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ON THE EXISTENCE OF CERTAIN QUADRATIC DIFFERENTIALS ON
FOUR TIMES PUNCTURED SPHERES AND ONCE PUNCTURED TORI

HipEk1 MIYACHI

Let R be a Riemann surface. Let {y; ]p=1 be a set of homotopically

nontrivial Jordan curves on R which are mutually disjoint and belong to different
free homotopy classes. We consider the following problem.

ProBLEM. Find conditions of non-negative numbers /y,...,/, such that there
exists the holomorphic quadratic differential ¢ with closed trajectories on R which
has following properties:

(a) Each of closed trajectories of ¢ is homotopic to one of the curves {7 le.

(b) For any j=1,...,p, ¢ has closed trajectories homotopic to ;.

(c) For j=1,...,p, the p-length of closed trajectories homotopic to y; is
equal to /.

In this paper, we shall give answers for this problem in the case where R is
either a four times punctured sphere or a once punctured torus (see Sections 3
and 5). An essential tool in obtaining our results is the deformation space of
Riemann surfaces with nodes due to Bers.

This problem is related to the following Strebel’s result (cf. Theorem 23.5 in
(18, p. 150]).

THEOREM. Given a Riemann surface R with marked points P, j=1,...,p
p =2 and R = R\{P,} not the twice punctured sphere. We consider the quadratic

differentials ¢ on R with closed trajectories the characteristic ring domains of which
are punctured discs R,, with punctures P,. Then, the lengths a; > 0 of the closed
trajectories o; around the P, can be prescribed arbitrarily. The solution ¢ is
uniquely determined.

Strebel proved this result by using the convexity of the surface of reduced
moduli (cf. [18, p. 148]). This theorem implies that our problem is solved in the
case where every y; is homotopic to a small loop around a puncture. In this
case, constants /y,...,l, are prescribed arbitrarily. Therefore we only consider
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our problem in the case where for some j=1,...,p, y; is essential (cf. Section
1.2).

This paper is organized as follows. In Section 1, we recall the definition of
the deformation space of Riemann surfaces with nodes and give some notations
used in this paper. Section 2 contains a detailed discussion of the deformation
space of Riemann surfaces of type (0,4) with a node. We shall treat this space
by using a plumbing procedure. In Section 3, our problem is solved in case
where a given Riemann surface R is a four times punctured sphere. As in
Sections 2 and 3, Section 4 deals with the deformation space of Riemann surfaces
of type (1,1) with a node, and Section 5 contains an answer for our problem in
case where R is a once punctured torus. In Section 6, we give results related to
our problem.

The author would like to express his hearty gratitude to Professor Yoichi
Imayoshi for his constant encouragement and advice. He is indebted to Pro-
fessor Masahiko Taniguchi for the variable comments for the original version of
this paper. He also thanks the referee for reading carefully, pointing out some
erroneous arguments, and his/her useful comments.

1. Preliminaries

1.1. We recall the deformation space of Riemann surfaces with nodes (cf.
[2], [3], and [4]). A Riemann surface with nodes, S, is a connected complex space
such that every P e S has either a fundamental system of neighborhoods iso-
morphic to the unit disc |z|] < 1, or a fundamental system of neighborhoods
isomorphic to the set zjz; = 0 in the unit bicylinder |z;] < 1, |z2] < 1. In the
latter case P is called a node. Every component X of the complement of the set
of nodes is called a part of S, and S is called stable if every part has the upper
half-plane as its universal covering surface, and therefore carries a canonical
Poincaré metric.

By a Riemann surface S of finite type we mean a stable Riemann surface
with or without nodes, such that either » = 0 and S is compact, or » > 0 and S is
compact expect for n punctures. (A puncture can never be at a node.) Such an
S has finitely many parts £!,..., 3", each part X’ is compact of some genus Dj
except for n; punctures, 3p; —3 —n; > 0 (this is the stability condition), and

inj =2k+n
J=1

where k is the number of nodes. Also, the total Poincaré area of S equals
A=2rn) (2p;—2+mn).
J=1
The genus p of S is defined by the relation

A=2n(2p—-2+2).
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If one “thickens” each node so as to obtain a smooth surface S,S is homeo-
morphic to a compact surface of genus p with n punctures. The pair

(p,n)
is called the type of S.

Let S and S’ be two Riemann surfaces of the same type. A continuous
surjection f : S’ — S is called a deformation if the inverse image of every node of
S is either a node of S’ or a Jordan curve on a part of S’, if, for every part X of
S, the restriction f~'|5 is an orientation preserving homeomorphism onto f~!(Z),
and if every puncture of S’ corresponds, under f, to a puncture of S. A
holomorphic deformation is called an isomorphism.

The equivalence class [f] of a deformation f:S’ — S consists of all de-
formations S” — S of the form Yo f o ¢! where ¢: S’ — S” is a deformation
isotopic to an isomorphism and ¥ : S — S is a deformation isotopic to the
identity. The deformation space D(S) consists of all equivalence classes [f] of
deformations onto S. It is known that D(S) carries the natural complex
structure compatible with that of the Teichmiiller spaces (see [4, Section 16)).

1.2. Let R be a Riemann surface and y a simple closed curve on R. In this
paper, y is called essential or an essential curve if y does not bound either a disc
or a punctured disc on R. For an essential curve y on R, we denote by mod g(y)
the modulus of the family of the curves homotopic to y on R, that is, the
reciprocal of the extremal length of the family of curves homotopic to y on R (cf.
[10, p. 13] and [1, p. 220]). In this paper, modg(y) is said to be the modulus of y
for short. For a doubly connected domain D on a Riemann surface, mod(D)
denotes the modulus of a simple closed curve in D which separates the boundary
components of D. We know that if D={ze C|r<|z| <1}, it holds that
mod(D) = —(1/2rn)logr (cf. [10, p. 17, Theorem 2.4]).

We know that for an essential curve y on R, there exists a quadratic
differential yy on R with the following properties: (1) The non-critical horizontal
trajectories of Y are closed and homotopic to y: (2) The modulus of its char-
acteristic ring domain is equal to the modulus of y (¢f. Theorem 21.1 in [18, p.
107])). In this paper, such a quadratic differential is said to be the J-S (Jenkins-
Strebel) differential on R with respect to y. Throughout this paper, we shall take
the notation of [18] for granted, and restrict our attention to quadratic differentials
that are holomorphic.

2. The deformation space of Riemann surfaces of type (0,4) with a node

2.1. We consider a global coordinate of the deformation space of Riemann
surfaces of type (0,4) with a node as follows.

We first construct a Riemann surface Sy of type (0,4) with a node. Let X!
and Z? be two copies of a three punctured sphere C\{—1,1}. Then S, is
obtained by identifying the puncture oo of £! and the puncture co of 2. We
denote by Ny the node of Sp.
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Next, for te A* := {0 < |z| < 1}, we construct a Riemann surface S; of type
(0,4) by a “plumbing procedure”. Let U' and U? be two copies of a domain
C\{teR| —1<t<1}. For k=1,2, we regard U* as a subset of T¥. Let
ZK(z) =z—Vz2 -1, where the branch of the square root is taken as
0< Zkt ) <1 for t>1. Z* is defined on U¥U {00} by Z*(c0) =0 and maps
conformally U¥U {0} onto A := {ze C||z| < 1}. For k = 1,2, we define U}
{Pe Uk||Zk( )| > |{} and S¥=UFU{teR| —-1<t<1}. A Riemann sur-
face S; is obtained by mtroducmg an equivalence relation on the disjoint union
S!US2. A point PeU! is identified with a point Qe U? if and only
if ZY(P)Z?(Q)=t. Let g, be a central curve {Pe U}| |Zl( ) =72} =
{PeU?||Z*(P)|=|1|'/*} in S,. For || <1 and k =1,2, we denote by P*"!
and P?* the punctures of S, corresponding to 1 and —1 in S¥ respectively. Then
there ex1sts the deformation f, from S; to Sy with f,(P’”) Py form=1,...,4
and f, (No) =6, We define a holomorphic mapping ¥ from A to D(S;) by

@ () = /)

We can observe that ¥ is a biholomorphic mapping from A to D(Sp), and
hence ¥ is a global coordinate of D(Sy). Indeed, the injectivity of ¥ follows
from Lemma 5 in Section 3.3, and the surjectivity of that is given by the “open
up” process in [13, Section 5.1].

2.2. For k=1,2, let (V¥ W¥) be a local uniformizing parameter at oo, the
puncture of ¥, such that W*(¥*) = A* and that oo corresponds to the origin.
For te A*, a Riemann surface M, of type (0,4) is obtained by a plumbing
procedure using given coordinates {(V*, Wk)}k=1’2. We also obtain the ca-
nonical deformation g, from M, to Sy as in Section 2.1. Thus, we define the
holomorphic mapping ® from A to D(S;) by

2) @ () = [g4]-
In this paper, we call @ the representation of pluming constructions using
{(Vk’ Wk)}k:I,Z'

2.3. To compute the derivative of T(f) :=¥~' o ®(r) at the origin (see
Propositlon 2 of Section 2.4), we shall give some notation and prove a lemma.

Let i¥ be the canonical inclusion from S¥ to S;. Since (Z*)* ( -dz?/Z2?) =
Yk = —dz2 /(z% —1) for k=1,2, Z* maps a closed trajectory of y* to a circle
with center 0 in A. Thus the J- S differential ¥, on S; with respect to o, is
obtained by setting (i¥)*(y,) = ¢* on the image under i*. The characteristic
ring domain U, of y, coincides with i*(U¥). We define a conformal mapping Z,
from U, to an annulus Ay := {|f| < |z| < 1} by Z,(i}(P)) = Z'(P) for Pe U}
Then, for t e A*,

1
3) modg, (g;) = ~ % log|¢|.
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Let V= {Pe Vk||WkP)| > |1} and M¥ = VFUSF\I’k. We denote by
j¥ the canonical inclusion from MF to M,. Let V, be the image of V* under j*.
A conformal mapping W, from V, to an annulus A|,| is defined by W,( ilp) =

W(P) for Pe V}. Let y, denote the central curve in V,. For |t| <1 and k =
1,2, we denote by Q%*-1 and Q% punctures of M, corresponding to 1 and —1 in
M, 4 respectively. Then, by definition, the deformation g, satisfies g;(Q})") = Py’
for m=1,...,4 and g;'(No) = 7,.

Let 7, be the J-S differential on M, with respect to y, such that the #,-length
of closed trajectories homotopic to 7, is equal to 2z. Suppose that </, is the
characteristic ring domain of #,. Then, (1), (2), and (3) imply

1
(4) mod(#/;) = mody,(y,) = mods, (o7,)) = — 5 log| T (1)},
for te A*. We denote by {, a conformal mapping from .o/, to Az

LemMma 1. (i) Let I(t) be the n,-length of y,. Then I(t) = O(1) as |t| — 0.
(i) For any 0 <r <1, there exists 5; >0 with &, < r* such that

7 NP e S [|T(0)|/r < |C(P) <1} # 0 whenever 0 < |f] <.
(iii) There exists o9 > O such that y, = o/, whenever 0 < |t| < .

Proof. (i) Fix te A*. Suppose that #, has the representation #,(w)dw? in
terms of the local uniformizing parameter (V,, W;). We set

L@ = o la

for |f| < x < 1. Since n,(w) is a holomorphic function on A4}, L(x) is a convex
function of logx. Therefore, we obtain

L0 =120 < 5 (£(4) + 2w

<x< 1. Integration over [f|'/* < x <1 yields

log (/1) < JMM (1) +20o) &

< [ i} crtostismy

for |t|1/2

< 5 {2nlog(1/|T())} 2 - {2xlog(1/1)} 2.

Hence we have

1(6) < 2n{log(1/|T(1))} /2 /{log(1/)} 2 = O(1), as || — 0.
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(ii) Assume that there exist 0 < rp <1 and a sequence {1,},., such that
(5) [tal > 0 asn— oo,

and that y, N{Pe o, ||T(tx)|/ro < |(,(P)] <ro} =90. Then, some component
C, of M, \{Pe L, ||T(t.)|/ro <|{,,(P)| < ro} contains one of the conponents of
M, \y,. By definition, #, |- in the J-S differential on C, with respect to a
simple closed curve 7, homotopic to the boundary contour C,N{Pe </, |
|T(ta)/r0 < |C,,(P)| < ro} of C,. Hence

1
(6) modc, (t,) = ~5n log|ro|.

On the other hand, since C, contains some component of M, \y,, there
exists an injective holomorphic mapping A4, from A| e o C, such that

ha({we Ay, 2 [Iw] = |t,,|1/4}) is homotopic to 7,. Therefore

1 12
n) = -1 n .
modc, (7,) 7 og |t

By (5), this contradicts (6).
(iii) By (i), there exists 6; and L > 0 such that /(f) < L for |¢| <J;. Letr=
e 2L, In view of (ii), we obtain a number Jdy with 0 < §y < min{d;,r?} such that

7 Y N{Pe o ||T(t)|/r <|(;(P)] <r}#0, whenever0 < |f| <.

Let d, be the #,-distance on M,. We denote by %, the union of critical
trajectories of #,. Then for xe {Pe o, ||T(1)|/r <|{,(P)| <r}Ny, and ye ¥,
we have d, (x,y) >2L. By the definition of the constant L, (7) implies that
points xe{Pe o ||T(t)|/r <|{,(P)]<r}Ny, and zey, satisfy d,(x,z) <L.
Therefore we have d, (y,z) >L >0, for ye¥%, and zey. Thus y»,N%, =0
whenever 0 < |f] <dg. Since &/, = M,\%,, y, is contained in .o/, whenever
0 < |t} < . 0O

2.4.

PROPOSITION 2. For k = 1,2, let (V*, W¥) be a local parameter around o in
=¥ such that W*(V*¥) = A* and that oo corresponds to the origin. Let ® be the
representation of plumbing constructions using {(V* W Vi=1,2- Suppose that
W* has the expansion

Ak
Wk(z) = - +

in terms of the global coordinate z of ¥ near co. Then the derivative of T =
¥-lo® at the origin is given by

dT 1
E(O) T 44142



EXISTENCE OF CERTAIN QUADRATIC DIFFERENTIALS 193

Proof. By definition, for ¢ e A*, there exists a biholomorphic mapping A,
from M, to Sy such that A,(Q;") =Pr, for m=1,...,4 and that h(y,) is
homotopic to ar(.

We first show that there exists d,79 > 0 such that

hi({P e Vi||t|/ro < |Wi(P)| <ro}) = Ury

whenever 0 < [¢f| <J. Since Ur() is the characteristic ring domain of Y,
Lemma 1 guarantees that there exists do > 0 such that 4,(y,) = Ur() whenever
0 < |t| <J. This implies A,(j*(Mp-)) Cié‘.(,)(S}‘g,)). Here, we regard M-
as a subset of M. We remark that j|,|1/z=]{€|M|kll/2. Hence, for k=1,2
and 0 < |t| <dy, an injective holomorphic mapping 4f from MF,» to Sg(,)
: k_ (& )1 ik

is defined by hf = (lT(t)) o h, o jigin.

Since {S¥ ) }ocin<s, 20d {Mf12}o s, are exhaustions of ¥ and Af(1) = 1
and h¥(—1) = =1, h* converges uniformly to the identity mapping of Z* on every
compact set of £¥ as r— 0. Therefore there exist & and ry >0 such that
hE(V(ro)) = Uf,, whenever 0 < |f] <9, where Vf(ro):={Pe Mfu:| 7' <
(WH(P) < ro}. Since k(¥ (ro)) U ja(V2(ro)) = {P € Vil |dl/ro < |Wi(P)| <
ro} and ii(,)(U}‘(t)) = Ur(;, we have the first assertion.

For k=1,2, a holomorphic mapping H* from D’:= {(t,w)|0< |tf| <d
and |t]/ro < |w| < ro} to A" is defined by

H*(1,w) = Z% o (i% ) o hyo jF o (WF) ™ ().

Since {(i’}(,))_1 o hi0 j*}ocues tends to the identity mapping on Tk as 1 — 0,
{Pe Vk||Wk(P)| < ro} is contained in U* and H* is extended holomorphically
on D:={(t,w)|]f] <8,|t|/ro < |w| < ro} by setting H*(0,w) = Z¥ o (W*)~(w).

Suppose that the Laurent development of H* forms

o0
(8) H*(t,w)= Y ak(w™
m=—o00

We remark that for every integer m and k= 1,2, a¥(¢) is holomorphic on
{te ||l <}.

Here, we assume the following equation which will be proved later.

9) ak(Otm =o(1), ast—0fork=1,2andmeZ.
The definition of Sr(; implies

0

T(t) = H'(t,w)H (1,1/w) = D a,(t)af ('™

m,l=—o0

on D. Since the left-hand side of this equality is independent on the parameter
w, we obtain
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on {|t| <d}. Therefore the assumption (9) shows
(1)

0 4 0)a2(0) +01) = gz + o). 0

Now, to prove Proposition 2, it remains to show the following lemma.

LEMMA 3. The equation (9) holds.

Proof. We may assume that k =1. Fix 0 < |w| <min{d,5/ro}. By the
definition of S,, if 0 < |¢f| < ro|w|, then (t,w),(¢,¢/w) € D and

H'(t,t/w) = T(t)/H*(t,w).
Since H?(0,w) # 0, (8) implies

0

> ay (et /wm =0

m=—ao

as t— 0. Since w is arbitrary, we conclude (9). O

2.5.

CorOLLARY 1. Let {(V*,W¥)},_, , be as in Proposition 2. Let R be a
Riemann surface of type (0,4). Suppose that there exists an essential curve y on R
such that

sinh(2zmodg(y))/2zmodg(y) > 4|41 4?|.

Then R is obtained by the plumbing construction using {(V'*, Wk)},§=1. Namely,
R is biholomorphic to M, for some te A*.

From (4) and the following lemma, we obtain this corollary by an argument
similar to that of the proof of Theorem 1 (see Section 3.4). Hence we omit the
proof.

LemMma (cf. [15, p. 233)). Let f be a holomorphic mapping on |z| <1 such
that f(0) =0 and |f(z)| <1 on |z| < 1. If f leaves out a value a such that |o| <
1, then

11/ (0)] < 2| tog(1/]a) /(1 — |«|?).
We know that every Riemann surface of type (0,4) has an essential curve
whose modulus is more than or equal to v/3/4 (see (i) of Lemma 12). Therefore

we have the following.

COROLLARY 2. Let {(V¥,W¥)},_, , be as in Proposition 2. Assume that

|4 4%| < sinh(v/37/2)/2V3n = 0.69%4 ... ..
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Then every four times punctured sphere is obtained by the plumbing construction
; : K prkyy2
using coordinates {(V*, W*)};_;.

3. A Solution to the problem in case of four times punctured spheres

In this section, we solve our problem in case of four times punctured spheres.

3.1.

TuEOREM 1. Let R=C\{P,...,Ps}. Let y be a simple close curve on R
which separates {Pi,P,} and {P;,P4}. Assume that non-negative numbers
li,...,1ls and a positive number L satisfy by condition

.//l(l]/L, lz/L, l3/L, l4/L) < anodR(y).

Then there exists a unique quadratic differential ¢ with closed trajectories on R with
following conditions:

(a) ¢ has a closed trajectory homotopic to y and the g-length of this trajectory
is equal to L.

(b) For the local uniformizing parameter w at P, such that w(P,) =0, the
respective development of ¢ = p(w)dw? is

d 2 ljz 1 2
w(W) w- = — m ;V—z_ + - dW .
Here, the function M is defined by M(x,y,z,w)=m(D(x,y) - D(z,w)), where

m(D) =log(2 — D+ 2v'1 - D) —logD,
and

II(X—,V*l)/Z ll(x+y“1)/2

)_Ix_y_ !x+y—

D(x,y) =
|x—y+ ll(x*y+1)/2|x+y+l

l(l+x+y)/2
with 00 = 1.

This theorem will be proved in Section 3.4. The uniqueness of such a
differential follows from Theorem 23.1 in [18, p. 143]. Hence we prove only the
existence of the differential. Further, if ¢ is the quadratic differential on R which
satisfies the conditions in Theorem 1 for constants /;/L,...,I4/L, and 1, L%¢p is
the quadratic differential on R satisfying the conditions in Theorem 1 for
constants /j,...,l4, and L. Therefore, we may assume that L =1.

3.2. We define a quadratic differential ¢* on Z* by

1 2220 —B_)z+ (B, +28 1)
10 k— k(s de? = — — 2% — k-1 2k—1 2k dz2.
(10) 9" =¢"(2) e TG
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¢* has closed trajectories homotopic to a loop around co with ¢*-length one.
Moreover, if 1, (m =2k —1 or 2k) is positive, then ¢* has closed trajectories
homotopic to small loops around either 1 if m is odd, or —1 if m is even.

Let V¥ be the characteristic ring domain of ¢ with respect to oo and W* a
conformal mapping from V*¥U{co} to A such that W*(c0)=0. We take
notations made in Sections 2.2 and 2.3 for granted. For /= (I;,h,5h,l4) € R‘;O,
we denote by @, the representation of plumbing constructions using
{(V¥, Wk)};_1,- By definition, we obtain the following.

LeMMA 4. There exists a quadratic differential ¢, on M, with conditions in
Theorem 1 for a curve y,, punctures {P}'},_, ,, constants { and L= 1.

3.3. The following is a key step to proving Theorem 1.
LemMmA 5. @, is injective.

Proof. For t1,tp € A, we assume that ®,(t;) = D,(2). We may also as-
sume that t; # 0 for i = 1,2. Then, by definition, there exists the biholomorphic
mapping A from M, to M, such that h(P") = P}’ for m=1,...,4 and that
h(y,,) is homotopic to y,,. Let#n, =h*(p,). By Theorem 23.1 in [18, p. 143], 7,
coincides with ¢, . This implies that A(V},) = V,,. In the sequel, A leads the
biholomorphic mapping 4% from M} to M} such that h*(V}) =V} for
k=1,2. Since h*(p,) =9,, (h*)*(¢*) = ¢*. Therefore, W*oh* =e®W* on
V[ for some 6 € R. Hence, h* can be extended to an automorphism of =¥ such
that h¥(1) = 1, h*(—1) = —1 and h¥(o0) = oo by setting (W*)~(e®W*(x)) for
xeVk.  Thus h* is the identity mapping of Z*. Therefore for x* e V¥ such
that Wl(x")W?2(x?) =1,

ty = WHR' (x")) W2 (R (x?)) = W) W2 (x?) = 1,. O
LEMMA 6. Suppose that W* has the expansion as in Proposition 2. Then
|4¥| = 1/2D (b1, bx.),
for k=1,2, where D(—,—) is defined as in Theorem 1.
Proof. Fix k=1,2. Weputa=-2(} —13_,),b=213 ,+2% -1, and

20 := (—a + Va? — 4b) /2 where the branch of the square root is taken as v1 = 1.
Since W*(o0) =0, we may assume that

: S T ax ok
wk(z) =exp{—J —%xlﬂ)dx}.

Here, we only prove the case where by + hy—; # 1 and |hy — bx—1| # 1.
Another cases are proved by the similar arguments.



EXISTENCE OF CERTAIN QUADRATIC DIFFERENTIALS 197

A direct calculation gives that for z e V¥,

LWk ()] = |a? — 4b|1/? z ’
|zl [W*(2)| = | | P W 2
9 a+2b+Q2+a)z+2V1+a+bvVz2+az+b VI+a+b/2
a?—4b(z - 1)

y Va2 —4b(z+1) I*l“”b/z
a-2b+Q2-a)z—2V/1—a+bvz2+az+b

= |a® — 4b|"1,(z) x L(z) % Li(2).
Since limy;_,o, [1(z) = 1/4,

la? — 4b]'* = |1 + 1 Ly + by = 2B + By + 505, 1)[1/2

Jm Ip(z) = |2 +a+2v1 Fa+b)/(Va® — 4b)|VTHerbl2
Z|— 00

= |(Va2 —4b)/(2 + a—2V1 + a + b)|Y FetP/2

o

and

_ ’(1 B+ by =20 + B+ B )
1+ lzzk - 122k—1 — 2y

lllim L(z)=|(Va—4b)/(2—a— zm)l\/_l—a+b/2

_ ‘ A+B+ B =205+ 5, + lzzklzzk_1))l/2
11— 122k + lzzk—l —2br_q

b1

)

we have that

|i] = lim [z] W (2)l
Z—'(X)

_ T+ l;k + lgk 1= 203 + 15 -1 T 12k12k )l(lJrI”‘Jrlz"")/2
2|1 +3 -1, — 20| ™1 -+ B -2y [l

Since for x,yeR, 1+x*+y*-2(x2+y>+x2p)=(x—y—-D(x+y-1)
(x—y+Dx+y+1) and 1 +x2—y?—2x=(x—y—1)(x+y—1), we have
|4kl = 1/2D (b, be-1)- |

34. Let us prove Theorem 1. F1x non-negative numbers /1, 5,5, and 4.
We put ¢ = (I1,...,L4). Let T=%"'o®,. Then T(0)=0 and |T(z)] <1 on
A. By Proposition 2 and Lemma 6, we have

"’T«» D, 1b)D(ls, Iy).
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Therefore, by Lemma 5 and Theorem 1 in [6], the image of A under T contains a
disc

(11) B:={weC||w| <exp(—AH(¢))}.

Let R =C'\{P1,...,P4} and y a simple closed curve which separates
{P1, P,} and {P3, Ps}. We denote by f a deformation from R to Sy such that
f(y) =No and that f(P,) =Py for m=1,...,4. We assume that /#(¢) <
2nmodg(y). Then, by (4) and (11), we have ¥-1([f]) € B. Thus, [f] is
contained in the image under ®,. Namely, there exists €A such that
[ f1=19:]- Therefore there exists an isomorphism 4 from M, to R such that A(y,)
is homotopic to y and that A(Q)") = P, for m=1,...,4.

Finally, let ¢ = h*(¢,). Then, by Lemma 4, ¢ is the quadratic differential on
R with conditions in Theorem 1 for y, 7, and L =1. We have thus proved the
theorem. O

4. The deformation space of Riemann surfaces of type (1,1) with a node

4.1. As in Section 2.1, we construct a global coordinate of the deformation
space of Riemann surfaces of type (1,1) with a node.

We first construct a Riemann surface Sy of type (1,1) with a node. Let X =
C\{-1,1}. Then Sy is obtained by identifying —1 and 1 in £. We denote by
Ny the node of S.

Next, for 1€ A*, we construct a Riemann surface S, of type (1,1) by a
plumbing procedure. Let U! (resp. U?) denote the right (resp. left) half-plane in
. Let ZY(z2)=(z—1)/(z+1) and Z%*(z)=(1+2z)/(1-z). For 0<|f <1
and k =1,2, let UF={Pe U*||Z*¥(P)| > |t|}. Identifying U! and U? by the
mapping Z 122 =t¢, we obtain a Riemann surface S, of type (I, 1) This
identification also gives a ring domain U, in S;. We can observe that U, is the
characteristic ring domain of the J-S differential with respect to the central curve
y, of U,. Let f, denote a deformation from S; to Sy such that f,(y,) = No. We
define a holomorphic mapping ¥ from A to D(Sp) by

(o) = [/

Then, as in Section 2.1, ¥ becomes a global coordinate of D(S).

4.2. We denote by J the involution of X defined by J(z) = —z. Let V!
(resp V'2) be an open neighborhood of 1 (resp. —1) in C such that J(V'1) = V2
and that V!N V2 =0. Let W! be a conformal mapping from V! to A such that
Wi(1)=0. Weset W2=W!'oJ on V2. For 0 < |t| <1, we denote by M, a
Riemann surface obtained by a plumbing procedure by using coordinates
{(V¥, Wk)}k=1’2. We define a deformation g, from M, to Sy as in the pre-
vious section. By the representation @ of the plumbing constructions using
{(V¥, Wk)}k=1,2 we mean a holomorphic mapping

(1) = [gi]-
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4.3. Asin Section 2.4, we compute the derivative 7 := ¥~ o @ at the origin.

PROPOSITION 7. Let {(V, Wk)}k=1,2 be as in Section 4.2. Suppose that for
k = 1,2, the Laurent development of W* near the puncture has the form
Wlz)=A(z—=1)+--- and W*z2)=—-A(z+1)+
where z is the global coordinate of . Then
dT 1
AR VTS
The proof is completely analogous to that of Proposition 2. Thus, to obtain
Proposition 7, it suffice to show the following lemma.

LemMa 8. Let A, be the characteristic ring domain of the J-S differential on
M, with respect to y,. Then there exists 9 > 0 such that for |t| < dy, it holds that
v < Ay

Proof. For k=1,2, let Vf={PeV*||WkP)|>|f|]} and M]= Z\UZ,
{PeVk||WKP)| < ltl} We denote by Jj, the canonical surjection from M] to
M, Let V, be an image of V¥ under j,. We define a conformal mapping
W, from V, to Ay by Wi(j,(P)) = W} (P) for Pe U!. A central curve y, of V,
is a closed curve in M, defined by {Pe V,||W,(P |— 11"/}

By the definition of M,, there exists an involution J, of M, such that j,oJ =
Jio j,. Moreover, J, is satisfies that J;(y,) =y,. Hence it is easy to see that
there exist two fixed points of J, on y,.

Let 5, denote the J-S differential on M, with respect to y,. We denote by o,
a central trajectory in A4,. Then, as in case y,, we have J;(o;) = o,, and hence
there exist two fixed points of J, on g;. Here, we can check that the cardinality
of the set of fixed points of J; is equal to three. Therefore o, intersects p,.

Finally, we can prove Lemma 8 by an argument similar to that of the proof
of (iii) of Lemma 1. O

4.4. As in Section 2.5, we obtain the following corollary.

CoROLLARY 3. Let {(V*,W¥)},_,, be as in Proposition 7. Let R be a
Riemann surface of type (1,1). Suppose that there exists an essential curve y on R
such that

sinh(27 modg(y)) /2 modg(y) > 4|4|*.
Then R is obtained by the plumbing construction using {(V*, Wk)}k=l,2.

Since every Riemann surface of type (1,1) has an essential curve whose
modulus is more than or equal to v/3/2 (see (i) of Lemma 12), we have

CoRrOLLARY 4. Let {(V*,W¥)},_, , be as in Proposition 7. Assume that

|4| < {sinh(V3r)/4V3n}'/? =2302...,
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then every once punctured torus is obtained by the plumbing construction using
{(V5, W ) Lzt -

5. A Solution to the problem in case of once punctured tori

In this section, we give an answer of our problem in case of once punctured
tori. Almost all results in this section are obtained by arguments similar to those
of Section 3. Hence we omit proofs for several results.

5.1.
THEOREM 2. Let R be a once punctured torus. Let y be an essential curve on
R. Assume that a non-negative number | and a positive number L has the

condition that
A (I/L) < 2rmodg(y).

Then there exists a unique quadratic differential ¢ with closed trajectories on R
such that

(a) ¢ has the closed trajectory homotopic to y and the @-length of this
trajectory is equal to L.

(b) For a coordinate w at the puncture, the respective development of ¢ =
p(w) dw? is

21
p(w) dw? = (—m F+ . ) aw?,

where N (x) := m(16D(1,x)?*) and the functions D(—,—) and m(—) are given in
Theorem 1.

As in the case of type (0,4), we may assume that L = 1.

5.2. We define the quadratic differential ¢ on X by

2,2 2

¢=(/7(Z)d22 ;=_4L212—+2(4__l__)_2_ /72
e (z—=1)(z+1)

@ is a differential with closed trajectories and has the closed trajectories around
either —1 or 1 with ¢-length one. Moreover, if / is positive, then ¢ has the
closed trajectory around oo with the g-length I

Let V! and V? be the characteristic ring domains of ¢ with respect to —1
and 1 respectively and W* be a conformal mapping from V* to A* such that
W?2oJ = W! and that W* maps a puncture to the origin. We define M,, g,
and y, as the previous section. The representation of the plumbing construction
using {(V*, W¥)},_, , is denoted by ®.

By definition, we have the following.

LEMMA 9. There exists a quadratic differential p, on M, with be conditions in
Theorem 2 for y,, I, and L = 1.

By the same argument as that in the proof of Lemma 5, we have the
following lemma.
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LemMmaA 10. @ is injective.

Here, we show the following.

LemMA 11. Suppose that W' and W? have the expansion as in Proposition 7.
Then

|4] = 1/8D(1,1),

where D(—,—) is defined as in Theorem 1.

Proof. We only show the case k = 1. The case where k = 2 is obtained by
the similar way.

Let r(z) =14+4/(z—1). Then r is an automorphism of X such that r(1) =
o, r(oo)=1, and r(—1)=—1. By assumpution, we have W!lor(z)=
44/z+ --- for |z| > M, where M > 0 is taken to be sufficiently large.

We put ¢ :=r*¢p and V*:=r"!(V'). By the definition of ¢, ¥ has the
closed trajectories around either —1 or oo whose Y-length is equal to one.
Moreover, if / > 0, then y has the closed trajectories around 1 whose y-lengths
are equal to /. Since V'* is the characteristic ring domain of ¥ with respect to oo
and W'or is a conformal mapping from V* to A such that W!or(w) =0,
by Lemma 6, we have 4|4|=1/2D(1,/). Hence we conclude that |4|=
1/8D(1,1). O

Then we can prove Theorem 2 by an argument similar to that of Section 3.4.

6. Some results related to the problem

6.1. The aim of this Section is to prove the following theorem which will be
proved in Section 6.3.

THEOREM 3. There exists the best possible constants Lo a4, L1 > 0 such that
Jor 1 < Ly 4 (resp. | < Ly,1) and a Riemann surface R of type (0,4) (resp. of type
(1,1)), there exists a simple closed curve y on R such that R has the quadratic
differential with the conditions in Theorem 1 for y,l; =1fori=1,...,4and L =1.
(resp. in Theorem 2 for y,l, and L = 1). Furthermore, it holds that 0.506 < Lo 4 <
0.835 and that 2.379 < L;; < 3.338.

6.2. To prove Theorem 3, we show several lemmas.

LemMA 12. (i) Every Riemann surface of type (0,4) (resp. of type (1,1)) has
t\l}l_ essential curve such that its modulus is more than or equal to \/3/4 (resp.
3/2).
(ii) There exists a Riemann surface S of type (0,4) (resp. of type (1,1)) such
that every essential curve o satisfies mods(a) < v/3/4 (resp. \/3/2).
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Proof. We only show the case of Riemann surfaces of type (0,4). The
case of Riemann surfaces of type (1,1) is proved in a similar fashion.

(i) Let R=C\{+e"/* +e /4% We denote by T(R) the Teichmiiller
space of R (cf. [7, Chapter 5] and [14, Chapter two]). Let y be a simple closed
curve RU{oo} on R. Then we have modg(y) = 1/2 (see Section 6.4, Example).

Let ¢ be the J-S differential on R with respect to y. For te s :=
{t e C|Imt > 0}, we denote by f, the quasiconformal mapping from R to a
Riemann surface R, of type (0,4) which has the Beltrami coefficient

_tilel
M=
It is known that y: # >¢— [R,, f,] € T(R) is biholomorphic (cf. [14, Section
2.6.5]). A direct computation gives (cf. [13, Section 1.3])

(12) modg, (f;(y)) = Imz - modg(y) = Im¢/2.

We denote by Mod(R) the Teichmiiller modular group of R (cf. [14, Section
2.3]). It is easy to observe that (see [5, p. 165]).

% "Mod(R)y = PSL,(Z).

This implies that for any Riemann surface S of type (0,4), there exists te
{te #|Imt > v/3/2} such that S is biholomorphic to R, By (12), f,(y) is a
simple closed curve on R, whose modulus is more than or equal to v/3/4. We
have thus proved (i).

(ii) Let S=R, ), /35, and let o be an essential curve on S. Then we can
check that there exists a quasxconformal mapping g from R = R, to S such that
g(y) is freely homotopic to o.

We take t € # such that [R,, f;] = [S,g]. Then there exists 7 € mod(R) such
that

z'(['Slafl/2+\/§i/2]) =[R, ] =[S,q]

By (i), there exists A4 € PSL,(Z) such that ¢t = A(1/2 ++/3i/2). This implies

(13) Imz = ImA(1/2 +V3i/2) < V3/2.
y (12) and (13), we have
mods(o) = mods(g(y)) = modg,(f;(y)) = Im#/2 < V3/4. O

Lemva 13. Let L>0 and 1>L/2. Let R=C\{Py,...,Ps} and y a
simple closed curve which separates {Py,P,} and {Ps,P4}. Suppose that there
exists the quadratic differential ¢ on R with the conditions in Theorem 1 for y, I; =
I fori=1,...,4 and L. Then

modg(y) > K(cos(nL/4l))/2K (sin(nL/4])),

where K(k) is the complete elliptic integral of the first kind for a modulus k.
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Proof. We may assume that L = 1. We first recall the geometry of certain
quadratic differentials on the three punctured sphere * = C\{-1,1}. Fix />
1/2. We define a quadratic differential  on X by

1 22442 -1)
=y()d?=—— — 7 d%
v=vG) 4n? (z - 1)*(z+1)°
Then  is the quadratic differential with closed trajectories on X that has the
closed trajectories of length one around oo and of length / around either —1 or 1.
Let A be the characteristic ring domain of y with respect to co. Then it is clear
that the interior D; of 2\AU {tre R| — 1 <t < 1} is a doubly connected domain.
Here, we assume the following equation which is proved later.

(14) mod(D;) = K(cos(n/4l)) /4K (sin(r/4])).

Take R, y and ¢ as in the assertion of this lemma. Let ./ be the char-
acteristic ring domain of ¢ with respect to y. By the structure of trajectories of
@, there exist injective holomorphic mappings #; and A; from D; to R such that
hi(D))Nhy(D)) =0, h(D;))Nsf =@ for k=1,2, and that the core curve of
hi(Dy) is freely homotopic to y. By (2) in [17, Proposition 1.5], we have

modg(y) = mod(h; (D)) + mod(h2(Dy)) + mod (/)
> K(cos(n/41)) /2K (sin(r/4l)). O
To prove Lemma 13, it remains to show the following lemma.
LemMA 14. The equation (14) holds.

Proof. We use the notation defined in Lemma 13 frequently. Let D; and
D_, be characteristic ring domains of  with respect to 1 and —1 respectively.
We denote by o (Ima > 0) a zero of . We note that & is also that of Y. Since
the interval {#e R||?] < 1} is a (singular) vertical trajectory of ¥, there exists a
conformal mapping f; (resp. f_;) from D; (resp. D_;) to A such that f;(1) =0
(resp. f_;(—=1)=0) and that

filDi\{teR| —1<t<1})=E :=A\{seR| -1 <s<0}

(resp. f_(D_1\{teR| —1<t<1})=E' :=A\{seR|0<s<1}).
We note that the domains of f; and f_,, are extended to the closure of D; and
that of D_, respectively and that
fl(a) — _eni(l—Zl)/Zl’ fl(&) — _e7n'(21—1)/217
(15)
f—l(a) — eni(2l-—1)/21, and fl(&) — em’(l-—2l)/21.

Indeed, the extendabilities of f; and f_; are trivial, since D; and D_; have
piecewise real analytic boundaries.
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Here, we will only show that f;(a) = —e™(1-2)/2 The another equations in
(15) are obtained by the similar arguments. By the definition of D;, we have

. I? dz?
(16) /i (‘Z??) =y.
Let f:={tt|0<¢<1}. Then B is a horizontal trajectory segement of .
Moreover the y-length of f is equal to (2/ — 1)/4. By (16) and f;(0) = —1, we
have that f,(B') = {e?|n/2] < 6 < =n}. Since fi(«) and f;(0) are end-points of
fl(ﬁ/), we have fl(‘x) = emi/2l — _pmi(1-2)/21
Let E; =E[U{e"|0<|0—n|<n(2-1)/2]} and E.;=E' ;U {?]|0<
|0| < m(21 — 1)/21}. We construct an annulus E; by introducing an equivalence
relation on the disjoint union Ey UE_;. A point P € E; is identified with a point
Q on E_; if and only if |P|=|Q|=1 and Q= —P. Then E; is canonically

biholomorphic to D;.
Finally, since E; is biholomorphic to the ring domain

C\{teR||t| <1 or|f| > 1/sin(n/4])},

by the mappings
E 3z 2iyz/(1-2z), and

E 15z —2iy/—z/(1+2),

where the branch of square root is taken as v/1 = 1, we conclude the assertion of
this lemma. O

LemMa 15. Let L >0 and I >2L. Let R be a once punctured torus and y
an essential curve on R. Suppose that there exists the quadratic differential on R
with the conditions in Theorem 2 for y, | and L. Then

modg(y) > K(cos(nL/l))/K (sin(nL/1)).

Proof. We may assume that L =1. As in the proof of Lemma 13, for / >
2, we define a quadratic differential ¥ on Z by
2,2 2
=@ d = LEEED) 4
4n’ (z - 1)*(z+1)
Then ¢ is a differential with the closed trajectories. Moreover Y has the closed
trajectories around either —1 or 1 with y-length one and around oo with the -
length /. Let o/_; and &/, denote characteristic ring domains of y with respect
to —1 and 1 respectively. Let I be the imaginary axis on X. Notice that I is a
vertical trajectory of i, since we now assume / > 2 and hence the zeros of y,
+VI?2 -4/l is real and not equal to the origin. Since J(&/1) = o/_; where
J(z) = —z, each connected components .7,.s/’ of X\o/_;Uo/; UI are doubly
connected domains. Further, it holds that

(17) mod (/) = mod(«/') = K(cos(n/l))/2K (sin(n/1)).
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We assume the equation (17) which will be proved later. Then, by an
argument similar to that of the proof of Lemma 13, we can prove Lemma
15. O

To prove Lemma 15, we should show the following.
LemMA 16. The equation (17) holds.

Proof. We may assume that 7 is the connected component of E\.&Z_; U
s/1UI such that o = {ze C|Rez > 0}. Since J is conformal and J(«/) = o/,
it suffices to show that

(18) mod(sZ) = K(cos(n/I))/2K (sin(z/1)).

Let V' be the characteristic ring domain of  with respect to co and W the
conformal mapping from ¥V to A such that W(oo) =0 and W(I\{0}) =
{teR|0 < |t| < 1}. We may assume that W(«\f) < {z e C|Imz > 0}, where
B:={teR|0<t<VI2—-4/l} (VI*—4/] is one of the zeros of ). We note
that ./ has the piecewise real analytic boundaries and the y-length of f is equal
o (I —2)/4. Hence, by an argument similar to that of the proof of Lemma 14,
we obtain that the images by W of prime ends whose impressions are in
B (cf. [16, p. 27]) are just the prime ends whose impressions are in
{e?]0 < 0 < n(l —2)/2I} and {e'0|n(l +2)/2] < 6 < w}. Ttis easy to see that if
&) and &, are the impressions of the images of prime ends in «/\f whose

impressions are 7€ then & = —¢&,.
We now consider the mapping & on AN{Imz > 0} as follows:
2z/(142%)
Z(2) =J dz

0 V(1= 22)(1 = sin*(x/1)z2)
where the branch of square root is taken as v1 =1. Then #(1) = -F(-1) =
K(sin(n/l)), F(e™-2/)) = —F (em(+2)/2l) = K(sin(n/I)) + iK(cos(n/l)), and
the image of AN{ze C|Imz > 0} by & is equal to the rectangle

{(x,y) € R?||x| < K(sin(n/])),0 < y < K(cos(n/]))}

(cf. [15, p. 280]). Hence # o W/, ; maps conformally «/\B onto the rectangle
above. Therefore, the mapping

ﬂaz»—»w:exp{K - ,970W|d(z)}

(sin(/1))

is well-defined and a conformal mapping from &/ to the ring domain

{exp{—n!;((((;)—ns((:/%%)} <|wl < 1}.

Thus, we conclude (18). O
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6.3. Let us prove Theorem 3. We only observe the case Lg4, since we
obtain the case L;; in the same way.

We can check that the function .#(/,/,1,]) of I is monotone increasing on
{leR|l>0}. A simple observation shows that

ML < V3r/2if 1 <0.506 and  (1,1,1,1) > V/3r/2 if 1 > 0.507.

By Theorem 1 and (i) of Lemma 12, the constant Lo 4 exists and satisfies that
0.506 < Ly 4. Since

<V3/4 if1 <0834 and,

K(cos(n/4l))/2K(sin(7z/4l)){
>V/3/4 if I >0.835.

Therefore, by (ii) of Lemma 12 and Lemma 13, we obtain that Ly 4 < 0.835. [J

6.4.
Remark. If 1=L >0, then the inequality in Lemma 13 gives a sharp
condition. Indeed, we have the following example.

Example. For 0 <0< n/2, let Rg=C\{+e? +e}. Let y=RU{0}.
Then y is a simple closed curve in Ry that separates {e??, —e "} and {—e?, e~}
and that satisfies

modg,(y) = K(cos8)/2K(sin@).

These are known as the Teichmiiller’s module theorem (cf. [12, Chapter II, 1.2.]).
Notice that modg,(y) is a strictly monotone increasing function on 0 < 8 < /2
and that modg_,(y) = 1/2.

Fix 6 > /4. Then we can find a unique positive constant ay such that

o \/xzsinZZH + ag(x* — 2x2cos 20 + 1) PR
J_oo x4 —2x2cos260 + 1 *=
Indeed, for n/4 < 8 < /2, the function
© \/xsin? 20 + a(x* — 2x2c0s 20 + 1)
aw— J dx
—w x% —2x2cos26 + 1

is a strictly monotone increasing, positive, and continuous function on 0 <a <
0. Moreover, the value at 0 of this function is less than 7/2 and the value
tends to +oc0 as a — +oo.
We define
412 z%5in” 20 + ag(z* — 222 cos 20 + 1) 52

= 9,(z)dz* = =
%0 = 0a2) n? (z4 — 222 c0s 20 + 1)
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Then we can observe that for n/4 < 8 < n/2, ¢, is the quadratic differential on
Ry with the conditions in Theorem 1 for p, ;=L for i=1,...,4 and L.

On the other hand, if /= L, then the right-hand side of the inequality in
Lemma 13 is equal to 1/2. Therefore the inequality is sharp when /= L.
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