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UNICITY THEOREMS FOR MEROMORPHIC FUNCTIONS

AMER H. H. AL-KHALADI*

Abstract

This paper studies the problem of uniqueness of meromorphic functions. In this

paper we will improve a result given by K. Tohge.

§1. Introduction

By a "meromorphic function" we will mean a meromorphic function in the
complex plane. It is assumed that the reader is familiar with the notations of
the Nevanlinna theory that can be found, for instance, in [2] or [4]. L e t / a n d g
be two non-constant meromorphic functions and a be a value in the extended
complex plane. We say that / and g share a value a IM (ignoring multiplicity),
i f /and g have the same ^/-points, and also they share the value a CM (counting
multiplicity), i f/and g have the same ^-points with the same multiplicity. Let k
be a positive integer or oo, we denote by Ek^{a,f) the set of α-points of/with
multiplicity <k (ignoring multiplicity), by Λ^)(r, \/(f — άj) the counting function
of ^-points of / with multiplicity <k and by iV(2(r, l / ( / - a)) the counting
function of α-points o f/wi th multiplicity > 2 (See [4]). Finally we say a is a
Picard exceptional value of / if f(z) φ a.

In [3] K. Tohge proved the following:

THEOREM 1. Let f and g be non-constant meromorphic functions that share
three values 0,1, oo CM and f\gf share 0 CM. Then f and g satisfy one of the
following:

(ϋ)

(iii)

(1-1) (iv)
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(v) / = eg,

(vi) /-l=φ-l),

(vii) [(c-ί)f+l][(c-l)g-c] = -c,

where c (^0,1) is a constant.

In this paper, we prove the following theorem which is an improvement of
Theorem 1.

THEOREM 2. Let f and g be non-constant meromorphic functions that share
two values 0, oo CM and f',g' share the value 0 IM. If E^(l,f) = Ejή{l,g),
where k is a positive integer or oo, then f and g satisfy one of the identities in (1.1).

§2. Some lemmas

LEMMA 1 (See [4]). Let f and g be distinct non-constant entire functions and
a\, #2 ctre distinct finite complex numbers. If a\ is a Picard exceptional value of
f g and / g share the value a2 CM, then f = ea + a\ and g = (a\ — a2)2e~a + a\,
where α is a non-constant entire function.

LEMMA 2 (See [4]). Let f and g be distinct non-constant meromorphic
functions and a\,a2 be distinct finite complex numbers. If a\,a2 we Picard
exceptional values of / g and / g share the value oo CM, then

_ a\e* - a*ι _ a\e~a - a2

} g
< , « _ ! ' » e-'-ί '

where a is a non-constant entire function.

LEMMA 3 (See [1]). Let f and g be non-constant meromorphic functions that
share three values 0,1, oo CM. If f is a Mόbius transformation of g, then f and g
satisfy one of the identities in (1.1).

Proof Suppose /' ψ g. Since / is a Mobius transformation of g,

(2.i) *=<τrrr
where α, b, c, d are finite complex numbers and ad — be φ 0. There are three
cases.

CASE I. If oo is a Picard exceptional value of/ then there are four subcases.
1. If 1 and 0 are Picard exceptional values of/ then this case is impossible

due to the second fundamental theorem.
2. If 1 and 0 are not Picard exceptional values of/ then from (2.1) we get

6 = 0, c + d = a and hence (2.1) becomes
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(2.2) cfg + dg = (c + d)f.

Since b = 0 and from ad — be φ 0 we find ad φQ and hence (2.2) becomes

(2.3) μ

where A = a/d φ 0. If A = ], then from (2.3) we find / = g. This is a
contradiction. Therefore A φ\. Thus from (2.3) we find [(̂ 4 — 1 ) / + 1 ] •
[{A — l)g — A] = -A, which is (vii).

3. If 0 is a Picard exceptional value o f / a n d 1 is not a Picard exceptional
value of/ then by Lemma 1 we find / = e* and g = e~a. From this we find
fg = 1, which is (ii).

4. If 1 is a Picard exceptional value o f / a n d 0 is not a Picard exceptional
value of/ then by Lemma 1 we find / = e* + 1 and g = e~a + 1. From this we
find (/ - \)(g - 1) ΞΞ 1, which is (iii).

CASE II. If 0 is a Picard exceptional value of/ then there are two subcases.
1. If oo and 1 are not Picard exceptional values of/ then from (2.1) we

find c = 0 and a + b = d. Again by (2.1) we get / — 1 = A(g - 1) where
A (Φ 0,1) is a constant, which is (vi).

2. If 1 is a Picard exceptional value o f/and oo is not a Picard exceptional
value of/ then by Lemma 2 we find / = - l / ( e α - 1) and g = - l/(e~ α - 1).
From this we find / + g = 1, which is (iv).

CASE III. If 1 is a Picard exceptional value of/ then there is only one
subcase: If 0, oo are not Picard exceptional values of/ then by (2.1) we find
b = c = 0 and hence (2.1) becomes / = Ag, which is (v). •

§3. Proof of Theorem 2

From the conditions of Theorem 2 we find

(3-1) f = e*g,

where α is an entire function. If ea = c, where c is a nonzero constant, then
from this and (3.1) we deduce (v). We now suppose ea is non-constant and
hence a1 φ 0. Again from (3.1) we have

(3.2) ff = gfe* + gotfe*.

Let ZQ be a zero for / ; of order p>l, then the Taylor expansion of / ;

about zo is

(3.3) / / ( z ) = ^ ( z - z 0 ) / 7 + , apΦ0.

Since / ; and g1 share the value 0 IM, therefore

(3.4) gt(z)=bq(z-zo)q + '-, bqΦ0.
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Without loss of generality, we can assume that p < q. From (3.2), (3.3) and
(3.4) we find

g(z)a'{z) = (z - zo)
p[ape-« - bq(z - zo)

q~p + 0{z - z0)].

From this we find either α'(z0) = 0 or g(z0) = 0. If g(z0) = 0 then p = q. Thus
we find

(3.5)

where Λ^(r,0) denotes the counting function of zeros of / ' and gf with same
multiplicity, each zero being counted only once. Similarly with respect to gf we
find

(3.6)

Let z\ be a zero for / - 1 of order p > 2. Then z\ is also a zero for / ' and
hence for g'. From (3.2) we find α'(zi) = 0 . From this we find

(3.7) N(2(r,jX^j < N(r,^ < T(r,a') + 0(1) < S(r,f)+S(r,g).

Similarly with respect to g we find

(3.8) # ( 2 ^ r ) _ I _ ) = S(r,f) + S(r,g).

We denote by N^(r, 1) the counting function of common simple 1-points of/
and g. Noting Ek)(\,f) = Ek^(l,g), from (3.7) and (3.8), we have

(3.9)

and

(3.10)

Set

From the fundamental estimate of logarithmic derivative it follows that

(3.12) m(r,Δ1) = S(r,/) + 5(r, f f).

From (3.11) we find
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(3.13) N(r,A{) <N(r,yΛ - Λ^(r,0) + ̂ K Λ ) - ^ ( r , 0 ) .

From (3.5), (3.6), (3.12) and (3.13) we find

(3.14) T{r,Δχ) = S(rJ) + S(r,g).

Let Zoo be a simple pole of/, then from (3.11) we find

(3.15) Δ1(zo o) = 0.

If Δi = 0, then from (3.11) we find

(3.16) f = a g + b,

where a (φ 0), b are constants. If b — 0, then from (3.16) we deduce (v). We
now suppose b φ 0. Since Ek^(l,f) = 5 ^ ( 1 , ̂ f), therefore, if Nk^(r, l / ( / — 1)) ^
0, then from (3.16) we find a + b = 1. From this and (3.16) we deduce (vi). We
now suppose

/ 1 \ / 1 \
ΞΞO.

From (3.1) and (3.16) we find

, α i Q x , , ( * - l ) ^ + α - t

(3.18) / - 1 = ^ ί a n d g - l =
v } J e « a u

g

From this and (3.17) we find b = 1 and a = — 1. From this and (3.18) we deduce
(iv). We now suppose Δi # 0 . From (3.14) and (3.15) we find

(3.19) N{)(rJ) < N(T^ < Π ^ ) + 0(1) < S(rJ) + S(r,g).

Set

From the fundamental estimate of logarithmic derivative it follows that

(3.21) m(r,A2) = S(r,f) + S(r,g).

From (3.9), (3.10), (3.20) and (3.21) we find

(3.22) T(r,A2) = S(r,f)+S(r,g).

Let Z'OQ be a pole for / of order p>2. Then from (3.20) we find

(3.23) A2(z'J = 0.

If Δ2 = 0, then from (3.20) we find
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<3,4,

where c is a nonzero constant. From this it is easy to see / and g share the value
1 CM. And hence from (3.24) and Lemma 3 we find/and g satisfy one of the
identities in (1.1). We now suppose Δ2 # 0 . From (3.22) and (3.23) we find

(3.25) N{2(rJ) < 2 # i r,— 1 < 2Γ(r,Δ2) + 0(1) < S(r,f) + S(r,g).

From (3.19) and (3.25) we find

(3.26) N(rJ) = S{rJ)+S(r,g).

Set

C\ Ίl\ A-, — 9 ^ ^ -X-Ί®

/ J 9 9

Similar to the above, from (3.5), (3.6) and (3.27) it is easy to see that

(3.28) Γ ( r , Δ 3 ) = S ( r , / ) + S(r,0).

Let z0 be a simple zero of/. Then from (3.27) we find

(3.29) Δ 3 ( z 0 ) = 0 .

If Δ3 = 0, then from (3.27) we easily arrive at that/and g satisfy one of identities
in (1.1). We now suppose Δ3 ̂  0. Then from (3.28) and (3.29) we find

(3.30) Nι)(r,jj=S(r,f) + S(r,g).

Set

(3.31) Δ 4 = - ί - g—.

Again by a similar way as the above, we find from (3.9), (3.10) and (3.31) that

(3.32) Γ(r,Δ4) = S(r,/) + S(r,0).

Let ZQ be a zero for / of order p > 2. Then from (3.31) we find

(3.33) Δ4(4) = 0.

If Δ4 = 0, then from (3.31) we easily arrive at that / and g satisfy one of the
identities in (1.1). We now suppose Δ4 φ 0. Then from (3.32) and (3.33) we
find

(3.34) N

And hence from (3.30) and (3.34) we find
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(3.35) N(T,

Set

(3.36) Δ5 =y-2yzrj-^ + 2-zri-

Similar to the above we find from (3.5), (3.6), (3.9), (3.10) and (3.26) that

(3.37) T(r,Δ5) = S(r,f) + S(r,g).

Let z\ be a common simple 1-point o f / a n d g. Then from (3.36) we find

(3.38) Δ 5 ( z ! ) = 0 .

If Δ5 = 0, then from (3.36) we easily arrive at that / and g satisfy one of the
identities in (1.1). We now suppose Δ5 ψ 0. Then from (3.37) and (3.38), we
find

1 X < Γ ( r , Δ 5 ) + O(l)

From this and (3.9), we have

(3-39)

Similarly, we get

(3.40)

Thus from (3.26), (3.35), (3.39), (3.40) and the second fundamental theorem for/
and g we find

r,g)<2N(r,j)+N(rr

this is impossible. And so the proof of Theorem 2 is finished. •
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