem) _Fal®)
converges uniformly in every finite inter=
val to the characteristic function of A
which 1s equal to  f¢) almost every-
where,

n
Since ZZ; P (t) converges,

(1.11) Lrn Tigw|=1,

n-yéec

and by Theorem 1, there exist a non-de-
creasing function & (x) such that

00 ""4_ ¢
(1.12) JL?K(&) =jf x«(@(x)

~c0
almost everywhere.

We now take 7, such that (1.12) holds at

t=%, for all values of m , By
(1,11), for given positive member & s
there exists ns such that

e X, —_
u”(.‘ 16;1:1) l 21-&
Thus @, (reo)~ G5 (-c0) > I~ € .
Hence we can take A= A(E m,) 8° that

(1015) 6;'°(A)“6;,°(—A) > /""»36

Now by Theorem 1

2 00'
Do = [ e iea

holds almost everywhere, Erex) being

8 non-decreasing function, On the other
hand



o0

#

nﬂ

"'j Cdi(f; x) j:g‘xa(ﬁ &)

-0 0

= J e U Ew * 6 5]

-

(?“) 7T RACEI A

Therefore we have

a.(x) = Fn,(x)* 6;0(1] =j F"‘(J-a_\/,‘ﬁ;,.(‘t)
2o
A

J (x-u)/ G (0,

v

which is, by taking [ such that £ (8)>
(~-& and then taking x » A+8B
2 E,_fe)zfﬁnfu) 2 (1~€)I-2¢)

> /-3¢

Tetting X 0 , we see that &+00) >
36 ° Since &, 1s arbltrary, Gr(te)=

Next,

(1.14) 6w —j/: (x-«)ltfm)-rj j

The sum of the second and third terms of
the right hand side 1s not greater than

_£ a(Efn.m) tl dven(.l()zl—ﬁu{ﬁ)ﬁ-&"f_,q)

<2 “’3'(/. 133}.

¥ow taking C. such that A (-C)< &
and- X .such that X <- A ] s We
hdve

< fcxr A)]»(ﬁ",, (4)+2E
o A o

< RoxtA)rze Ch-crte

<3¢

from which it results that &¢-=)=0
Thus &) 1s = distribution functione
Hemce {«:) is equal to the cha-
mxberistﬂ “i‘unct on of &(x) almost
eéperywhere, Theorem 2, then shows our
theorem,

2. Proofs of gsome known theorems.
When f(¢) 1is the characteristic

funetion corresponding to a random vari-
sble X ,

17

k>o

(2.1)  Clh)a _jb(“_)z/unkt

ht*

or

(242)

OE /Lze"“[f(e){zxt, ho>o

is called the mean concentration function
of « More general kernel can be
applied for the defin.a.;})on of the mean
concentration function e But here we
shall consider the function (r{) only,

for the-fuitely similar arguments holds
in the following lines,

Theorem 4. Let D(“} be indeoendgnﬁ
random variables, and let C, ) be
the mesan ccnc entration function of

Z’«-m)(« « Then
3 -
25 L Lo Crch)= O

is either identically zero or identically

The equivalent fact to this theorem
was proved first by P.Levy ¥’ and the ons
of the author proved the theorem in thie
form.®? Afterwards he has given a simple
proof .(not published). We shall give a
more simple proof. here. Since we can

write
(2.4) (/;) —/H—te) fuaoi "'f{{'/"‘

1t 1s evident that the function C(h) in

(2.3) 1s well defined, where f(t) is
the characteristic function corresponding
to Xn. If we put
- 2
Lot holts o
),é": o(n(t)::o((f)l
then  o(t) i1s either 1 or zerc for

every ¢ « By Theorem 1, there exist
non-decreasing functi-ns G, x> and
&) such that '

£y <4
°(n(é)=':£e (G(I)

” E)
Kee)= [e e orr

And by (2.,4), we have



2 [0 wile
(2.5)  Ceh)=# ey T de.

If oit)=0 almost everywhere, themevi-

dently ((h) 1s identically gzero for
A0 « Contrarily if ot)=1 ona

get E of positive measure, then for &¢

E,
’I
a(({.):le‘t'*{&a)
and ()= o Henoe

”
‘/C‘t"t(G(x):. { .
~o

Therefore

I= ':‘{:"ulﬁrz)lilzea)“ ’

from which it pesults (e )-Gra)=1 ,
and since l/‘e""(ﬁ.a = holds on the
set of positi¥e measufe, Gw) becomes
the unit distribution and consequently
«(¢) 13 1 almoat everywhere, Hence
Cch)= (  1dentically for -k>o

o If Cfk)mt , then for

|m§ %& »'gogueg_ie X %&".T
stributi If di“é:f: ’
then (ﬁ —¢a) converges in distribu-
tion rorz' no ‘nmhgor sequence_ [da]

The latter part of the theorem is
evident, because the case C(Crh)mo is
the one where of¢)=0 almost every-
where, and hence NA()  diverges to
gero for almost all ¢ , from which we
see that Whwe'*t diverges to zero
almost everywhere,

If Cch)= 1t , then THue)l* con-
verges on a set of of positive mea-
sure. Since |fyof* is the charac-
teristic function corresponding to
Ya= X,~- X » where X. is statisti-
cally independent of X. and has a same
distribution function a5 x. « <iheorem
S shows that Y, converges in distribu-
tion, from which we can prove as usual
that ZE&,-Q.\) converges in dlstrie-
bution, taking,.on the median of X. .
ay

Next we shall prove a theorem concern-
ing a series of random variables, which
we stute, in terms of infinite convolu-
tions ast

0\ ¢x) is a distri-

Theorem €, Lot
3 function and suppose tha

G‘,«)*:;:,‘, = Fex) 13 convo:g::t. If
S cPolution Tk hanging the

nite ¢
order o

gont,
(2.6) Gexy= Fr-e)

holds good for aome constant a,

Iat the characteristic functions of

,":u), Fa)mand Gcx) Dbe

n(€), ¢ ¢) peapectively
ot o L e 1 e Tnooaed in

G/x), Gog, - - - - - oy ¢ Then
™(K)
1 ho= e ko
where  A.(6) 13 .also a characteristic

function, Hence we have

- wek)
'.-71"“" Fsi i'-'c {6“"‘5 ’,”: )(\.(t)r )

Letting k- a , we have

(2.8) ol s qml‘
Similarly we have

(2.9) ol s ot
Hence

(2.20) er'= et
Suppose that  [fte))d, 9er)>0  for

Iti<a » which is posdible for fro)m
ma {+« Evidently l\#.) — hit) (itice)

(2,11) tm=go ke (tica)
(2.12) thtrl= 1 (itica)
Now if we put
a ",
hote) = j o Hyex)
]

then usual arguments (T show that there
exlsts a subsequence Hy (x) such that
n¢X) converges to a Matribution
function Hew) o Thus »{t) cone
verges uniformly in every finf{te inter-



val to the characteristic function £%)

of Hexy , sand A%e)= A(¢) in jei<«.

By (2.12),. (K" w=1 (ti<a) and

this implles that  A%e)=e"™¢ _ for

‘dome o o Since ftt)= ;(e)/ut) .
-® ¢¢¢coo s WO have »

Fé) = Ime‘“ (-m<ct <)

which 18 equivalent to (2.6).

3. Continuous infinite convoiution.

Let Fxt) be a distribution funce
tion and f¢¢) Dbe a characteristic
function of Fa) o And let X, (v=og,v,
2,---- )} be point spectra of F(x) and A
be the saltus at x, + Then it is well
known

(341) #ﬁ;: T;-/;mﬂt:eMitﬂ'}

T
=Zb
And hence
(3.2) m{iff}=o

is & necessary and sufficient
6_continu of Fex)y o Itis
also known tha

(3.3) /m & J fme“’ft = f }(e)e"t}

= Ftj+0)- F(i-0)

Above results holds also for a founded
non-decreasing function Frr) « We begin
with the following simple theorem.

Theorem 7. If a dlatribution func-
sonverges to a continmuous

X
distribution, then
(3.4) Gn Mgty =o.

Let the aet of point apectra of Fuw
be. xP(v=o.1 ) and be tho
corrqaponding ultua. To px-ove (3.4) it
is sufficient to show that J./L''— o
(m=») , If there exists, for some
gosltivo & , a sequence { n“} such

(3e5) ?.“{:"")1 > €

then for some W ’

n,)
(3.6) k-2 ¢
)
For if contrarily L <& forall v,
then

")
(r‘”f‘ max b " .3:. P S max }("‘)< g,

v

which contradicts (3.6).

Now we choose a subsequence | x }
of {f:‘ \ such that JC:' converges
to % .

Ir % 18 finite, for arbitrarily small
$ (>o0),

§‘8< Q({*S . }w K> K(5).

We have
F(§+8)- Fi3-5 )= L'.. (F r;fn—F (3
. (
2ém 0 2 €,
Or letting $-o0,

FC310)- F(§-0)2 €
which contracts the continuity of Fex)

fmy)
Next 1if =to0 or 2, —roo then
by (3.6) 4 ’ I ’

Fﬂ;.«m Eeso) 2 €,
which shows
F50%e) 5 1-¢

Since x:-’-,oo o for any x

fox) 5 1-€

Ietting « 4+ e , Fexygt-&
Hence FCeow)g - & , which contra-

dicts the fact f¢x) 1s a distribution
function,

The case § =~ e 13 gimilarly treated.
Thus the theorem is proved.



It is obvious that the converse of the
theorem does not holde But if A cx) 1s
a convolution sequence, then it is shown
that the converse 1s also true.

Theorem 8. If F,co0=Gw*— =),
Gx) being a distribution, and /[y

es to a distribution function A,
gg% Eﬁe ﬁecessary and sufficient condi-
tion for that #&x) 1s continuous, is

W $t—0 » Where Jat) 1s the cha-~
racteristic function of Fr) »

It is sufficient to show sufficlency,
If we denote the characteristic runction
of 6ux) Dby @ut) , then fwe)=7] F,
and (¢) converges to the characteristic
function {1t Fe) uniformly in every
finite interval. And ft/)= ..
Since |2, w)f<1 , We haveé

Jh( (t)‘l‘(t 2T_J | 1T ? u-)\dt

IFJT )Pt

and hence letting T — o

mii S} 2 miisr}

Since the left hand side tends to zero
mhsttb =0 .

Theorem 9. If FEx)=6rp*-- -*0ha)

tends to a distribution [fex) ,_then

(5.7) L. weif ) =wiset
where $. and § ;
functions of F.cx) _and Fex) respec-
tively.

Before proving the (;heorem, we shall
state the known facts

Lemma l. Let #®) be a characteri-
stic function and its mean concentration
function be

(3.8) Ceh)= j mur“,:'fi“
Then
(1) Cch)

is a non-decreasi funce
tion for 4>o0
éf: Cth) =1
4. =
b Ch) i}

(11)
(111)

20

We shall now prove the theorem. De-

noting the characteristic function of"
G (x) by Foct) »
fatt)= P> 9@ - )

and let the mean concentration of Fn

be Cch; }“l . Then by Lemma 1 and the
fact IFRr< 4 {4 being 1),
we have -

(3.9)  Crhifa)2 migaRy 2 #0251},
S8ince  C (h; fu)=CCh §)  for hro ,
we have

Clhis)2 l;mﬂf..l'} < bz it}
2 17115}
Letting A—.0 , by Lemma (111), we get
Wi e} 2 L i1y 2 o g
2 mhisity,

which proves the theorem.

Theorem 10. It holds:
(3:10)  mrfis%- 412} > wff Py - iy
R e being characteristic
functions,

It suffices to show the case n=2 ,
(x) and Kcx) are the distribu-

tion f'unctions corresponding to f,¢¢)
and f,(¢) respectively, then the cha=-
racteristic function of the symmetrized

distribution Fm.r(l~F(-xJ)~ E‘(x)

i«:'-z) perne % “and the salt}us

a neorgno x)  1s |l

Let the point spectra of ) {beﬁr e

(v=0,1, .... . and ,=o

and let the saltus of FK(z) at  x* ve
A + Then we have

» ) p) oo |
(3.11) l;f,‘lz—;‘vz;ofye %, tf_{,e“f/ér;rx),

where &, (x) 1is a continuous, bounded
non-decreasing function from which 1t
results

m{]};le} po Z, ,(:)4..( Zf’(z)"im)t‘}

_ @ g ')'Ilfjt
= mf,"v-‘fr f e v }



Since Mfe*} =01 L+o0 , the
above 1s

L FE
+X =0

= i [P} - mig,rt.

Now let MW be the module made of
the point spectra of Fecx) or the set
of all real numbers of the finite sum

So.x” , o Dbeing integers.
When if & MP and F-+g+  rZ=0.
then necessarily FH= H= - ... < F=0
we say that the modules M“‘",“a,, 2, ,)
afe linearly independent.

Theorem 11. If modules M“(uerzin)
are linearly independent, then

(3.12) @C{ls; [P =@ Rt mnlis Y.

1s the saltus of f,x) at

1r FK)
4 ) then
(, ]

a point spectrum

Mt mLLpReOt L . 5 fR

/I.

—alig R e

- ~ « oy 2
:Z.(Z-— ,fk)‘ ’ k )
3“ 1:4"'1:'?;”« — !
where the onter summation means
to sum up over all values of®g
which can be represented as 4,=2%
+--447, Since M“ are lihearly in-

dependent, ‘4« can only be represented
%~ - +X  in unique way. Thus

the above expression 1s

KRk = LI St

'(v

=S} sy

Concerning the continuity of an in-
finite convolution, the following Levy'’s
theorem is known (# . let Fu) bte a
digtribution function and max A= g™

B4 (v=0,1,2.----) being a Saltus at a
point spectrunm

Theorem 12, Suppose that the infinite
ution  FasEa» - --- converges

to a distribution = Fexr> o Then the
necessary and sufficient condition for
that Frx) 1s continuous, is that

2 )

VI
is divergent to zero.

(3.13)

We shall prove the following theorer
equivalent to Theorem 12, ng theorer

Theorem 13, Let the characterisisi
function of Fqtx) be £ . Then
ceggary and sufficient condition
for that the infinite convolution

Fr)=FEeo# Eay% - - - - be centinuou
that 0% uous, 1s

(3.14) ﬁm;mx}

is divergent to zero.

Since

el g8y = 2B PR A s b
(7 <2870 = mipsfy

it 1s obvious that Theorems 12 and 135 are
equivalent to each other.

Lermg 2, Let /oWl be a monotone

equence osit onvergin

to s positivggux_nt@r. If  Foos Egye - -

conver s then  Fxmix Ervfc s - - - = -
gk,

is also convergent to a d T ion func-

tion.

Let X, be a chance variable naving
a dlstribution L) and X, be inde-
pendent mutually, Then by assumption J X
1s convergent with probability 1, “

Now
m m-:
(3.15) 2..“’«)(,(1“’4 £ “‘é;“”(u' L K,,,,,, ,

«en

o0
R. veing Z.X. . R. converges to
zero with probability l. And if [ (<M
(with probability 1, M being a random
variable independent of m ), then the
second term of the right side of (3,15)
does not exceed in absolute value

Moy =Mldn-o, | —o
(with provability 1).

-
Hence ;o(‘)(“ tends to zero with pro-
bability 1.

We shall now prove the Theorem 13,
Suppose that Frx) 1s continucus. Then
by Theorem 8, m;;;,.. -4 ,3}_._, o s
Hence by Theorem 9, T,?ﬂt{"(f,‘ﬂ—-) o

Next conversely suppose that (3,14)
diverges to zero. With notations in
Theorem 11, we consider the module Mm% .,
Since the set of numbers of ™M™ is
enumerable, the set of (u«, x, ..., ) such
that )



o3ty v - - - +R & =0

for Ze n':’. < - o Za€ Mm’(:," ce v BIt0)
is of measure gzero in n-di.m’onsiona‘} space,
Therefore there exist o™ .. - - o7 such
that o™ - - - »aTs, %0 for all
LMy, unl,2,- .- o an o Further since
gc."'g.. . .,¢cof%Y(ceo) has same property,
wb cen take o&  as

*m)‘a«ﬁn"' © an
where &,&,:-- - = C (#0)

ting 5«';&";. 1».‘=°c‘2"..iﬁa.-,u..t.;-'-t..)

21lso has the above property of (e --
.- ,ed™) o+ Hence the modules made of

LY
oint spectra of F(x/4,), - - ;Rx/k)eare
ginearly indqpendex{t./ ‘Since m_ is arbie
trary, any finite mmmber of such modules

corresponding to £ L RX/b), - - - -
are linearly 1ndepex(;1‘kz:. * Thus by Lemma
2,

Gury= Rax/b)s B(x/iy)w- - - - -

is convergent and since the characteristic
function of  Grx) 18 fehedfrbt)- - - o,

mifber ke - - 1}

ST 14w - - futboof'}
which is, by Theorem 1l
= milfhol} - i ol

Sme. p‘lt'

= m'l |f,(t‘)|‘} .- m{ lf.mﬂ ,

for  mt{ifatrtt} = wefifer®

holds gon{er‘:lly }for ev{exf;' co}natmt kX o
Since by assumption W{i,t}---- mitfl"}
—0, Gcx) 1s continuous,

Now we take Q;,
a; and we let M= €, (C,—> | &0
fng /

—+00), Then correspond b, »
tends to 1 and -+

[,)',)[”> R
If. we put Yu--l_X-..
then we have 4 f:"—‘ “/

Y‘,— Yb= "2: { ‘n," ‘-.;)X.

instead of above

— 1.

=2 2Chy b S,

S betng X, . If we take oy,
such that ﬂ?&é ~ éae )<© which is
)

possible, or an arbitrary posi-
tive 7 »
(3.16) 'Yf rbjgml.,f b,r)gmH.,r)

<€, (Pt

except in the case of probability 7 -
where we take M such that IS<ls M
(K=h% -- ) with probability ,- » = and
take p 80 large that /- bp <Efm

Now we hav$

Po(1-8<Y, <x+§)= P, (x5 ¢xe$,
%1% )+ P x5 <vpcxs$, Y-y, I<e )

£ Bv(’iY,-rtn&)-rt‘{x—s-z<)”<x+&c)

S 7+ B(x-F-ecy cxvbre),

Since the distribution of Y, is conti-
nuous, for any X and sufficientlyy
A3mall § ¢ , the second term of the last
expression is less than 7 o Hence we

t
BRS¢y cxf)cay

Since we see that Yt’-) Z X,

have » WO

Po(2-5 s £x, < 8) <22
which proves our assertion.
(*) Received June 30th, 1949,
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