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INVOLUTIONS FIXING THE DISJOINT UNION OF 3-REAL
PROJECTIVE SPACE WITH DOLD MANIFOLD*

Zu1 LU AND X1BO Liu

Abstract

In this paper, we determine the existence of all involutions fixing a disjoint union of
3-real projective space RP(3) with Dold manifold under the condition that the normal
bundle to RP(3) does not bound, and also study the representatives up to bordism of
those involutions which exist.

§1. Introduction

Let (T, M) be an involution on a closed manifold, and let F denote the fixed
point set of (T, M). When F is chosen as

{ptyUS™, RP(2k), RP(m)URP(n), URPQ2I+1)(I fixed),
WP RP2L+1), UL, (SHk,

and (S™ x 8™ x --- x S™) U {pt}, respectively, the existence and the represen-
tative (up to bordism) of (7', M) have been studied in [2], [11], [9], [13], [4], [12]
and [8]. The purpose of this paper is to determine the existence and the repre-
sentative up to bordism of all involutions fixing a disjoint union RP(3) Ll P(m,n),
where P(m,n) is the Dold manifold of dimension m + 2n obtained from the
product S™ x CP(n) of the m-sphere with the n-dimensional complex projective
space by identifying (x,z) with (—x,Z) (here (x,z) e S™ x CP(n)). For this
purpose, we first study the vector bundle over Dold manifold so that we can
begin with our discussion on the existence of all involutions. The main method
will be a formula given by Kosniowski and Stong in [5], and Lucas Theorem [10]
will also be used. By setting an involution on Dold manifold P(3,n+ 1), we
partially give the representatives up to bordism of those involutions which exist.
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In particular, we will see that the case F = RP(3)LU P(m,n) possesses more
complicated structure than those cases in [2], [4], [8], [9], [11], [12] and [13].

Throughout this paper, the coefficient group is Z,. Let w be the total
Stiefel-Whitney class and w; the i-th Stiefel-Whitney class. Let [N] denote the
fundamental homology class of manifold N. Let o;(x) denote the i-th ele-
mentary symmetric function Xxj - --X,.

The authors wish to express their gratitude to Professors Takashi Tsuboi,
Zhende Wu, and Zongze Liu for their helps and encouragements during the
preparation of this work, and also to the referee for his valuable suggestions.

§2. The total Stiefel-Whitney class of vector bundle over Dold manifold
P(m,n)

Following the notation of [14], let £ be a 1-plane bundle over P(m,n) and
n a 2-plane bundle over P(m,n). Let ce H'(P(m,n);Z,) be the generator and
d € H*(P(m,n); Z,) the generator. Then wé=1+c, on=1+c+d, ERE=1,
E®n=n (see [14; Proposition (1.4)]).

LemmAa 2.1. Let t© be the tangant bundle over P(m,n). Then wt=

(14¢)"(1+c+d)"", also denoted by wP(m,n).

Proof. From [14; Theorem (1.5)] we know
TOCB®2=(m+1){®(n+1)n.

Hence it immediately follows that wt = (1 +¢)™(1 + ¢ +d)"™. O
Let ¢(/) = the number of integers e with 0 < e </ and e =0,1,2,4 (mod 8).
LemMa 2.2. Let A be any a vector bundle over P(m,n). If n is even and

m=0,1,3,7 (mod 8), then

wi=1+c)’(0+c+d)’

where s and t are nonnegative integers.

Proof. Leta=¢—1, f=n-2, y=f—a. According to [3; Theorem 5],
when n is even and m=0,1,3,7 (mod8), we know that KO(P(m,n)) is

isomorphic to Z,,m + Z"? generated by a,y,72,...,y"? such that 2¢("q =0,
o> = —2a and ay = 0. Therefore it suffices to compute w¢ and o(n® - ®n)
N ———r

P
for all p >0. Using the formula in [7; p. 87] and wy =1+ c+d, by direct
computions, we can obtain that

221

on® - Qn) =(1+c)
2
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and
on® - ®n) =(1 +c+d)221.
———
20+1
Again since wé =1+ ¢, it follows that wd can be as stated. O

§3. A formula and Lucas Theorem

In this section, we review a formula given by Kosniowski and Stong and
Lucas Theorem, which will play the important roles in the following sections.

Let (T, M") be a smooth involution on a closed n-manifold and the fixed
point data of (T, M") be u — F = Lyu* — F"*_ In [5], Kosniowski and Stong
gave a formula for the calculation of the Stiefel-Whitney numbers of M" in terms
of the fixed point data u — F = Lixu* — F"*_ That is the following

THEOREM 3.1 (Kosniowski and Stong). If f(xi,...,X,) is any symmetric
polynomial over Z, in n variables of degree at most n, then

f(XI,--.,Xn)[Mn] — Zf(l +y17~1'_[';€1("1'._)(_k;}z)1"~,2n—k) [Fn—k]
k =1 i

where the expressions are evaluated by replacing the elementary symmetric
Sfunctions o;(x), 0,(y), and o,(z) by the Stiefel-Whitney classes w;(M"), w;(u*),
and w;(F"*) respectively, and taking the value of the resulting cohomology class
on the fundamental homology class of M" or F"*.

Besides, in their paper [5], Kosniowski and Stong also obtained the following

PrOPOSITION 3.2. Let Ligu* — F"* be a disjoint union of bundles over
manifolds. A necessary and sufficient condition that the disjoint union is the fixed
point data of an involution (T, M") is that

SA+,2) g
2 Tit sy F=0

for all f of degree less than n.

By Proposition 3.2, it is easy to see the following resulit.

COROLLARY 3.3. Let Uyuk — F"* be a disjoint union of bundles over
manifolds. For some positive integer m, if Upuk @ mR — F"* is the fixed point

data of some involution, then so is Lxu* @ iR — F"* for each i < m.

Given any involution (7, M"), as defined in [1], let ' (M") denote a (n + 1)-
manifold obtained from S! x M" by identifying (z,x) with (—z, Tx), and with
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an involution T; on I''(M") induced by (z,x) — (Z,x). Let (To,I°(M")) =
(T,M"), and let (T,,T*(M™")) be the i-th iteration of (7, M"). Then a sequence
of involutions {(T},T"*(M"))} are constructed. In addition, we also know from
[1] that the normal bundle to the fixed point set of (7,,I''(M")) is

U (1 @ iR — F™*) U (U5 (i — j)R — T/ (M"))

where y — F = Lix(u* — F" %) is the original normal bundle to F in M". The
following lemmas will be used in §5, 6.

LemMMma 3.4 (See [6]). Let u— F = U(u* — F"*) be the fixed data of an
involution (T, M"). Then a necessary and sufficient condition that y ® mR — F is
the fixed data of some involution is that T/(M") bounds for each j < m.

LemMa 3.5. Let (T,M") be an involution and its fixed data be p—
F=gu* — F"*  If u® iR — F is the fixed data of some involution, denoted
by (T',M'), then (T',M') is bordant to (T,,T'(M")).

Proof. First, by using Proposition 3.2, it is easy to show that ujf;é(i — /)R
— I'/(M™)) is still the fixed data of some involution. Next, by [2; Theorem
(23.1)], it immediately follows that I'/(M") bounds for 0 < j <i—1, and thus
Lu* @ iR — F"* is bordant to (Lixu* @ iR — F"~*) U (UZj(i — /)R — T/ (M™)).
Furthermore, by [2; Theorem (25.2)], we obtain that (7', M’) is bordant to
(T,,T*(M™)). This completes the proof. O

For any positive integer /, let E(/) denote a set formed by all ij,...,i, in
2% 4+ ...+ 2= where 2" +--- 4+ 2% is the dyadic decomposition of /. Then we
have

THEOREM 3.6 (Lucas) (see [10]). Let p,q be two positive integers. Then
(‘;) =1 (mod 2) if and only if E(q) < E(p).

§4. The cases in which involutions do not exist

Throughout the following sections, we always suppose that (7, M™+2#5) js
an involution on a closed (m+ 2n+ k)-manifold with fixed point set F =
RP(3)U P(m,n) where m,n>0. Let v— F=v; — RP(3)Uv, — P(m,n) be
the normal bundle of Fin M™%k First, by [2], [9] and [13], we have ®RP(3) =
(1+4a)*=1 and wv; =(14a)" where h is nonnegative integer and ae
H'(RP(3); Z,) is the generator. Let c € H!(P(m,n);Z,) be the generator and let
d € H*(P(m,n); Z,) be the generator, by Lemma 2.1 and Lemma 2.2, it follows
that wP(m,n) = (14 ¢)™(1 +c+d)"" and for m=0,1,3,7 (mod 8) and even
nov;=(1+¢)’(1+c+d)".

Notice that if v; — RP(3) bounds, ie., wvi =1 or (1+a)2, then v; —
RP(3) Uv, — P(m,n) is bordant to v, — P(m,n). By [2; Theorem (25.2)], this
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means that the case F = RP(3) U P(m,n) is identied with the case F = P(m,n).
Here we focus our attention on the case F = RP(3) U P(m,n) with nonbounding
normal bundle v; — RP(3). Hence in the following discussions, we always
suppose that vi — RP(3) does not bound, ie., wvi =1+a or (1+a)’.

Now we begin on discussing the existence of (T, M™+2n+k),

(I) The case y(P(m,n)) =1, where x(.) denotes the Euler characteristic
number.

LeMMA 4.1. There does not exist the involution (T, M™2+k) with
x(P(m,n)) = 1.

Proof. Suppose that (T, M™2+k) exists if y(P(m,n)) = 1. First, by [5;
p. 313, Proposition], we have

X(Mm+2n+k) — )((RP(3)) +X(P(m,n)) =0+1=1.

Hence it immedately follows that m,n,k must be all even. Next, using the fact
(see [5; p. 317, Lemma]) that

ogi(l+y1,.. s 1+ y,21,. ..y Zn—e)
e—p
= ( )ap(yl,...,ye)aq(zl,...,zn_a,
prg<i\}!—P—4

by direct computations, we have

o1(l+ y,z)(vy > RP(3)) =1+a
and

a1(l + y,z)(vy —» P(m,n)) = ec
where ¢ =0 or 1. We proceed as follows:

Case (i) When wvi=1+a, if m=4l+2, taking f(x)= (o1(x))""*-
(degf=m+2=4l4+4 <m+2n+k) and using Theorem 3.1, then we have

0= f(x) [Mm+2n+k]

(0_1(1 +y, Z))41+4 4/+4

(a1(1+ 3,2))

= i+ ) [RP(3)] + o+ [P(4] +2,n)]
444 444
= D re) + & Pt + 2,m)

1+a+a*+a*)[RP(3)]+0
1.

This leads to a contradiction. If m =4/, first it is easy to see that k must be
a positive even. Taking (o(x))™™ of degree less than m +2n+k and using
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Theorem 3.1, we have

4i+4 4l+4
0= 13D trp() + S pa )
=1.

But this is impossible.

Case (i) When wv; = (1 +a)*, if m = 41 + 2 then we choose (o1 (x))™"* and
if m =4l then we choose (oi(x))™"?, as in the case (i), we can obtain the
contradictions and thus the case wv, = (1 +a)® doesn’t exist.

Combining the above discussions, the Lemma thus holds. O

(II) The case x(P(m,n)) =0.

From yx(P(m,n)) =0, we have (m+1)(n+1) =0 (mod2). Therefore, in
the following discussions we divide y(P(m,n)) = 0 into three cases: (i) m is even
and » is odd; (ii) m,n are all odd; (iii) m is odd and n is even.

Notice that when k =0, ie., wv; =1, it is easy to see that (T, Mm+2+k)
with y(P(m,n)) =0 does not exist. Hence here we may assume that k > 0.

LeMMA 4.2. There does not exist the involution (T, M™% for which m is
even and n is odd.

Proof. Suppose that when m is even and n is odd, the involution
(T, M™+2+k) exists. We proceed as follows:

If wv; =1+a, using [5; p. 317, Lemma], then we have

m+2n+k—3>
+a

o1(1 + y,z)(vi —» RP(3)) = ( 1

and

o1+ 3.2)0 = Plmm) = () +20

where ¢ =0 or 1. Consider the following:

m+

(i) When m = 4/ + 2, taking (o1(x) + (¥)) ? of degree less than m + 2n + k

and using Theorem 3.1, we have

4l+4 4l+4
0=(1J1rjrz)a+ [RP(3)]+%;+‘[P(4I+2”1)]=1+0=1'

This means that m = 4/ + 2 is impossible.
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(i) When either m=4/, n>1 or m=4Il, n=1, k> 2, taking (o1(x)+
('1‘) )'”+4, in the same way as the above, we can show that either m =4/, n > 1 or
m=4Il, n=1, k > 2 is impossible.

(i) When m =4I, n =1, k = 1, taking symmetric polynoimal function 1, we
have 1 |
0=——[RP(3 _
1+a[ B+ a1(y)

But this is a contradiction.

[PAL1)]=140=1.

(iv) When m =4/, n—l k=2, if o1v, =0, ie., o1(1 + y,2z)(vy = P(m,n))
( ) = 0, taking (o, (x)) then we can obtain a contradlctlon and thus w;v; =
0 is impossible. Let w;v; =c¢. Using [5; p. 317, Lemma], we have

o(1+ »,2)(vi = RP(3)) =
and
o2(1+ y,z)(va = P41, 1)) = 1 + ¢+ 2 + 02().

Taking (o2(x) + 02(x))* and using Theorem 3.1, it follows that

2
0= 0D a1 LT A gy
=1+ (1 +c+02(y))[P(41,1)]
=140
=1.

But this is a contradiction.

If wvi(1+a)’, in the same way as the case wv; = 1+a, take (o1(x)+
(’f))m+2 we may prove that m = 4/ is impossible; and take (o1 (x) + (] ))m+4 we

may prove that either m =4/+2, n> 1 orm=4/+ 2 n=1, k > 2 is impossible.
When m=4/+2, n=1, and k = 1, taking (a(x))?, we have

@ rp) + WER0D o )

(1+a) 1+a1(y)
=14+ 1+0(»)[P4l+2,1)]
—140
=1.

So this case is impossible. When m =4/+2, n=1, and k =2, since
o2(1+ y,z)(vi — RP(3)) =1 +d?
and
0'2(1 + yyz)(VZ - P(4l’ 1)) =1+ O'1(y) +0'2(y)7
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choose g3(x), it follows that

_ 1+ 1+ 01(y) +a2(»)

0= Taa’ RPG) + 1 O [P(4] +2,1)]
=14 [P4l+2,1)]
=140

=1

This means that the case in which m =4/ + 2, n =1, and k = 2 is still impossible.
Together with the above discussions, we complete the proof of the
Lemma 4.2. O

LEMMA 4.3. There does not exist the involution (T, M™2"+%) for which m,n
are all odd.

Proof. Suppose that when m,n are all odd, the involution (T, M™+2n+k)
exists. Using [5; p. 317, Lemma], we have

) _
m+2n+k 3) ta

a1+ .90 - ke = ("
and

k
71+ 3,9)0n = Plm) = (] ) + e+ 1)
If either wvy=c (ie, o1(1+ p,2)(v2 = P(m,n))= (X)) or m=1, taking

(o1(x) + (’1‘))3 and using Theorem 3.1, then
a® 0
But this is a contradiction. If w;v; =0, by direct computations, we have

m+2n+k—3)+(m+2n+k—4

1 + 3,201 — RPE)= (" e+t

and

k k 1
52(1 + 3,2)(v2 — P(m,n)) = (2) + (1)c+02(y) + (’”J’;’* )cz. @.1)
We proceed as follows:

(i) When o2(p) + (""7*")c? = ec? +d (here =0 or 1) in (4.1) and m # 3,
taking

= s () o (6) (7)o ()
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with deg f =m+2n <m+2n+ k, we have
c"(c+ec? +d)"
_——

S(1+y,2)
0= s [RP(3)] P~ [P(m,n)]
zigilﬁhRP6ﬂ+L
wVi
but
S+ y,2)
F 22 (ke(3)]
@) gp3)i =0, itm=1,5 (mod8) (m#1):
_ WV
(1 + 00" ppay =0, if m=37 (mod8) (m3).
V]

Obviously, this leads to a contradiction.

(ii) When o2(p) + (") c? = ec? +d (here e€ Z5) in (4.1) and m =3, it is
obvious that k¥ must be more than or equal to 2. If k> 2, taking

(crt)+ (’;))3(az(x)+ () (57 ) (o + (,1()))“

of degree less than m + 2n + k, we can obtain the following contrary equation
31 n+1 3 2 n+1
=a( +02(y)) [RP(3)]+C(C+8C +d)
WV wVy
=140
=1.

Note that (’2‘) —+ (2”2+k) =1. For k=2, if wv; = 1+ a, taking (1 +crl(x))4, then
we have the following contrary equation

0 [P(3,n)]

1+a)’ 1+c)*
0=£T1£—WPBH+ 4fn ) [P3,n)]=1+0=1;
1+< 5 >&+aﬂ+d
if wv = (1+a)’, taking (1 4 o1(x))?, then we have
1+ a) 14c¢)?
0= E Y Rp) + — L PG =1+0=1,
(1+a) 1+< 5 >c2+sc2+d

but this is also a contradiction.

(iii) When a3(p) + ("3")c? =&c? in (4.1), if m=1,5 (mod8) (m#1),
taking (o1(1) + ()’ (02(3) + () + (1) (0100 + (5))) + (0100 + () +8(e1()
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+ ('l‘))4, we have
a’oy(y) + a® + ea* c(c+ec?) + ¢ + ect
0= [RP(3)] +

wv] m+n+1
1+ ¢ +ec?

[P(m, n)]

2
— 140
=1.
This is impossible. If m=3,7 (mod8), since ("534 (§) =1, taking

+
s )’ (020 + ) + (7)) (1) + () + (1) + () +e(o1(x) + (),

a*(1+03(y)) + a* + ea’ (RP(3)] + A3e+ec?) 4+ c* +ecd

[P(m,n)]
wv] m+n+1
1+ ( 5 )cz + &c?

0=

=140
= 1.

This contrary equation shows that m = 3,7 (mod 8) is impossible.
Combining the above discussions, the Lemma 4.3 thus holds. O

LEMMA 4.4. There does not exist the involution (T, M *"*%) for which n is
even and m =1 (mod 4).

Proof. Suppose that (T, M™"+k) exists when n is even and m =1
(mod 4). By direct computations, we have

m+2n+k—3)
+a

mﬂ+»ﬂw~RHm:( 1

and

mU+%ﬂWrﬁﬂmmD=<T>+mU)

Taking (oy(x) + (’1‘))3 and using Theorem 3.1, we have
3 3 3
0= ~[RP()]+ ("—;Ele [P(m,n)] = 1 + %ﬁ’;)— [P(m, n)]

and thus (o1(»))*/(wv2)[P(m,n)] = 1. Furthermore, it follows that w;v, = ¢ and
m is more than or equal to 5. Again using [5; p. 317, Lemma], we have

a2(1 + y,z)(vi — RP(3)) = (k;Z) + (k_li_ 1>a+az(y)
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and

42 20— o) = (5 ) + (71 )er o+ nte

We proceed as follows:

(i) If 02(p) + 02(z) =0 in (4.2), taking

(o () (s (5)+ (7 ) 0+ (1))

we can obtain the following contrary equation
a1+ a(y) A3 x0

0————)[RP(3)] +_60;_

o [P(m,n)]=14+0=1.

(i) If 62(y) + 02(z) = ec® +d (here e € Z;) in (4.2), choose

(4 (1)) (o (2) + (1) (e0+ (1))

of degree less than m + 2n + k, we have

0= a™(1+a2(y))" (RP(3)] + c"(ec? +d)”

v vy Plmm] =0+1=1.

This leads to a contradiction.

(i) If o2(p) + 02(2) = ¢? in (4.2), choose

)
o ()17 () o

we have 3 5 3.2, .5
P G YR A Y S it il Sy
v vy

=140
=1,

but this is impossible.
Combining the above discussions, we complete the proof of the Lemma 4.4.
U

Recall that for even n and m =3 (mod 4), wv; = (1 +¢)°(1 +c+d)". Let
2N > max{m,n}, 2™ > m. We have
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LemMa 4.5. Suppose that (T, M™2"*) exists for which n is even, m =3
(mod 4) and wvi =1+a. Then

E(n) c EQN*' —1) and E(m) c EQM 42N 5t —n).

Proof. Choose symmetric polynomial function 1, we have
1
1+¢)'(1 +c+4d)

=1+1 4+ +c+d)? " [P(m,n)]

2N+1 —t 2M+1+2N+1—s—t—n
n m

and thus the result holds by Lucas Theorem. O

1
0= [RPG)] + £ [P(m,m)

In virtue of wvy = (1 +¢)°(1 +c+d)" with even n and m = 3 (mod 4), we
may assume that E(s) = {i|2' <m}, E(t) < {j|2/ < n} because ¢* =0, d” =0 for
x>m, y>n, and (1+¢)* =1, (1+d)* =1 for 2" >m, 2/ >n.

LEMMA 4.6. Let n is even and t is odd. If E(n) = EQN*! —¢), then t < n.

Proof. First, we prove that E(m)NE(f)=® (empty set). Since
EQN* —1)={0,1,...,N}, it follows that each element in E(t— 1) doesn’t
belong to E(2Y¥*! —¢). Hence E(n)NE(t—1)=®. Since ¢ is odd and n is
even, we have E(f) = E(t—1)U{0} and 0¢ E(n). Therefore we can obtain
E(n)NE(t) =®. Next, let u=max{a|lae E(¢)}, v=max{p|fe E(n)}. It is
obvious that u # v since E(n)NE(¢) = ®. Because E(t) = {j|2/ < n}, we have
u<v and thus E(f) « E(2°—1). Furthermore, we have n>2">¢ This
completes the proof. O

LeMMA 4.7. If n is even, n = 3 (mod 4) and wv, = 1 + a, then (T, M"++k)
doesn’t exist except for the following cases: either

(1) ovy=(1+c)* (14+c+d), m=3, n=4+2,4<k <6
or

() wv=1+c+d, m=3, n=4l, 2 <k <44-3
where A = min{a|a > 0 and E(x) = E(2L)}.

Proof. Suppose that (T, M™+2"+k) exists under the condition that » is even,
m =3 (mod4) and wv; =1+a. By direct computations, we have

U](1+y,Z)(V1 __)RP(?’)) _ (m+2n1+k_3> +a
and

o1(1 + y,2)(v2 — P(m,n)) = (llc) +c.
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Taking (o1(x) + (¥))”, then
a™ c”

0=1+amPBH+a+wfu+c+®JﬂmmH

( )]+ (2N+l —l).

By Lemma 4.5, we have a”/(1 + a)[RP(3)] = 1, and thus m must be 3. Since
2n+k—1
o2(1 + y,z)(vi — RP(3) ( >+( n+1 )a

k k—1 n+4
0’2(1+y,2)(V2—>P(3,n))=<2>+< 1 )C+< 2 )62
<s+t> X (t)
+ ¢+ d—+d,
2 1

take (oy(x) + (',‘))3(02(x) +(%))", we may conclude that

@((I)md)
0=—2 [RPO)] + [

l1+a (1+c)’(l+c+d)f

t
=0+<1)—|—1.

and thus ({) =0 is impossible. Let ({) =1, i.e.,, 7 is odd, by Lemma 4.5, we
know that s+ ¢ is odd, and thus s must be even. Furthermore, we can obtain
s =0 or 2 since E(s) = {i]2' <m} and m = 3. On the other hand, since ¢ is odd
and n is even, by Lemma 4.6, we have ¢ < n. Therefore, it follows that the
highest degree term in wv; = (1+¢)’(1+c+d)" is ¢*d' #0, and thus k >

s+ 2t. We proceed as follows:
If (3% + (*}") =1, choose

(04 (D)0 (2) + (1) o+ (1))

by Theorem 3.1, we may obtain a contradiction.

and

P(m,n))

If ("3*) + (*}") =0, we have

oa(l + y,2)(m — RP(3)) = (2":k> 4 (2” +3k_ l)a

and



200 ZHI LU AND XIBO LIU

04(1 +y,Z)(V2 - P(3’n))
k k—1 t . (n+4 s+t
+ c+d+cd+c*+ d*, if = =1;
4 3 2 2 2
k k-1 t n+4 s+t
+ c+d+cd+d*+ az, if = =0.
4 3 2 2 2

Consider the following

(i) When ("1%) = (”’) =1, ie, n=41+2, since E(n)NE(t) =D (see the
proof of Lemma 4.6), it follows that 1 ¢ E(t), ie., (;) =0. Furthermore, from
(*3) =1 we have s=2. If > 1, choose

2
o (1) o (72))

by Theorem 3.1 we have

_ 0 A(1+d)"!
0= [RPOI+ (1+¢)*(1+c+d)

-[P(3,4] +2)]

3
4
—0+m[P(3,4l+2)]
=1

This shows that for ¢ > 1, the involution (7', M7*8+%) doesn’t exist. Hence, in
the next discussions, it suffices to check the following case:

s=2, t=1, m=3, n=4/4+2, k>4

By direct computations, we have

sareall 4 9,2)(n — RP(3)) = (81+4+k> (81—|—3+k>

81+ 6 81+5
and

081+6( + y,z )(vz — P(3 4l+2))

= g¥F2 4 it oM ((k; 1) + (k;4>>czd4l+l

+ terms of degree less than 8/ + 4.
If k> 6, choose
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f(x) =0'31+6(x)<04(x)+ <8l+4+k) N <k_1> <Gl(x)+ (k)))
4 3 1
k 3
X (al(x)-i—(l))

with deg f = 8/ + 13 <m + 2n+ k, since
8l +4+k 8/1+3+k
1 — RP(3)) = 3=
sy = ree) = (V1o )+ (Vg 15 )a) xoxat =0
and
f(l+y,Z)(V2—>P(3,4l+2))
= (d**? + terms of degree less than 8/ + 4)(1 +d)c?,

by Theorem 3.1, then
0
— _— _[RP
0 1+a[ (3)]
+(:3(1 +d)(d**? + terms of degree less than 8/ + 4)
(1+¢)*(1+c+d)

=0+ (c*d**? 4 terms of degree less than 8/ 4 7)[P(3,4] + 2)]

[P(3,4] + 2)]

b

but this is a contradiction.

(ii) When ("}*) = (*3') =0, ie., n=4l, taking

e (3) s () )

by Theorem 3.1, we may obtain that (}) =1 is impossible. Let (}) =0, since
(*3') =0, then s=0. Taking

oo () (o ()

by Theorem 3.1, we may easily show that 7 > 1 is impossible. Now we need
only to check the following case:

s=0, t=1, m=3, n=4I, k>2.
Let A =min{aja >0 and E(x) =< E(2])}. If k+ 3 > 44, taking

(0 (3 +(31) (o= (1))
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and using Theorem 3.1, then

0 (d + cd + d?)*H4
_1+a[RP(3)]Jr l+c+d

=0+ d¥ (1 + c+d)" 1 P(3,40)]

ey ((2’ 2+1 f_‘; 1>d2""(1 + c)“‘l) [P(3,4D)]

21+ 4-1 24 -1
S\ 24-1 3 )
From the definition of A, it is easy to see that 4 = 2' for some i. Therefore we

may conclude that E(3) = {0,1} <« E(24 —1) and
EQ2A—-1)=E(A)UEA4d—-1)cEQNUEA—-1)=EQI+A4-1).

0 [P(3,4])]

Furthermore, by Lucas Theorem, we have

24+A4-1\[24-1Y\ _ i
24 -1 3 -
But this leads to a contradiction.
Combining the above, consequently we complete the proof. O

N%w consider the case in which n is even, m =3 (mod4) and wv, =
(1+a).

LemMma 4.8.  Suppose (T, M™2+k) exists under the condition that n is even,
m=3 (mod4) and wv; = (1 +a)’. Then
E(n) c EQN*! — )
and s+t is odd.

Proof. Choose symmetric polynomial function (o (x) + (’1‘))2, we have

__“ (1(»)"
0= T a? [RP(3)]+(H_C)3(1+c+d),[P(m,n)]

(01())?
(140 +c+d)f [P(m, m)]

and thus (a1(»))?/((1 +¢)*(1 + ¢+ d)")[P(m,n)] = 1. This means that w;v, # 0.
Let w;v; =c. Then we have
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(@1(y)”
1+ +c+d)f

6‘2

= (1 +C)S(1 +C+d)t[P(m’n)]

M+l _g

[P(m,n)]

=21+ (1 + e+ a)" " [P(m,n)]

N+ _y QM+L LN+l _ g4 _p
- n m-—2 ’

and thus the result holds by Lucas Theorem. O

Note that for the case in which 7 is even, m = 3 (mod 4) and wv; = (1 +a)’,
it is easy to see that Lemma 4.6 still holds.

LEMMA 49. If n is even, m=3 (mod4) and wv,=(1+a)’, then
(T, M™+274K) doesn’t exist except for the following cases: either

(I) oy=14+c+d, m=3, n=41+2, 2<k <4
or

(I) wvs = (14¢c) (1 +c+d), m=3, n=4l, 4<k<44—1 where A=
min{oa|e > 0 and E(x) = E(2])}.

Proof. Suppose (T, M™+21+k) ex’;lsts when n is even, m =3 (mod 4) and
wvi = (1+a)’. Choose (a1(x)+ (¥))", it follows that

a™m c”

0= itar RE+ T i v erd)

am 2N+1 —t
= s [RP(3)] +
(1+a) n
— % _[RP(3)]+1 (by Lemma 4.8)
(1+a)
and thus m =2 or 3. Furthermore, we have that m = 3 since m =3 (mod 4).
By direct computations, we have

o>(1 + ,2)(m — RP(3)) = (2”2+k> + (2”+1k_ 1)a+a2

k k-1

n+4 ) s+r\ , t
+ c”+ ¢+ d+d.
2 2 1

7 [P(m,n)]

and
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As in the proof of Lemma 4.7, choose (oy(x)+ (’1‘))3(02(x)+ )", we may
obtain that ({) =0 is impossible. So (j) = 1. Furthermore, by Lemma 4.8 we
have that s must be even, and thus s=0 or 2. Again by Lemma 4.8 and
Lemma 4.6, it follows that 1 <n. Hence k > s+ 2¢t. We proceed as follows:

If (3% + (1) =0, take

(s (D)) (0 ()« (1) (0 (1))

we may conclude that this case is impossible.

If ("{*) + (°*}") = 1, consider
2n+k 2n+k—1
os(1+ y,z)(vi — RP(3)) = + a

4 3
2n+k -2 ) 2n+k—-3 3
+ a” + a
2 1
and
'-74(1 +y,Z)(V2 - P(37n))

k k-1 k k-1 t
( >+( >c+< )cz+d+cd+< >c3+< )dz,
4 3 2 1 2
AN s+er\
ISVRIGUR
(k)+(k—1>c+<k~2>c2+d+cd+<k_3>c3+d2+<t)d2,
4 3 2 1 2
[n+4 ~o s+t _1
il )=o) )=t

1 (ie. n=4I+2) and (*}*) =0, by the proof of Lemma 4.6
we have E(n)NE(t) =®. Thus 1¢ E(f), 1e. (;) =0. Furthermore, since (*}’)
=0, if follows that s =0. If > 1, take

oo (3)) oo (3

it is easy to see that ¢#>1 is impossible. Moreover, it needs to check the
following case:

Now consider the following cases:

When ("er“) =

s=0, t=1, m=3, n=4l+2, k=>2.
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By computations, we have

8/+4+k 81+3+k
0'814—6(1 —|—y,Z)(V1 —>RP(3)) = 8I+6 + 8l+5 ¢

8l +2+k 5 8l+1+k 3
+ a” + a
8/ +4 8/+3
asi+6(1 + p,2)(v2 — P(3,4] + 2))

= g2 gt 4 ((k;1> + (k;2)>c2d‘”+1

+ terms of degree less than 8/ + 4.

If k > 4, take ag16(x) (aa(x) + (7)) + (53D (a1(x) + })) + (537 (o1(x) + (’1‘))2
+ (553 (01(x) + (9))°) (01(x) + (¥)) of degree 8/+ 11 less than m+2n+k, by
Theorem 3.1, then

0

0=, RPO)

k-1 k-2
c(l+c2+d+cd)<d4’+2+cd4’+2+(( 5 )+< 5 )>c2d41+1>

l14+c+d

and

+
x [P(3,4] +2)]

4 c(1+c*+d+cd)(terms of degree less than 8/ + 4)
l4+c+d

x [P(3,4] +2)]

k-1 k-2
c(l+c)(1+c+d)(d4’+2+cd4’+2+(( 5 )+< 5 >>c2d4’+1>

l1+c+d

x [P(3,4] + 2)]
+ c(1+¢)(1+c+d)(terms of degree less than 8/ +4)
l+c+d

=¢(1+¢) <d4’+2 +ed"? ((k; 1) + <k;2>>c2d4’+1>[P(3,4l+2)]

+c(1 + c)(terms of degree less than 8/ + 4)[P(3,4] + 2)]
=1,
but this is a contradiction.

[P(3,4] 4 2))
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When ("3*) =0 (ie. n=4I) and (*}") =1, take

(s (1) (i (5) 1)

it follows that (;) =1 is impossible. Let (;) =0. Since (*}') =1, we have
s=2. If t>1, choose

o (3 o (2))”

then we conclude that this case is impossible. Furthermore, it needs merely to
check the following case:

s=2, t=1, m=3, n=4l, k=4
If k+1>44, choose (o1(x)+ (%) + 1)2(04(x) + &)+ Y (a1 + *)+
(@) + () +(7) (1(x) + (£) ), then we have
0 (1+¢)X(d + cd + d»)*™

0= T+ a [RP(3)] + 040711t d) [P(3,4])]
=04 d* (1 + c+d)*7[P(3,4]))
21+4-1 24 -1

- < 241 ) ( 3 )

We know from the proof of Lemma 4.7 that
(2[+A—1)(2A— 1) _1
24-1 ) 3
Therefore, it follows that k+ 1 > 44 is impossible.
Together with the above discussions, this completes the proof. O

Combining Lemmas 4.1, 4.2, 4.3, 4.4, 4.7, 49, we have

PROPOSITION 4.10.  There doesn’t exist the involution (T, M™+2"+%) such that
vi — RP(3) doesn’t bound except for the following four cases:

(1) ovi=1+a, ova=(1+c)* (A1 +c+d), m=3, n=4l1+2 4<k<6;

() wvy=14a, ova=1+4+c+d, m=3,n=41, 2<k<44-3;

(II) wv; = (1+4a)®, oy =14c+d, m=3, n=41+2 2<k<4

(IV) ov; = (14+4a), ovu=(0+c)*(I+c+d), m=3, n=4l, 4<k<
44 — 1 where A = min{a|a > 0 and E(x) < E(2])}.

Remark 4.1. It should be point out that if # is even and m = 3, even though
vi — RP(3) bounds, we may easily prove that (7, M™+2"+k) doesn’t exist.
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§5. The cases in which involutions exist

In this section, we will prove that those involutions (7, M™*2"+%) of the
four cases stated in Proposition 4.10 must exist. Our main result is stated as
follows:

THEOREM 5.1. Suppose that (T, M™%} is an involution on a closed
(m 4+ 2n + k)-manifold with the fixed point set F = RP(3)U P(m,n) (m,n>0),
and with nonbounding normal bundle to RP(3). Then there only exist those
involutions (T, M™+2+k) satzsfymg the following four cases respectively:

(1) ovi=14a, ov,=(1+c)*(14+c+d), m=3, n=4l+2, 4<k<6;

(II) wv; =1+aq, wvz—1+c+d m=3 n=4l, 2 <k <44 -3;

(III) wv; =(1 —|—a) wvz_l-f-c-l-d m=3 n=4+2, 2<k <4

(IV) ov = (1+a)*, ova = (1 + )(1+c+d) =3, n=4l,4<k<44-
1 where A = min{«|E(a) = E(2/) and o> 0}.

For convenience, in the following proofs, let o;(1+ y,z) =a,,o,(l) =

ai(1 + y,z)(vi — RP(3)), afz) =0i(1 + y,z)(v, — P(m,n)), and o, = 0 means a,(l)
=0, 6@ =0.

As the sake of analogue of proof way, we will only prove the cases (I), (II)
of Theorem 5.1. In fact, the proof method for the cases (I), (II) in Theorem 5.1
is not only the same as that for the cases (III), (IV), but also the involutions of
the cases (I), (II) (i.e., case wv; =1+a) possess completely the analogous
structures as those of the cases (III), (IV), (i.e., cases wv; = (1 +4)*). This is
just seen from the results of Theorem 5.1 and the proofs of Lemmas 4.5, 4.6, 4.7,
4.8, and 4.9.

Recall that & is a 1-plane bundle over P(m,n) and 7 is a 2-plane bundle over
P(m,n) (see §2). Let 1 be a canonical line bundle over RP(3).

Proof of Theorem 5.1 (I). For 4 <k <6, since
1®8/+34+k)R— RPB)U2Dn@® (k—4)R— P(3,4/+2)

is bordant to v3+4Hk  RP(3) U vE — P(3,4] +2) with wv; =1+a and v, =
(1+c)* (1 +c+ d) by Corollary 3.3 and Lemmas 3.4, 3.5 it suffices to show that
the involution (7, M3+12) corresponding to the case k = 5 of Theorem 5.1 (II)
exists, and M3+12 bounds. Moreover, by Theorem 3.1 and Proposition 3.2 it
needs merely to prove that v8+9 — RP(3) Uvy — P(3,4]+2) with wovy =1+a
and wv; = (1+¢)*(1 + ¢+ d) satisfies the following equation

S +yz2) S +y,2) _
" 1+a [RPG)]+ (1-t-c)z(l+c+d)[P(3’41+2)]_0

for all symmetric polynomial f(x) of degree less than or equal to 8/ + 12. For
this, we first compute o, for 0 <i <8/ +12. We proceed as follows.
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Using [5; p. 317, Lemma], it follows that
(1 8/+9 8/+8
o= )tlic)?

0¥ = 6i(z) + (1 + 011 (2) + (¢ + d)oia(2) + (2 + d + ¢*)o,5(2)
+ (14 +d+ Ad)oa(z) + (14 )*(1 + ¢ + d)ai_s(2).
From wP(3,41+2) = (1+¢)*(1 +c+d)*" we have that for 0 < j </,

l . l .
wg;P(3,41+2) = (j)d“f + (, - 1>c2d4f—1, wgi1P(3,41 +2) = (j_ 1)c3d4f-1,

and

wgj42P (3,41 +2) = ( j.)(cl +d)d¥,  wg3P(3,41+2) = (;)cd“f“,
wgj+4P(3,41 +2) = (;)d“f“, wsj+sP(3,41+2) =0,

g6P(3,41+2) = ( j.)d“f'“, 0547P(3,41 +2) = ( jl,)cd“f”.

Note that ws6P(3,4/+2)=0 and wg7P(3,4/+2)=0. Furthermore, by
direct computations, we obtain the following table.

TaABLE 1

(1) (2)
O8h+p O8h+p

p=0| (% (% + (L) A+ c+d)(c+d+cd + c*)a*3

p=1|(NA+a) | (5HA+0)a* + (1)1 +)* (1 +c+d)d¥?

p=210 (L) A+ o)1+ c+d)d*!

p=310 (. )+ o)1+ c+d)d¥!

p=410 (h) 1+c)(1+c+d)d*

p= 0 (V1 +)* (1 +c+d)yd* + (') (e + (A + ¢+ d)d¥!
p=610 A +e+d)d+cd+c?+cd)d¥ + (') (1 +c+d)d*!
p=710 (A +c+d)(c+d+cd)d

Next, we look at the results of o, from the above table. For each o; with
i#0,1 (mod 8), g, possesses the property that a,(l) =0 and aﬁz) always contains a
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factor (1 +c¢+d). Thus for any a symmetric polynomial function f which can
be expressed as a sum of those monomials o;'c;” - - -0, of degree less than or

. I B .
equal to 8/+ 12, if each monomial ¢'¢®--.5" at least contains a elementary

1 1 Iy
symmetric polynomial g, with i #£0,1 (mod 8) as its factors, then it is easy to see

that

UZ'GZZ . ..al‘:r(l + y,2) (RP(3)] + gzlo'gl . .2.0'1‘:’(1 +,2)
(I+a) (14¢)*(1+c+d)

[P(3,414+2)] =0

and thus

S+ y,2)

S+ y,2) _
T [RPG)] + [P(3,4 +2)] = 0.

(1+¢) (1 +c+d)

Fc1>r o, wilth zis 0,1 (mod 8), since 0(11) =14a and 0(12) =1+c¢, it follows that
oy + 01 oy =0 and

l
agl)ﬂ +a§2)a§i) = (h B 1>(1 +c+d)(c+c?+ a3,

In particular, we see that ag,)ﬂ +a§2)a§i) contains the factor (1+ ¢+ d).
Therefore, in further discussions, it needs only to consider o, and og, with
E(h) = E(I+1). Consider any symmetric polynomial function f’ which can be
expressed as a sum of those monomials a{'cy) ag; --- g, of degree less than or
equal to 8/+ 12 where E(h,) < E(I+1) for w=1,...,r. For each monomial
o{ag, Tgj, g, » if u=0 (mod4) then

ai‘aé’,‘,lagflz . aé’;,r(l +,2)
(1+¢)*(1+c+d)

9103, g, - g, (1 + 7, 2)
1+a
a2
1+¢)*(14c+d)
N lower degree’s terms of containing the factor (1 + ¢+ d)
(14¢)?(1+c+d)

[P(3,41+2)]

[RP(3)] +

=1+ [P(3,4] + 2)]

[P(3,4] + 2)]

AT
=1+ 5 [P(3,4/+2)]+0
(I+ce)* (14+c+4d)

( N+l _ ) <2M+1 42N+ _4[+4Z;}=1hw—5)
+

A +2-4%"_hy 3
=0

where 2V > max{3,4/+2}, 2 > 3. If u=1,2,3 (mod4), then
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0‘;‘0’%’;”0';}212 o .O-g;lr(l + y’ Z)
(1+¢)?(1+c+d)

08, Tgh, " T, (1 + 1, 2)
1+a
04 (1 +c)“d42vrv=lh"'
(1+¢)(1+c+d)
v (1 + ¢)“(lower degree’s terms of containing the factor (14 ¢ +d))
(1+¢)’(1+c+d)

[RP(3)] + [P(3,4] + 2)]

[P(3,4] +2)]

x [P(3,4] +2)]
(1+ ¢)“d* 2
TR
2N+ QML L N4l _ 4] 4 AN h, — 54w
(aaemn)( 3 )
=0. (since u=1,2,3 (mod 4))

[P(3,4+2)] +0

So we can still obtain that

f'(+y,2) S+ y,2) _
e RO PGl 2] =0,

Combining the above discussions, we complete the proof. O

Proof of Theorem 5.1 (II). First, it is easy to see that for 2 <k <44 — 3,
the vector bundle 1 ®(8/+k—1)R— RP(B)Un® (k—2)R— P(3,4]) is
bordant to v{* — RP(3) Uvk — P(3,4]) with wvi =1+a and o, =1 +c+d
where R denotes the trivial line bundle. Hence by Corollary 3.3, we need merely
to check the case k =44 — 3 of Theorem 5.1 (II). Let k =44 —3. Now, by
means of Proposition 3.2, we show that vy — RP(3) Uwv, — P(3,4]) with wv; =
1 +a and wv, =1 + ¢ +d is the fixed point data of involution (7, M¥+41), We
proceed as follows:

Step (i). The computation of g, for 0 <i <8/ +44. Using [5; p. 317,
Lemma], we have

W (81+4A—3) (81+4A—4)
o, = . + a

i i—1
and
@ _ (4A—3) @) <4A—4> <4A—5)
0" = ) o4(z) + ¢ ) o4(z) +d . a,4(2).
; i-q )¢ 1%: i-qg—1)71 2;1 i-qg-2)"1
From

wP(3,4]) = (14 ¢)*(1 + c+ )",
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it follows that
wyP(3,4l) = d’, @y 2P(3,4) = d’!,  wy3P(3,4]) = cd’t,
wy+aP(3,41) = *d’™!,  wysP(3,41) = At w,P(3,4]) =0

where E(j) c E(4l), h #2j,2j+2,2j+3,2j+4,2j+5.
Let E(r) c E(4l). First, we compute 0,4, for p <44 — 1. The results are
stated as follows.

TABLE 2

(D 2)
Tortp Tortp

p=8H 1 d'(1+c(1+¢)%d(1 +c+d)), if H#0; d", if H=0 and
EQ2r—44)£E@B); d" + cd™ (1 +¢)* (1 + c+d), if H=0 and
E(2r —44) < E(8]).

p=8H+1 | 1+a | d(l+c+cd+c?d*+c3d?), if H#0; d"(1+¢), if H=0 and
EQ2r—4A4)¢E®8l); (1+c)d" +c*d¥24*1(1 +d + cd), if H=0 and
E(2r—44) < E(8).

p=8H+2|0 d'(c3d +c3d?), if H#0; 0, if H=0 and E(2r — 44) 2 E(81);
3dr241 4 32442 if H =0 and E(2r — 44) = E(8]).

p=8H+3 |0 0

p=8H+4 |1 d'(14cd+d+d?)

p=8H+5 | 1+a | d(1+c+d+d*+c*d+cd?)

p=8H+6| 0 d’(d + c3d + d? + cd* + 2d?)

p=8H+7 |0 d’(d +d*+ cd® + c*d* + 3d?)

Next, we compute g2,4, for p>44. Let
u =min{w|E(2r + 44w) ¢ E(8]) and w > 1}.

When 44 < p <44u—1 (u> 1), since E(2r + 44w) < E(8]) for each w < u — 1,
thus the computation of a3,,, for 44w < p <44 — 1 can be completely iterated
as the computation procedure of the case 0 <p <44 — 1, and results can be
obtain as long as r in the results of Table 2 is replaced by r+ 24w.

When p > 4A4u, if 2r + 44u = 81+ 44, we have og1444 =0. If 2r+44u <
81+ 44, let v =min E(2r + 4A4u), then we have

d'(cd + cd? + 2d? + 3d?), fu=1;

5.1 ran =0y Ohen = {
(5.1) O%rv4du O2r+44u 0, if u>1.
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1 @ dr(c?d + c*d* + 3d?), ifu=1;
(5.2) agr?|—4Au+1 =0, 03 4441 = {0’ fus1
) _ @) _[dr(td+3d?), ifu=1;
(5.3) Osriaaurz = 0s O34 adun = {0, fus1
(54) Or+-4Au+1 = 0, if 3 <I< 2V — 1.

In the next computations, when p exceeds 4A4u+2°—1, since either
EQ2r+44u+2°) c E(8]) or E(2r+4Au+2") ¢ E(8/) always holds, hence
whichever of both happens, we always can iterate the above computation
procedure. In particular, the results of all g, # 0 must belong to those forms
showed in table 2, (5.1), (5.2), (5.3).

Step (ii). From the computation results of all o, (i=0,1,...,8/+44), it is
easy to see that only using o6y,01,04,044, €ach o; (i #0,1,4,44) having the
property g, # 0 can be changed into g, of degree i such that ¢; = 0. This means
that for any symmetric polynomial function f(x) of degree less than or equal to
8/ + 44, f can be generated by o0y,01,04,044. In other words, f can be expressed
as the sum of those expressions o) 0’0 0,,,. Furthermore, we can easily obtain
that for any symmetric polynomial function f(x) of degree less than 8/ -+ 44,

S +y,2) S +y,2)
2 (re(a)) + LEE2D 1p(s ) = o,
and thus v; — RP(3)Uv, — P(3,4]) with wvj=1+a and wv,=1+c+d is
the fixed point data of (7, M®+*4) by Proposition 3.2. This completes the
proof. O

§6. The representative of involution up to bordism

In this section, we discuss the representatives up to bordism of those in-
volutions stated in Theorem 5.1.

LeEMMA 6.1. There exists an involution G on P(3,n+ 1) such that the fixed
point set of (G,P(3,n+1)) is RP(3) U P(3,n).

Proof. First, setting an involution g on S3 x CP(n+ 1) by
g: ((XO,X],X2,X3), (207217 s aZn)) - ((anx17x2ax3)’ (_207zla e 1Zn))-

It is obvious that the fixed point set of (g,S° x CP(n+1)) is S x CP(0)U
S3 x CP(n). Next, we can at once obtain an involution G on P(3,n+1)
induced by (g,8% x CP(n+1)), and easily see that the fixed point set of
(G,P(3,n+1)) is exactly RP(3)U P(3,n). This completes the proof. O

By the Theorem 5.1, Remark 4.1 and Lemma 3.5, it immediately follows
that
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THEOREM 6.2. (i) The involution (T, M3*8+%) stated in Theorem 5.1 (1) is
bordant to (Gy_2, T*"2(P(3,41 + 1)) where 2 <k <44 — 3.

(i) The involution (T, MT*8+k) stated in Theorem 5.1 (IIl) is bordant to
(Gr_2, T*2(P(3,41 + 3))) where 2 <k < 4.

As for the representatives up to bordism of those involutions stated in
Theorem 5.1 (I), (IV), we have done many tries, but nothing conclusive.
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