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INVOLUTIONS FIXING THE DISJOINT UNION OF 3-REAL

PROJECTIVE SPACE WITH DOLD MANIFOLD*

ZHI Lϋ AND XIBO Liu

Abstract

In this paper, we determine the existence of all involutions fixing a disjoint union of

3-real projective space RP(3) with Dold manifold under the condition that the normal

bundle to RP(3) does not bound, and also study the representatives up to bordism of

those involutions which exist.

§1. Introduction

Let (Γ, M) be an involution on a closed manifold, and let F denote the fixed
point set of (Γ, M). When F is chosen as

{pt} U Sm, RP(2k), RP(m) U RP(n), URP{21 + 1) (/ fixed),

uf=1Jϋ>(2/,+ l), UjL1(S'1)*',

and (Sm x S"2 x x Sn*) LJ {pt}, respectively, the existence and the represen-
tative (up to bordism) of (7\Af) have been studied in [2], [11], [9], [13], [4], [12]
and [8]. The purpose of this paper is to determine the existence and the repre-
sentative up to bordism of all involutions fixing a disjoint union RP(3) U P(m,n),
where P(m,ή) is the Dold manifold of dimension m + 2n obtained from the
product Sm x CP(n) of the ra-sphere with the ^-dimensional complex projective
space by identifying (x,z) with (—x,z) (here (x, z) e Sm x CP{ή)). For this
purpose, we first study the vector bundle over Dold manifold so that we can
begin with our discussion on the existence of all involutions. The main method
will be a formula given by Kosniowski and Stong in [5], and Lucas Theorem [10]
will also be used. By setting an involution on Dold manifold P(3,n+ 1), we
partially give the representatives up to bordism of those involutions which exist.
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In particular, we will see that the case F = RP(3) U P(m, ή) possesses more
complicated structure than those cases in [2], [4], [8], [9], [11], [12] and [13].

Throughout this paper, the coefficient group is Z2. Let ω be the total
Stiefel-Whitney class and ω, the z-th Stiefel-Whitney class. Let [N] denote the
fundamental homology class of manifold N. Let σz(x) denote the z-th ele-
mentary symmetric function Σx\"'Xt.

The authors wish to express their gratitude to Professors Takashi Tsuboi,
Zhende Wu, and Zongze Liu for their helps and encouragements during the
preparation of this work, and also to the referee for his valuable suggestions.

§2. The total Stiefel-Whitney class of vector bundle over Dold manifold
P(m,n)

Following the notation of [14], let ξ be a 1-plane bundle over P(m,n) and
η a 2-plane bundle over P(rn,n). Let ceHx(P(m,ri)\Z2) be the generator and
d G H2(P(m,n)\Z2) the generator. Then ωξ = 1 + c, ωη = 1 + c + d, ξ®ξ=l,
ξ®η = η (see [14; Proposition (1.4)]).

LEMMA 2.1. Let τ be the tangant bundle over P(m,n). Then ωτ —
(1 +c)m(l + c + d)n+\ also denoted by ωP(m,n).

Proof. From [14; Theorem (1.5)] we know

τ θ < ? Θ 2 = ( / f ! + l ) f 0(/i+l>7.

Hence it immediately follows that ωτ = (1 + c)m{\ + c + d)n+ι. •

Let φ{ϊ) = the number of integers e with 0 < e < I and e = 0,1,2,4 (mod 8).

LEMMA 2.2. Let λ be any a vector bundle over P(myn). If n is even and
m = 0,1,3,7 (mod 8), then

ωλ={\+c)s{\+c + dy

where s and t are nonnegative integers.

Proof. Let oc = ξ— 1, β = η — 2, γ = β — α. According to [3; Theorem 5],
when n is even and m = 0,1,3,7 (mod 8), we know that K0(P(m,n)) is
isomorphic to Z2φim) + Znl2 generated by α,y,}>2,... ,y"/2 such that 2 ^ α = 0,
α2 = —2α and ay = 0. Therefore it suffices to compute ωξ and ω(η® ®η)

p

for all p > 0. Using the formula in [7; p. 87] and ωη = 1 + c + d, by direct
computions, we can obtain that

/ x /-. X2 2 7 - 1

ω{η ® - - - ® η) = (1 + c)
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and

2 2 /

ω(η ® ®η) = (\+c\d)
2/+1

Again since ωξ = 1 + c, it follows that ωλ can be as stated. •

§3. A formula and Lucas Theorem

In this section, we review a formula given by Kosniowski and Stong and
Lucas Theorem, which will play the important roles in the following sections.

Let (T,Mn) be a smooth involution on a closed ^-manifold and the fixed
point data of (Γ, Mn) be μ -» F = Ukμ

k -> Fn~k. In [5], Kosniowski and Stong
gave a formula for the calculation of the Stiefel-Whitney numbers of Mn in terms
of the fixed point data μ —̂  F = \Λkμk —> Fn~k. That is the following

THEOREM 3.1 (Kosniowski and Stong). If f(x\,... ,xn) is any symmetric
polynomial over Z2 in n variables of degree at most n, then

f(Xλ v ) \Mn] - V

where the expressions are evaluated by replacing the elementary symmetric
functions (Ti(x), <fi(y), and O[{z) by the Stiefel-Whitney classes cθi(Mn), cθi(μk),
and (ύi(Fn~k) respectively , and taking the value of the resulting cohomology class
on the fundamental homology class of Mn or Fn~k.

Besides, in their paper [5], Kosniowski and Stong also obtained the following

PROPOSITION 3.2. Let \Λ^μk —•> Fn~k be a disjoint union of bundles over
manifolds. A necessary and sufficient condition that the disjoint union is the fixed
point data of an involution (T,Mn) is that

for all f of degree less than n.

By Proposition 3.2, it is easy to see the following result.

COROLLARY 3.3. Let \Jjcμ
k —> Fn~k be a disjoint union of bundles over

manifolds. For some positive integer m, if Ukμk 0 mR —> Fn~k is the fixed point
data of some involution, then so is Ukμk © iR —> Fn~k for each i < m.

Given any involution (Γ,M W ), as defined in [1], let Tx{Mn) denote a (n + 1)-
manifold obtained from Sι x Mn by identifying (z, x) with (—z,Tx), and with
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an involution Tλ on Γι(Mn) induced by (z,x) -> (z,x). Let (Γ 0 ,Γ°(M n )) =
(7\M r t ), and let (Γ^Γ^M")) be the i-th iteration of (Γ,M W ) . Then a sequence
of involutions {(Tt,Γ

ι(Mn))} are constructed. In addition, we also know from
[1] that the normal bundle to the fixed point set of (Γ ί 5 Γ'(M w )) is

Uk(μk © iR - Fn~k) U (u£(i - j)R -> TJ{Mn))

where μ—>F = Uk{μk — Fn~k) is the original normal bundle to F in Mn. The
following lemmas will be used in §§5, 6.

LEMMA 3.4 (See [6]). Let μ^F = Uk(μk -> Fn~k) be the fixed data of an
involution (Γ, Mn). Then a necessary and sufficient condition that μ © mR —» i 7 w

°f some involution is that TJ(Mn) bounds for each j < m.

LEMMA 3.5. Let (Γ, Mn) be an involution and its fixed data be μ —>
F — Ukμk —• Fn~k. If μ®iR^> F is the fixed data of some involution, denoted
by (Tf,Mf), then (T',Mf) is bordant to (TnΓ(Mn)).

Proof First, by using Proposition 3.2, it is easy to show that Uj~l(i — j)R
—> ΓJ(Mn)) is still the fixed data of some involution. Next, by [2; Theorem
(23.1)], it immediately follows that ΓJ(Mn) bounds for 0 < j < i - 1, and thus
Ukμ

k Θ iR -* Fn~k is bordant to (Ukμ
k 0 iR -> Fn~k) U (UJQ}(I - 7 ) ^ ^ Γ^(MW)).

Furthermore, by [2; Theorem (25.2)], we obtain that (T',Mf) is bordant to
(TnΓ

ι(Mn)). This completes the proof. •

For any positive integer /, let E(l) denote a set formed by all i\,..., zα in
21 1 H h 2 I α, where 21 1 H f- 2 I α is the dyadic decomposit ion of /. T h e n we
have

©
THEOREM 3.6 (Lucas) (see [10]). Let p,q be two positive integers. Then
= 1 (mod 2) if and only if E{q) a E(p).

§4. The cases in which involutions do not exist

Throughout the following sections, we always suppose that (τ^Mm+2n+k) is
an involution on a closed (m + In + k) -manifold with fixed point set F =
RP(3) U P(m, n) where m,n>0. Let v -> F = v\ -> ΛP(3) U v2 -> P(m, /ι) be
the normal bundle of F i n Mm+2n+k. First, by [2], [9] and [13], we have ωRP(3) =
(l+a)4 = \ and ωv\ = (l+a)h where h is nonnegative integer and ae
Hι(RP(3);Z2) is the generator. Let c e Hx(P(m,ri)\Z2) be the generator and let
d e H2(P(m,n)]Z2) be the generator, by Lemma 2.1 and Lemma 2.2, it follows
that ωP(m, ή) = (1 + c) m ( l + c + d ) w + 1 and for m = 0,1,3,7 (mod 8) and even

Notice that if vi -> RP(3) bounds, i.e., ωv\ = I or (1-fα) 2 , then vi —>
JRP(3) U v2 -> P(/W,Λ) is bordant to v2 -^ P{m,n). By [2; Theorem (25.2)], this
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means that the case F = RP(3) UP(m,n) is identied with the case F = P(m,ή).
Here we focus our attention on the case F = RP(3) \JP(m,ri) with nonbounding
normal bundle vi —>RP(3). Hence in the following discussions, we always
suppose t h a t v\ —> R P ( 3 ) does not bound, i.e., ωv\ — l+a or ( 1 + α ) 3 .

Now we begin on discussing the existence of (T,Mm+2n+k).
(I) The case χ(P(m,ri)) = l, where χ(.) denotes the Euler characteristic

number.

LEMMA 4.1. There does not exist the involution (τ,Mm+2n+k) with

Proof. Suppose that (T,Mm+2n+k) exists if χ(P(m,n)) = 1. First, by [5;
p. 313, Proposition], we have

χ{Mm+2n+k) = χ{RP{3)) +χ{P(rn,n)) = 0 + 1 = 1.

Hence it immedately follows that m,n,k must be all even. Next, using the fact
(see [5; p. 317, Lemma]) that

by direct computations, we have

σi(l + ;F,z

and

σi(l + y,z)(v2 -> P(ηt,n)) = εc

where ε = 0 or 1. We proceed as follows:

Case (i) When ωvγ = l+a, if m = 4/ + 2, taking f(x) = (σx(x))m+1

(deg/ = rn + 2 = 4l + A<m + 2n + k) and using Theorem 3.1, then we have

0 = f(x)[Mm+2n+k]

l l ) J

= 1.

This leads to a contradiction. If m = 41, first it is easy to see that k must be
a positive even. Taking {σ\{x))m+4 of degree less than m + 2n + k and using
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Theorem 3.1, we have

( \4l+4

= 1.

But this is impossible.

Case (ii) When ωv\ = (1 + a)3, if m = 4/ + 2 then we choose (σi(x))m+4 and
if m = 4l then we choose (σi(x))m+2, as in the case (i), we can obtain the
contradictions and thus the case ωvi = (1 + α)3 doesn't exist.

Combining the above discussions, the Lemma thus holds. •

(II) The case χ(P(m,n)) = 0.

From χ(P(m,ή))=0, we have ( m + l ) ( w + l ) s O (mod 2). Therefore, in
the following discussions we divide χ(P(m,n)) = 0 into three cases: (i) m is even
and n is odd; (ii) m,n are all odd; (iii) m is odd and n is even.

Notice that when k = 0, i.e., ωv2 = 1, it is easy to see that {T,Mm+ln+k)
with χ(P(m,ή)) = 0 does not exist. Hence here we may assume that k > 0.

LEMMA 4.2. There does not exist the involution (τ^Mm+2n+k) for which m is
even and n is odd.

Proof. Suppose that when m is even and n is odd, the involution
(T,Mm+2n+k) exists. We proceed as follows:

If ωvi = 1+0, using [5; p. 317, Lemma], then we have

and

where ε = 0 or 1. Consider the following:

(i) When m = 4/ + 2, taking (σ\(x) + (^))m+ of degree less than m + In +
and using Theorem 3.1, we have

,/i)] = 1 + 0 = 1.
COV2

This means that m = 4/ + 2 is impossible.
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(ii) W h e n e i t h e r m = 41, n>\ o r m = 4l, n — \ , k > 2, t a k i n g (σ\(x) +
(^))w+4, in the same way as the above, we can show that either m = 4/, n > 1 or
m = 41, n = 1, k > 2 is impossible.

(iii) When m = 4l, n= I, k = I, taking symmetric polynoimal function 1, we
have

But this is a contradiction.

(iv) When m = 41, n = 1, k = 2, if ω\v2 = 0, i.e., σi(l + y,z)(v2 -> P{rn,ή))
= (fy = 0, taking (σi(x))4/, then we can obtain a contradiction, and thus ω\v2 =
0 is impossible. Let ω\v2 = c. Using [5; p. 317, Lemma], we have

and
<72(1 + y,z)(v2 -* P(4/, 1)) = 1 + c 4- c2

Taking (σ2(x) + σ2(x))2 and using Theorem 3.1, it follows that

= 1.

But this is a contradiction.

If ωv\(\+aγ, in the same way as the case ωv\ = l+a, take (σ\(x) +
w e m a y P r o v e t n a t m — 4/ is impossible; and take (σ\(x) + (^))m , we

may prove that either rn = 41 + 2, n> 1 or m — 41 -\- 2, n = I, k > 2 is impossible.
When m = 4l + 2, n=l, and k—\, taking (σ\(x))2, we have

= 1 + 0

= 1.

So this case is impossible. When m = 4/ + 2, « = 1, and k = 2, since

and

σ2(l
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choose σ2(x), it follows that

0 = - ^ 3 [*P(3)] + 1 + g ' y + a * y [P(4l + 2,1)]
(1+α)3 l++σi(j)+σ 2(>') 1 V 7J

= 1 + [P(4/ + 2,1)]

= 1+0

1

This means that the case in which m = 4/ + 2, n = 1, and A: = 2 is still impossible.
Together with the above discussions, we complete the proof of the

Lemma 4.2. •

LEMMA 4.3. There does not exist the involution (T', Mm+2n+k) for which m,n
are all odd.

Proof Suppose that when m,n are all odd, the involution (T,Mm+2n+k)
exists. Using [5; p. 317, Lemma], we have

and

K J +c + σι(y).

If either ω\v2 = c (i.e., σ\(l + y,z)(v2 -> P(m,ή)) = (^)) or m = 1, taking

(σ\(x) + (^)) and using Theorem 3.1, then

0 = — [ Λ P ( 3 ) ] + — [ P ( / W , Λ ) ] = 1 + 0 = 1 .

But this is a contradiction. If ωjV2 = 0, by direct computations, we have

and

<T2(l + 7 , z ) ( v 2 - J P K « ) ) = Q ) + ^ ) c + < 7 2 ( J ) + ( m +

2

M + 1 ) c 2 . (4.1)

We proceed as follows:

(i) When σ2(y) + (m +

2

n + 1)c 2 = εc2 + rf (here e = 0 or 1) in (4.1) and m Φ 3,
taking
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with deg / = m + 2n < m + 2n + k, we have

V-Ll[RP{3)] + l,

but
f(i + y,z)

ωvi
[RP(3)]

ωv\
•[RPCi)] = 0 , if m = 1,5 (mod 8) (m Φ 1);

= 0 , if m = 3,7 (mod 8) (m # 3).

Obviously, this leads to a contradiction.

(ii) When σ2(y) + (m +

2

w + 1)c2 = εc2 + d (here ε e Z2) in (4.1) and m = 3, it is
obvious that k must be more than or equal to 2. If k > 2, taking

V k-\ 1

of degree less than m + 2Λ + /:, we can obtain the following contrary equation

= 1+0
1

Note that (k

2) + (2n+k) = 1. For ĉ = 2, if
we have the following contrary equation

= 1 + a, taking (1 + σ{(x))\ then

l R m ] +

V 2 )

if ωvi = (1 +α) 3 , taking (1 +σi(x))2, then we have

»)] = 1 + 0 = 1 ,

but this is also a contradiction.

(iii) When σ2{y) + (m +

2"+ 1)c2 = εc2 in (4.1), if m = 1,5 (mod 8) (m # 1),
2 3taking (σ,W + + © + + (?))) + +
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(*))+ (*)) , we have

[Rp{3)] + <{c+ 8*)+ <? + «

( m + n + 1 \0 [Rp{3)] +

cov\ ( m + n + 1
1 + \c2 + ec2

\ 2 )

= 1 + 0

= 1.

This is impossible. If m = 3,7 (mod 8), since (m+2"+ f c-3) + (*) = 1, taking

(σ,(*) + (ί))3(σ2(x) + (*) 4

we have
cHc + ec) + c + eS

ί m + n + 1 \cov\ ί m + n + 1 \
1 + ]c2 + εc2

v 2

This contrary equation shows that m = 3,7 (mod 8) is impossible.
Combining the above discussions, the Lemma 4.3 thus holds. •

LEMMA 4.4. There does not exist the involution (T', Mm+2n+k) for which n is
even and m = 1 (mod 4).

/ Suppose that (τ^Mm+2n+k) exists when n is even and m ΞΞ
(mod 4). By direct computations, we have

— 3

J + α
and

σi(1 + y,z)(v2 ^ Aw,«)) = ( j J + σι(y).

Taking (σι(x) + (*)) and using Theorem 3.1, we have

and thus (σι(y)γ/(ωv2)[P(m,n)} = 1. Furthermore, it follows that ω\v2 = c and
m is more than or equal to 5. Again using [5; p. 317, Lemma], we have
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and

(4.2) σ2(l + j , z ) ( v 2 ^ P ( m ^ ) )

We proceed as follows:

(i) If σ2(y) + σ2(z) = 0 in (4.2), taking

we can obtain the following contrary equation

W , ) ]

(ii) If (72(y) + σ2(z) = εc2 + d (here ε e Z2) in (4.2), choose

of degree less than m + In + k, we have

0 = ̂  + σ ^ " [ R P m +

 C W ( £ C 2 + J ) " [/>(»,,»)] = 0 + 1 = 1.

This leads to a contradiction.

(iii) If σ2(y) +σ2(z) = c2 in (4.2), choose

we have
q 3 ( 1 + σ 2 ( j ) ) + ΰ5 ^ ^

ωv2

= 1 + 0

= 1,

but this is impossible.
Combining the above discussions, we complete the proof of the Lemma 4.4.

D

Recall that for even n and m = 3 (mod 4), ωv2 = (1 + c)s(l + c + </)'• Let
2^ > max{m,«}, 2 M > m. We have
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LEMMA 4.5. Suppose that (τ^Mm+2n+k) exists for which n is even, m = 3
(mod 4) and ωv\ = 1 + a. Then

-ί) and φ)c£(2 M + 1 +2^ + 1 -s-t-n).

Proof. Choose symmetric polynomial function 1, we have

= 1 + (1 + c)lM+l-\\ + c + d)2N+l-'[P(m, n))

- t\ ίlM+x + 2N+ι - s - t - n

and thus the result holds by Lucas Theorem. •

In virtue of ωv2 = (1 + c)s(l + c + d)t with even n and m = 3 (mod 4), we

may assume that E(s) a {i\2ι < m}, E(ή c {y^ 7 < n} because cx = 0, dy = 0 for

x > m , j ; > n, and (1 + c)v = 1, (1 + J ) 2 ' = 1 for 2ι > m, V > n.

LEMMA 4.6. Let n is even and t is odd. If E(n) <= E(2N+ι - t), then t < n.

Proof First, we prove that E{ή) Π E{t) = Φ (empty set). Since
E(2N+ι - 1) = {0,1,...,7V}, it follows that each element in E(t- I) doesn't
belong to E(2N+ι - t). Hence E(n)ΠE(t- 1) = Φ. Since t is odd and n is
even, we have E{t) — E(t — 1) U {0} and 0φE(ή). Therefore we can obtain
E(n) (Ί E(ή = Φ. Next, let u = max{α|α e E(ή}, v = max{β\β e E(ή)}. It is
obvious that uΦv since E(n) Γ\E(t) = Φ. Because E(t) <= {j\2J < n}, we have
u < v and thus E{t) a E(2V - 1). Furthermore, we have n > 2V > t. This
completes the proof. •

LEMMA 4.7. Ifn is even, n = 3 (mod 4) and ωv\ = 1 + a, then (Γ, Mm+2n+k)
doesn't exist except for the following cases: either

(I) ωv2 = (1 + c)2{\ +c + d),m = 3, n = 4l + 2, 4<k<6;
or

(II) ωv2 = 1 + c + J, m = 3, « = 4/, 2 < & < 4^ - 3
where A — min{α|α > 0 and E(ot) a E(2L)}.

Proof Suppose that (τ^Mm+2n+k) exists under the condition that n is even,
m = 3 (mod 4) and ωv\ — 1 + a. By direct computations, we have

1

and



INVOLUTIONS FIXING THE DISJOINT UNION OF 3-REAL PROJECTIVE SPACE 199

Taking (σι(x) + (\))m, then

2N+ι-t

„
By Lemma 4.5, we have amj{\ +a)[RP(3)] = 1, and thus m must be 3. Since

and

) ) = ( J + ( U+i 2

take (σi(x) + (^)) (σ2(x) + (2)) ? w e m a Y conclude that

and thus (J) = 0 is impossible. Let (() = 1, i.e., t is odd, by Lemma 4.5, we
know that s + Ms odd, and thus s must be even. Furthermore, we can obtain
s = 0 or 2 since E(s) a {ί\V < m} and m = 3. On the other hand, since t is odd
and n is even, by Lemma 4.6, we have ί < n. Therefore, it follows that the
highest degree term in ωv2 = (1 + c)s(l + c + d)% is csdι φ 0, and thus /: >
s + 2ί. We proceed as follows:

If C+4) + (5+0 = 1, choose

by Theorem 3.1, we may obtain a contradiction.

If ("+4) + (*+') = 0, we have

and
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Consider the following

(i) When (w+4) = (*+') - 1, i.e., Λ = 4/ + 2, since £(/i)Π£(ί) = Φ (see the
proof of Lemma 4.6), it follows that 1 φ E(ή, i.e., Q) = 0. Furthermore, from
(5+') = 1 we have s = 2. If / > 1, choose

by Theorem 3.1 we have

0 = - 5 - [î P(3)] + £ ! ( 1 ± ^ [ p ( 3 4 /

l + a L J ( l ) 2 ( l rf)/L V

= 1.

This shows that for t > 1, the involution (Γ, Λf7+8/+/:) doesn't exist. Hence, in
the next discussions, it suffices to check the following case:

s = 2, ί = 1, w = 3, π = 4/ + 2, A:>4.

By direct computations, we have

and

= d4l+2 + cd4l+2 + c 3 c 4 / + 1 +((k~l\ + (k~4X\ c2d4l+ι

+ terms of degree less than 8/ + 4.

If k > 6, choose
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with deg/ = 8/ + 13 < m + In + k, since

and

= (</4/+2 + terms of degree less than 8/ + 4)(l -f d)c\

by Theorem 3.1, then

c 3(l +</)0/ 4 / + 2 + terms of degree less than 8/+ 4)

= 0 + (c3d4l+2 + terms of degree less than 8/ + 7)[P(3,4/ + 2)]

= 1,

but this is a contradiction.

(ii) When ("+4) = (*+') = 0, i.e., n - 4/, taking

by Theorem 3.1, we may obtain that (j) = 1 is impossible. Let Q) = 0, since
f+') = 0, then s = 0. Taking

by Theorem 3.1, we may easily show that t > 1 is impossible. Now we need
only to check the following case:

,5 = 0, f = l , m = 3, « = 4/, λ : > 2 .

Let ^ = min{α|α > 0 and E(oc) c ^(2/)}. If jfc + 3 > 4A, taking
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and using Theorem 3.1, then

= 0 + d2l+A(\ +c + d)2l+Λ-ι[P{3,41)}

_ A-\\f2A-\\

V 2^-1 )[ 3 I
From the definition of A, it is easy to see that A = 2ι for some /. Therefore we
may conclude that E(3) = {0,1} c E(2A - 1) and

E(1A -l)= E{A) UE(A-\)^ E{21) UE(A-l)= E{11 + ^ - 1).

Furthermore, by Lucas Theorem, we have

2A-1

But this leads to a contradiction.
Combining the above, consequently we complete the proof. •

Now consider the case in which n is even, m = 3 (mod 4) and

af.
LEMMA 4.8. Suppose (T,Mm+2n+k) exists under the condition that n is even,

1

E(n) <= E{2N+X - t)

m = 3 (mod 4) and ωv\ = (1 + a)3. Then

and s + t is odd.

Proof. Choose symmetric polynomial function (σi (x) + (*)) , we have

and thus (σi(j/))2/((l + c ) 5 ( l H- c + dY)[P(m,n)] = 1. This means that ωλv2 Φ 0.
Let ω\\2 = c. Then we have
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c2

/2N+ι-t\(2M+ι+2N+1-s-t-n\

= { n )[ m-2 y
and thus the result holds by Lucas Theorem. •

Note that for the case in which n is even, m = 3 (mod 4) and ωv\ — (1 + a)3,
it is easy to see that Lemma 4.6 still holds.

LEMMA 4.9. If n is even, m = 3 (mod 4) and ωv\ = (l+a)3, then
(71, Mm+2n+k) doesn't exist except for the following cases: either

(I) ωV2 = 1 + c + d, m = 3, n = 4/ + 2, 2 < Jt < 4;
or

(Π) ω V 2 = (1 +c) 2 ( l + c + J), m = 3, « = 4/, 4<k<4A-l where A =
min{α|α > 0 and E{a) a E(2l)}.

Proof Suppose (τ^Mm+2nJrk) exists when n is even, m = 3 (mod 4) and
ωv\ = (1 + α ) 3 . Choose (σ\(x) + (^))m, it follows that

[RP(3)] + 1 (by Lemma 4.8)

and thus m = 2 or 3. Furthermore, we have that m = 3 since m = 3 (mod 4).
By direct computations, we have

and

I 2

f + \ . ίs + t\ . /1\
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As in the proof of Lemma 4.7, choose (σ\(x) + (k

ι)) (σ2(x) + {%))", we may
obtain that (|) = 0 is impossible. So ({) = 1. Furthermore, by Lemma 4.8 we
have that s must be even, and thus s = 0 or 2. Again by Lemma 4.8 and
Lemma 4.6, it follows that t < n. Hence k > s + It. We proceed as follows:

If (w+4) + (*+') - 0, take

we may conclude that this case is impossible.

If (»+4) + (*H) = l 5 consider

ί2n \

(2n + k-2\ . f2n + k-3

and

Now consider the following cases:

When (n\A) = 1 (i.e. n = 4/ + 2) and (*+') = 0, by the proof of Lemma 4.6
we have E(n)ΠE(ή = Φ. Thus 1 φE(t), i.e. Q) = 0 . Furthermore, since (SJ')
= 0, if follows that j = 0. If t > 1, take

σ ι { x ) + [ ι
it is easy to see that t > 1 is impossible. Moreover, it needs to check the
following case:

s = 0, ί = l , m = 3, « = 4/+ 2, A: > 2.
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By computations, we have

/8/ + 4 + ΛΛ /8/ + 3 + AΛ

( 8,+6 j + ( 8;+5 y
(%l + 2 + k\ . (

+ \a 2 +\
\̂  8/ + 4 V 8/

and

+ terms of degree less than 8/ + 4.

If k > 4, take σu+6(x)(σ4(x) + (8/+

4

4+*) + (V)(" i W + (*)) + {kf){ox{x) + (\)f

+ (kγ)(σι(x) + (k

ι)γ)(σι(x) + (k

ι)) of degree 8/+11 less than m + 2n + k, by
Theorem 3.1, then

cd) ίd4l+2

1 + c + rf
x [P(3,4/ + 2)]

c{\ + c2 + d + cJ)(terms of degree less than 8/ + 4)

1 +c + d

x [P(3,4/ + 2)]

( 4/+2 4/+2 f ^ " M ί^"2^
c ( i + c ) ( i + c + rf)^ + +grf + + ^ 2 j + ^ 2 y

1 + c + ί/
x [P(3,4/ + 2)]

c( l+ c)(l+ c + ί/)(terms of degree less than 8/ + 4)
+ 1 + c + J [ ( 3 ' l + )J

+ c(l + c)(terms of degree less than 8/ + 4)[P(3,4/

= 1,
but this is a contradiction.
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When ("+4) = 0 (i.e. n = 41) and (*+') = 1, take

AΛλ

it follows that Q) = 1 is impossible. Let Q) = 0. Since (s^') = 1, we have
5 = 2. If ί > 1, choose

then we conclude that this case is impossible. Furthermore, it needs merely to
check the following case:

= 2, ί = l , m = 3, n = 4l, k>4.

l) 2 (σ 4 (x) +

. t h e n w e

If k + l>4A, choose (*,(*) + (*) + l)2(σ4(x) + (*) + (VX^W + (*))+

0

= 0 + ί/ 2 Λ M (l + c

/2/ + ^ - l \ /2A-l\
= V 2 ^ - 1 JV 3 /'

We know from the proof of Lemma 4.7 that

A-l\/2A-l

)\2A-1 )\
_

Therefore, it follows that k -f 1 > AA is impossible.
Together with the above discussions, this completes the proof. •

Combining Lemmas 4.1, 4.2, 4.3, 4.4, 4.7, 4.9, we have

PROPOSITION 4.10. There doesn't exist the involution (τ^Mm+2n+k) such that
v\ —> RP(3) doesn't bound except for the following four cases:

(I) ωvi = 1 + Λ, ωv2 = (1 + c) 2(l + c + d), m = 3, w = 4/ + 2, 4 < fc < 6;
(II) ωvi = 1 + α, ωv2 = 1 + c + rf, m = 3, n = 4/, 2 < A: < 4^ - 3;

3(III) ωvi = (1 + α) 3 , ωv2 = 1 + c + rf, m = 3, « = 4/ + 2, 2 < A: < 4;
3 2(IV) ωvi = (1+tf) 3 , ω v 2 - (1 + c ) 2 ( l + c +rf), m = 3, Λ = 4/, 4 < k <

4A - 1 where A — min{α|α > 0 and E(a) a E(2l)}.

Remark 4.1. It should be point out that if n is even and m = 3, even though
vi —> RP(3) bounds, we may easily prove that (τ^Mm+2n+k) doesn't exist.



INVOLUTIONS FIXING THE DISJOINT UNION OF 3-REAL PROJECTIVE SPACE 2 0 7

§5. The cases in which involutions exist

In this section, we will prove that those involutions (τ,Mm+2n+k) of the
four cases stated in Proposition 4.10 must exist. Our main result is stated as
follows:

THEOREM 5.1. Suppose that (τ>>M
m+ln+k) is an involution on a closed

(m + 2n + k)-manifold with the fixed point set F = RP{3) U P(m,ή) (m,n > 0),
and with nonboundίng normal bundle to RP{3). Then there only exist those
involutions (τ,Mm+2n+k) satisfying the following four cases respectively:

(I) ωvi = 1 + a, ωv2 = (1 + c) 2(l + c + d), m = 3, n = 4/ + 2, 4 < k < 6;
(II) ωvi = 1 + a, ωv2 = \+c + d, m = 3, n = 41, 2 < k < AA - 3;
(III) ωvi = (1 + a)3, ωv2 = l+c + d, m = 3, n = 4/ + 2, 2 < k < 4;
(IV) ωvi = (1 + a)\ ωv2 = (1 + c) 2(l + c + d\ m = 3, n = 41, 4 < k < AA -

1 where A = min{α|£(α) c E(2l) and α > 0}.

For convenience, in the following proofs, let σz (l + j , z ) = σ , , ^ =

σ, (l + ^,z)(vi -^ ilP(3)), σ|2) = σ / ( l + ^z)(v 2 -^ P(/W,Λ)), and σ, = 0 means σz

(1)

= 0, σί2) = 0.
As the sake of analogue of proof way, we will only prove the cases (I), (II)

of Theorem 5.1. In fact, the proof method for the cases (I), (II) in Theorem 5.1
is not only the same as that for the cases (III), (IV), but also the involutions of
the cases (I), (II) (i.e., case ωvi = l + Λ ) possess completely the analogous
structures as those of the cases (III), (IV), (i.e., cases ωvi = (1 +aγ). This is
just seen from the results of Theorem 5.1 and the proofs of Lemmas 4.5, 4.6, 4.7,
4.8, and 4.9.

Recall that ξ is a 1-plane bundle over P(m,n) and η is a 2-plane bundle over
P(m,n) (see §2). Let / be a canonical line bundle over RP(3).

Proof of Theorem 5.1 (I). For 4 < k < 6, since

i 0 (8/ -f 3 + k)R -> RP{3) U2ξ®η®(k-A)R^ P(3,4/ + 2)

is bordant to v\M+k -> RP(3) U vk -> P(3,4/ + 2) with ωvλ = 1 + a and ωv2 =
(1 + c) 2(l + c + d), by Corollary 3.3 and Lemmas 3.4, 3.5 it suffices to show that
the involution (Γ, M 8 / + 1 2 ) corresponding to the case k = 5 of Theorem 5.1 (II)
exists, and M 8 / + 1 2 bounds. Moreover, by Theorem 3.1 and Proposition 3.2 it
needs merely to prove that vf+9 -> RP(3) U v | -> P(3,4/ + 2) with ωvi = 1 + α
and ωv2 = (1 -h c) 2(l + c-\- d) satisfies the following equation

lA [RPm + Λ\+y>*) [ P ( 3 ) 4 / + 2 ) ] = o
β (l + )2(l + + J ) 1 n

for all symmetric polynomial f(x) of degree less than or equal to 8/+ 12. For
this, we first compute σ, for 0 < i < 8/ + 12. We proceed as follows.
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Using [5; p. 317, Lemma], it follows that

and

σ(2) = σ,{z)

/ - 1

(c2 + d)σ,.2(z)

+ (1 + c2 + d + c2d)σ^A{z) + (1 + c)2(l + c + d)σ,s(z).

From ωP(3,4/ + 2) = (1 + c)3(l + c + ί/)4/+3 we have that for 0 < j < /,

d4i-\ ωSj+ιP(3,4l + 2)

. co 8 y + 3 J P(3,4/

,4/ + 2 ) = Γ'Λ dAj+2, ωSj+5P(3,4/ + 2) = 0,

2) = (Jα>8,+6P(3,4/ + 2) = ( j

Note that ω8/+6i'(3,4/ + 2) = 0 and <ϋ8/+7i>(3,41 + 2) = 0. Furthermore, by
direct computations, we obtain the following table.

TABLE 1

p = 0

p=\

p = 2

p = 3

p = 4

p = 5

p = 6

p = Ί

σ8h+p

(ΐ)
(/t1)(i+^)

0

0

0

0

0

0

(ϊ+h)dAh + (h[x){\+c + d){c + d + cd + c*)dAh-*

C+'Xl + c)d4h + ( ^ ( l + c)2(l + c + d)d4h~2

{hίι)(l+c)(\+c + d)d4h-1

{h

ι_ι)(\+c)(\+c + d)d4h-1

(;h){\+c)(\+c+d)d*h

(ih)(l+c)2(\+c + d)d*h + (h^)(c2 + ci)(l+c + d)d*h-'

(ι

h){\ + c + </)(*/ + cJ + c2 + c3)d4h + (Λ^)c 3 ( l + c + ί/Jί/4*"1

(^)(l+c + ί/)(c2 + ί/ + cί/)ί/4A

Next, we look at the results of σ, from the above table. For each σ, with
/ # 0,1 (mod 8), σι possesses the property that σ\ ' — 0 and σ) ' always contains a
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factor (1 Λ-c + d). Thus for any a symmetric polynomial function / which can
be expressed as a sum of those monomials σ^ σζ2 σ^ of degree less than or
equal to 8/+ 12, if each monomial σ"xσ% --σ?r

r at least contains a elementary
symmetric polynomial σι with / #0,1 (mod 8) as its factors, then it is easy to see
that

(\+c)2(l+c + d)

and thus

f{\ + y>z) [RP(3)] + f i \ + y ' z ) [P(3,4/ + 2)] = 0.

For σ, with / = 0,1 (mod 8), since σ[ = 1 + a and σ, = 1 + c, it follows that

In particular, we see that % i + σ i ^ A contains the factor ( 1 + c + rf).
Therefore, in further discussions, it needs only to consider σ\ and σ%h with
E{h) c= £*(/+ 1). Consider any symmetric polynomial function / ' which can be
expressed as a sum of those monomials ofσ^σg^ σ%hr of degree less than or
equal to 8/ + 12 where E(hw) <= ̂ (Z + 1 ) for w = 1,..., r. For each monomial

« S i • σk> i f M Ξ ° ( m o d 4) t h e n

• σl'h (1 + y,z) σί'σί! σS • σϊ'h (1 + y, z)
[ R m ] + ' ' "» ^ " ' [P(3,4/ + 2)]

(l + c) (l + c + d)

= 1 + d

 2 [P(3,4/ + 2)]

lower degree's terms of containing the factor (1 + c + d) ΐn

[JP(3,4/

~ 1 + U / + 2 - 4 Σ ; = 1 Λ J V 3

= 0

where 2N > max{3,4/ + 2}, 2M > 3. If « = 1,2,3 (mod 4), then
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= ( 1 + C ) ^ Σ : ^ Ί

( l + c ) 2 ( l + c + J ) 1

(1 +c)"(lower degree's terms of containing the factor (1 + c + d))

x[P(3,4/

= 0. (since M = 1,2,3 (mod 4))

So we can still obtain that

> 4 /

Combining the above discussions, we complete the proof. •

Proof of Theorem 5.1 (II). First, it is easy to see that for 2 < k < 4A - 3,
the vector bundle i ® (8/ + k - l)R -> RP(3) Uη®(k-2)R-> P(3,4/) is
bordant to vf/+/: -> RP(3) U v | ^ P(3,4/) with ωvi = 1 + a and ωv2 = 1 + c + d
where i^ denotes the trivial line bundle. Hence by Corollary 3.3, we need merely
to check the case k = 4A — 3 of Theorem 5.1 (II). Let k = 4A — 3. Now, by
means of Proposition 3.2, we show that vi —» RP(3) U V2 —• P(3,4/) with ωvi =
1 + a and ωv2 = 1 + c + J is the fixed point data of involution (Γ, Msι+4A). We
proceed as follows:

STEP (i). The computation of σt for 0 < i ' < 8 / + 4Λ. Using [5; p. 317,
Lemma], we have

and

4A-4

From
,4/) = (1 + c) 3(l
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it follows that

ω2y P(3,41) = rfΛ ω2y+2P(3,41) = d^λ, ω^ + 3P(3,4/) = c ^ + 1 ,

ω2y + 4P(3,4/) = c V + 1 , ω2 y + 5P(3,4/) = c*d>+\ ωAP(3,4/) = 0

where £(y) c £(4/), h Φ 2/, 2/ + 2,2/ + 3,2; + 4,2/ + 5.

Let E(r) <= E(4l). First, we compute σ2r+/? for /? < 4A — 1. The results are
stated as follows.

TABLE 2

p = 8H

p = SH+l

p = SH + 2

p = W + 3

p = SH + 4

p = %H + 5

p = SH + 6

p = SH + Ί

1

0

0

1

\+a

0

0

dr(\ + c(l + c)V(l + c + ί/)), if # ^ 0; ί/r, if H = 0 and
£(2r-4i4)££(8/); dr + cdr~2A+ι(l + c)3(l + c +d), if H = 0 and
E{2r-4A) czE(Sl).

dr(\ +c + c2d + c2d2 + cV2), if H Φ 0; ί/r(l + c), if ^ = 0 and
^(2r - 4A) <£E{&1); (1 + c)Jr + c2d2r-2A+ι (1 + ί/ 4- cJ), if AT = 0 and
£(2r-4Λ)c=£(8/).

dr(c3d + c3d2), if i / / 0 ; 0, if # = 0 and E(2r-4A)<£E(Sl);

c3dr-2A+ι + cidr-2A+2^ if H = 0 and ̂ (2r - 4A) cz £ (8/).

0

Jr(l+cί/ + J + ί/2)

dr{\ +c + d + d2 + c2d + cd2)

dr{d + c*d + d2 + cd2 + c2d2)

dr(d + d2 + cd2 + c2ί/2 + c3d2)

Next, we compute σ2r+/> for p > 4A. Let

u = min{w|£'(2r + 4^w) <£ E(Sl) and w > 1}.

When 4A< p < 4Au -I (u> 1), since E(2r + 4^w) c £(8/) for each w < w - 1,
thus the computation of σ2r+/> for 4Aw < p < 4A — 1 can be completely iterated
as the computation procedure of the case 0 <p < 4A - 1, and results can be
obtain as long as r in the results of Table 2 is replaced by r + 2A w.

When p > 4Au, if 2r + 4Au = 8/4- 4,4, we have σ8/+4Λ = ° I f 2r

8/ + 4Λ, let ι; = minJ£'(2r + 4^w), then we have

(5.1)
0, if M > 1.
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_ 0 (2) _ (d'(i) _ 0 (2) _ (d'(c2d + c*d2 + c*d2)9 if i ι = l ;
U σ 1 if U > 1

Ji) _ o JΆ _ ( ( + ), if i ι = l ;
σ2r+4Au+2 ~ w> σ2r+4ΛM+2 ~ | Q if W > 1

(5.4) <72τf4̂ +/ = 0, i f 3 < / < 2 y - l .

In the next computations, when p exceeds 4Au + 2v — 1, since either
E(2r + 4Au + 2v) <= £(8/) or £(2r + 4^w + 2y) £ £(8/) always holds, hence
whichever of both happens, we always can iterate the above computation
procedure. In particular, the results of all σt φ 0 must belong to those forms
showed in table 2, (5.1), (5.2), (5.3).

STEP (ii). From the computation results of all σt (i = 0,1, . . . , 8/ + 4A), it is
easy to see that only using cro,σi,σ4,σ4^, each σ, (i φ 0,1,4,4.4) having the
property σt φ 0 can be changed into σ[ of degree / such that σ[ = 0. This means
that for any symmetric polynomial function f(x) of degree less than or equal to
8/ + 4A, /can be generated by σo,σi,σ4,σ^A- In other words, /can be expressed
as the sum of those expressions σι

o

ισ\2σι^σι^A. Furthermore, we can easily obtain
that for any symmetric polynomial function f(x) of degree less than 8/ + 4A,

and thus vi —> RP(3) U V2 —>• P(3,4/) with ωv\ = 1 + a and ωv2 = 1 + c + d is
the fixed point data of (T,M*ι+4A) by Proposition 3.2. This completes the
proof. •

§6. The representative of involution up to bordism

In this section, we discuss the representatives up to bordism of those in-
volutions stated in Theorem 5.1.

LEMMA 6.1. There exists an involution G on P(3,«+ 1) such that the fixed
point set of ( G , P ( 3 , Λ + 1)) is RP{3) UP(3,/i).

Proof. First, setting an involution g on S3 x CP(n + 1) by

It is obvious that the fixed point set of (g,S3 x CP(n+l)) is S 3 x CP(0)U
S3 x CP(n). Next, we can at once obtain an involution G on P(3,«+l)
induced by (g, S3 x CP(« + 1)), and easily see that the fixed point set of
(G,P(3,/!+l)) is exactly ΛP(3) U?(3,w). This completes the proof. •

By the Theorem 5.1, Remark 4.1 and Lemma 3.5, it immediately follows
that
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THEOREM 6.2. (i) The involution (T,M3+*M) stated in Theorem 5.1 (II) is
bordant to (G*_2,Γ

k~2(P(3,4l + 1))) where 2<k<4A-3.

(ii) The involution (T,Mη+*ι+k) stated in Theorem 5.1 (III) is bordant to
^ 2 where 2<k<4.

As for the representatives up to bordism of those involutions stated in
Theorem 5.1 (I), (IV), we have done many tries, but nothing conclusive.
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