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UNICITY THEOREMS FOR MEROMORPHIC FUNCTIONS
AMeErR H. H. AL-KHALADI*

Abstract

This paper studies the problem of umqueness of meromorphic functions. In this
paper we will improve a result given by K. Tohge.

§1. Introduction

By a “meromorphic function” we will mean a meromorphic function in the
complex plane. It is assumed that the reader is familiar with the notations of
the Nevanlinna theory that can be found, for instance, in [2] or [4]. Let fand g
be two non-constant meromorphic functions and a be a value in the extended
complex plane. We say that f and g share a value a IM (ignoring multiplicity),
if fand g have the same a-points, and also they share the value « CM (counting
multiplicity), if f and g have the same a-points with the same multiplicity. Let &
be a positive integer or oo, we denote by Ey(a, f) the set of a-points of f with
multiplicity <k (ignoring multiplicity), by Ny(r,1/(f — a)) the counting function
of a-points of f with multiplicity <k and by Np(r,1/(f —a)) the counting
function of a-points of f with multiplicity >2 (See [4]). Finally we say a is a
Picard exceptional value of f, if f(z) # a.

In [3] K. Tohge proved the following:

THEOREM 1. Let f and g be non-constant meromorphic functions that share
three values 0,1,00 CM and f',g' share 0 CM. Then f and g satisfy one of the
following:

B f=g9

(i) fg=1,

(i) (f-Dg-1)=1,
(1.1) (iv) f+g=1,
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(v) [f=gqy,
(Vi) f-l=c(g-1),
(vii) [(c=1Df +1][(c=1)g—c]=—c,

where ¢ (#0,1) is a constant.

In this paper, we prove the following theorem which is an improvement of
Theorem 1.

THEOREM 2. Let f and g be non-constant meromorphic functions that share
two values 0,00 CM and f',g' share the value 0 IM. If Ex(1,f) = Ey(1,9),
where k is a positive integer or oo, then f and g satisfy one of the identities in (1.1).

§2. Some lemmas

LemMa 1 (See [4]). Let f and g be distinct non-constant entire functions and
ay,ay are distinct finite complex numbers. If ay is a Picard exceptional value of
f.g and f,g share the value a, CM, then f = e* +ay and g = (a1 — a2)*e™ + ay,
where o is a non-constant entire function.

LemMMA 2 (See [4]). Let f and g be distinct non-constant meromorphic
functions and ay,ay be distinct finite complex numbers. If ay,a, are Picard
exceptional values of f,g and f,g share the value co CM, then

ae* — a ae™* —a
f - e — 1 I g - e — 1 ’

where o is a non-constant entire function.

LemMa 3 (See [1]). Let f and g be non-constant meromorphic functions that
share three values 0,1,00 CM. If f is a Mobius transformation of g, then f and g
satisfy one of the identities in (1.1).

Proof. Suppose f #£g. Since fis a Mobius transformation of g,

_af+b
g—cf+d’

where a,b,c,d are finite complex numbers and ad — bc # 0. There are three
cases.

Case I. If oo is a Picard exceptional value of f, then there are four subcases.

1. If 1 and O are Picard exceptional values of f, then this case is impossible
due to the second fundamental theorem.

2. If 1 and 0 are not Picard exceptional values of f, then from (2.1) we get
b=0, c+d=a and hence (2.1) becomes

(2.1)
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(2.2) cfg+dg=(c+d)f.
Since b =0 and from ad — bc # 0 we find ad # 0 and hence (2.2) becomes
(2.3) A-Dfg—Af+g=0,

where A =a/d #0. If A=1, then from (2.3) we find f=g. This is a
contradiction. Therefore A4 # 1. Thus from (2.3) we find [(4A—-1)f+1]-
[(4—1)g — A] = —A4, which is (vii).

3. If 0 is a Picard exceptional value of f and 1 is not a Picard exceptional
value of f, then by Lemma 1 we find f =e* and g =e™®. From this we find
fg =1, which is (ii).

4. 1If 1 is a Picard exceptional value of f and 0 is not a Picard exceptional
value of f, then by Lemma 1 we find f =e*+ 1 and g=e"*+ 1. From this we
find (f —1)(g — 1) = 1, which is (iii).

Case II.  If 0 is a Picard exceptional value of f, then there are two subcases.

1. If oo and 1 are not Picard exceptional values of f, then from (2.1) we
find ¢=0 and a+b=d. Again by (2.1) we get f—1=A(g—1) where
A (#0,1) is a constant, which is (vi).

2. 1If 1 is a Picard exceptional value of f and oo is not a Picard exceptional
value of f, then by Lemma 2 we find f=—1/(e*—1) and g=—1/(e™*—1).
From this we find f+g =1, which is (iv).

Case III. If 1 is a Picard exceptional value of f, then there is only one
subcase: If 0,00 are not Picard exceptional values of f, then by (2.1) we find
b=c¢=0 and hence (2.1) becomes f = Ag, which is (v). O

§3. Proof of Theorem 2
From the conditions of Theorem 2 we find
(3.1) f=e%,

where o is an entire function. If e¢* = ¢, where ¢ is a nonzero constant, then
from this and (3.1) we deduce (v). We now suppose e* is non-constant and
hence o' #0. Again from (3.1) we have

(3.2) fl=g'e* +ga'e”.

Let zo be a zero for f' of order p > 1, then the Taylor expansion of f’
about z; is

(3.3) @) =ay(z—z0)P +---, a, #0.
Since /' and g’ share the value 0 IM, therefore

(3.4) g'(z) = bg(z—z0)"+---, by #0.
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Without loss of generality, we can assume that p <g¢. From (3.2), (3.3) and
(3.4) we find

9(2)(2) = (z — 20) laye™ = by(z — 20)77 + Oz — 20)}.

From this we find either a'(z9) = 0 or g(zp) =0. If g(z9) =0 then p =¢. Thus
we find

(3.5) ]V(r,;}—,) — Ng(r,0) < N(r,%) < T(r,a')+0(1) < S(r, f) + S(r,9),

where Nj(r,0) denotes the counting function of zeros of f’ and g’ with same
multiplicity, each zero being counted only once. Similarly with respect to g’ we
find

(3.6) N(r,%) — Ng(r,0) = S(r, f) + S(r,9).

Let z; be a zero for f — 1 of order p > 2. Then z; is also a zero for f’ and
hence for g’. From (3.2) we find o'(z;) =0. From this we find

67 Ne(nyty) <8(ng) < 700+ 00) £ 50,0+ 50,9)

Similarly with respect to g we find

63) Na(n=g) =500+ S.0)

We denote by Ny(r, 1) the counting function of common simple 1-points of f
and g. Noting Ey(1,f) = Ey(1,9), from (3.7) and (3.8), we have

(39) F(rtg) = o) = S0 + (),
and
(3.10) N(r’g—y_i—l> — Ny(r, 1) =8(r, f) + S(r, 9).

Set

"o

(3.11) Alzl;—,—‘c;—:.
From the fundamental estimate of logarithmic derivative it follows that
(3.12) m(r,Ay) = S(r, f) + S(r,9).

From (3.11) we find
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(3.13) N(r,A) < N(r,}l—,) — Ng(r,0) + ]V(r,é) — Ng(r,0).
From (3.5), (3.6), (3.12) and (3.13) we find

(3.14) T(r,A) =S(r,f)+ S(rg).

Let z,, be a simple pole of f, then from (3.11) we find

(3.15) Ai(zw) = 0.

If Ay =0, then from (3.11) we find

(3.16) f=ag+b,

where a (#0), b are constants. If b =0, then from (3.16) we deduce (v). We
now suppose b # 0. Since Ey(1, f) = Ey(1,9), therefore, if Nyy(r,1/(f — 1)) #
0, then from (3.16) we find a+ b = 1. From this and (3.16) we deduce (vi). We
Now suppose

— 1 — 1
(317) Nk)<r,——f—-_-—l—) =Nk)<r,g_ 1) =0.
From (3.1) and (3.16) we find
L _(b-1)e*+a o, _atb—e"
(3.18) f-1 B and g—1= — g

From this and (3.17) we find b =1 and @ = —1. From this and (3.18) we deduce
(iv). We now suppose A; #0. From (3.14) and (3.15) we find

(3.19) Ny f) < N(r,Ail) < T(r,A) + O(1) < S(r, /) + S(r, ).
Set
(3.20) PO ARY S

f-1 f g-1 ¢

From the fundamental estimate of logarithmic derivative it follows that

(3.21) m(r,Ay) = S(r, f) + S(r, g).

From (3.9), (3.10), (3.20) and (3.21) we find

(3.22) T(r,Ay) =S(r, )+ S(r,9).

Let z/, be a pole for f of order p >2. Then from (3.20) we find
(3.23) Ay(zl)) =0.

If A, =0, then from (3.20) we find
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f-1 g—1
3.24 =,
(3.24) 7 7
where ¢ is a nonzero constant. From this it is easy to see f and g share the value
1 CM. And hence from (3.24) and Lemma 3 we find f and g satisfy one of the

identities in (1.1). We now suppose Ay #0. From (3.22) and (3.23) we find

1
(3.25) No(r, f) < 2N<r,A—> <2T(r,A2)+ O(1) < S(r, f) + S(r,9).

2
From (3.19) and (3.25) we find
(3.26) N(r, [) =S8, f) +S(r,9).

Set
n i
f gll gl

(3.27) A3=—,—27—?+2—.
Similar to the above, from (3.5), (3.6) and (3.27) it is easy to see that
(3.28) T(r,A3) = S(r, f) + S(r,9).
Let zy be a simple zero of f. Then from (3.27) we find
(329) A3 (Zo) =0.

If A; =0, then from (3.27) we easily arrive at that f and g satisfy one of identities
in (1.1). We now suppose Az # 0. Then from (3.28) and (3.29) we find

1
(3.30) M ( 7) = S(r,) + S(r,9).
Set
_ g
(3.31) A4—f—1 T 1
Again by a similar way as the above, we find from (3.9), (3.10) and (3.31) that
(3.32) T(r,A4) = S(r, ) + S(r,9)-
Let z; be a zero for f of order p >2. Then from (3.31) we find
(3.33) Ay(zg) = 0.

If Ay =0, then from (3.31) we easily arrive at that f and g satisfy one of the
identities in (1.1). We now suppose A4 # 0. Then from (3.32) and (3.33) we
find

1
(3.34) N (r, 7) =S(r,f)+ S(r,9).

And hence from (3.30) and (3.34) we find
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(3.35) N(r, 1) =S8, f)+ S(r,9).
Set

I
=1 g Tg-1

Similar to the above we find from (3.5), (3.6), (3.9), (3.10) and (3.26) that
(3.37) T(r,As) = S(r, f) + S(r, 9).

(3.36) As =

Let z; be a common simple 1-point of f and g. Then from (3.36) we find
(338) As(zl) =0.

If As =0, then from (3.36) we easily arrive at that f and g satisfy one of the
identities in (1.1). We now suppose As #0. Then from (3.37) and (3.38), we
find

Np(r, 1) < N(r,i) < T(r,As)+ O(1)

<S8(r,f)+S(r,9).
From this and (3.9), we have

(3.39) 1\7<r, ﬁ) — S(r, ) + S(r,g).
Similarly, we get

3.40 N(r—Y=s s
(3.40) (rg2g) = S0+ 5000

Thus from (3.26), (3.35), (3.39), (3.40) and the second fundamental theorem for f
and g we find

T(r,f)+ T(r,g) < 2N(r,}> + ]V(r,J%l) + N(r,g—i—l)
+2N(r, f) + S(r, ) + S(r,9)
<S8(r,f)+S(r,9),
this is impossible. And so the proof of Theorem 2 is finished. O
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