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HARMONIC FUNCTIONS EXPRESSIBLE

AS DIRICHLET SOLUTIONS1

MITSURU NAKAI

Abstract

It is shown that any quasibounded harmonic function on any continuous domain

can be expressed as a generalized solution of the harmonic Dirichlet problem on the

domain with a resolutive boundary function on the boundary of the domain in the sense

of Perron-Wiener-Brelot.

1. Introduction

The basic function space we consider is the linear space H(R) of harmonic
functions (i.e. C 2 solutions of the Laplace equation Δw = 0) on a bounded
subdomain R of the Euclidean space Rd of dimension d > 2. We denote by
HP(R) the linear subspace of H(R) consisting of harmonic functions u on R
such that \u\ admit harmonic majorants on R so that HP(R) is the totality of
harmonic functions which are diίferences of two positive harmonic functions on
R. The significance of the class HP(R) lies in the fact that it forms a vector
lattice under the lattice operations u v v (the least harmonic majorant of two
harmonic functions u and υ on R) and u A V (the greatest harmonic minorant of
two harmonic functions u and v on R).

In this paper we mainly consider the relation between two linear subspaces of
H(R) mentioned below. The first is the space Hqb(R) of quasibounded harmonic
functions u on R, where u e H(R) is quasibounded, by definition, if u e HP(R)
and (w Λ λ) v (—λ)(λ > 0) converges to u almost uniformly on R as λ f oo. There-
fore we have the inclusion relations HB(R) <= Hφ(R) a HP(R), where HB(R) is
the space of bounded harmonic functions on R. The second is the space Hds(R)
of generalized Dirichlet solutions Hj (cf. §2 below) on R with resolutive
boundary values / on dR in the sense of Perron-Wiener-Brelot.

It is readily seen that Hqb(R) => Hds(R) for every bounded domain R (cf. §3
below) and there exists a domain R such that the above inclusion relation is
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proper (cf. §3 below). If a harmonic function u on R is known to be expressed
as u = H*, then we are able to grasp, to a certain extent, the boundary behavior
of M, which is very convenient in many instances. For this reason we are
interested in finding the condition on R for which the equality holds in the above
inclusion relation; in other words, we wish to find the condition on R under
which the necessary condition that ueHqb(R) for u to be expressible as a
Dirichlet solution is also sufficient. The purpose of this paper is to prove that if
R is a continuous domain (see §4 below for the precise definition), then Hφ(R) =
Hds(R).

At this point we must remark that the class Hds(R) heavily depends upon the
compactification of R whereas the class Hqb(R) is not. In this paper we are
taking the Euclidean closure R of R as its compactification which is the important
point to be noted. If we adopt the Wiener or Martin compactification of R and
define the class H£(R) accordingly (where X = W or M indicating that the class
is considered with respect to the Wiener or Martin compactification), then we can
obviously conclude the identity Hqb(R) = H£(R)(X=W,M) at once. The
Wiener compactification of R is always different from R and hence this does not
supply any information to our original problem. However there are cases where
the Martin compactification of R are known to be identical with R, in which case
our original problem is solved. But to find the condition that the Martin
compactification coincides with R is probably harder than the original problem
itself except for a few known cases. Therefore we will confine ourselves to the
proper compactification R of R and prove the following result.

THEOREM 1.1. Every quasibounded harmonic function on any continuous
domain is expressible as a generalized Dirichlet solution on the domain of a
resolutive boundary function on the boundary of the domain.

A continuous domain is roughly a domain which is expressed locally as one
side of a graph of a continuous function in Cartesian or the polar coordinate.
Examples of continuous domains are convex domains, star shaped domains, C 1

domains or more generally Lipschitz domains, certain Holder domains, and so
forth; closures of continuous domains may or may not be identical with their
Martin compactifications; boundary points of continuous domain need not to be
regular in general. Hence continuous domains may be considered to occupy a
considerable portion of bounded domains R of Caratheodory type, i.e. dR = dR.

The proof of the above Theorem 1.1 will be given in §9 after preparatory
discussions in §§2-8. In §2, certain inverse results are given deriving some
properties of the boundary functions / from the Dirichlet solutions Hf. The
general inclusion relation HdS(R) <= Hφ(R) and the occurrence of the strict in-
clusion relation Hds(R) < Hφ(R) are shown in §3. In §4 a rather tedious de-
scription of continuous domains and some related facts are stated. Nevertheless
the intuitive meaning of continuous domains should be clear. An old notion of
Wiener algebra though not too popular is stated in §5 just for the sake of
convenience. The proof of Theorem 1.1 starts in essence from §6 in which the
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extremization of Wiener harmonized function on a subdomain to the whole
region is discussed and the corresponding extremization of Dirichlet solution is
considered in §7. The essential use of the continuous domain property is made
in §8 and the main trick proving our theorem appears here. Summing up those
results obtained in §§6-8, the proof is completed in the final §9.

2. Dirichlet solutions

In addition to the class H(R) of the space of harmonic functions on a
domain R in the Euclidean space Rd of dimension d > 2, we consider the class
&*(R) of superharmonic functions on R. For a class 3F of some functions
we always set J^+ := {/ e 3F : / > 0}. We also consider the class &{R) of
potentials p on R characterized by that p e £f(R)+ and the greatest harmonic
minorant of p is zero on R. Thus we include 0 in 0>(R).

In this paper we consider the Dirichlet problem mainly for a bounded
domain R in Rd and a general boundary function / on dR with respect to the
Laplace equation Δw = 0. We follow the usual procedure of Perron-Wiener-

Brelot (cf. e.g. [2, pp. 156-176]): we denote by Ύf the class of lower bounded
s e £f(R) such that lim mfxe^x^ys(x) > f(y) for every y e dR; we set Yf =
—Ύ_f\ we denote by Hf (Hf, resp.) the lower (upper, resp.) envelope of
^f (jfCf> resp.), which is either harmonic or identically ±oo; we see that Hf >
Hf and Hf = ~K-f and, if Hf = Hf is harmonic, then the common function
is denoted by Hf and / is said to be resolutive; Hf is referred to as the
Dirichlet solution with the resolutive boundary function /.

We denote by dωR the harmonic measure on dR characterized by Hf(x) =
SdRfda>χ for each x e R and each / e C(dR). We fix a point xo e R and use the
simplified notation dω = dωR = dωR

Q. There is a function P( -,x) e L™(dR,dω)
(and actually a Borel function P(-,x) such that c~x <P( ,x) < cdω-&.e. on dR
with the Harnack constant c determined by x and xo and R) such that dω* =
P(-,x)dω on dR. Then a function / on dR is resolutive if and only if f e
Lι(dR,dω) and in this case Hf(x) = \dRf{y)P(y,x)dω(y) (xeR).

We use the following fact which is an easy consequence of the definition of

Hf and Hf: for any function / on dR for which Hf {Hf, resp.) is harmonic
there is a Borel function g (and actually a decreasing (increasing, resp.) limit of
lower (upper, resp.) semicontinuous functions) on dR such that f < g <
||/;L°°(5Λ,ί/ω)|| < oo (/ > g > — \\f\Lco{dR,dώ)\\ > — oo, resp.) on dR with
Hf = HR(HR = HR, resp.). In particular we see that for any resolutive
function / on dR there is a Borel function g on dR with \g\ < | |/;
Lco(dR,dω)\\ < oo on dR and g = /rfω-a.e. on dR such that Hf = HR.

As is well known and also easy to see, the operator / H-> Hf from
Lι(dR,dω) into HP(R) is positive and linear. Then the class Hds(R) introduced
in Introduction is nothing but the image of the operator, i.e. / \-+ Hf :
Lι(dR,dω) ^ Hds(R) is a surjective linear operator. Less trivial is its in-
jectiveness. This instantly follows from the following result.
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PROPOSITION 2.1. If H^ and Hf are harmonic on R, then the inequalities

(2.1) liminf H*(χ) < f(y) < limsup ΉRAx)
xeR,x^y J χeR,x^y J

hold for dω-a.e. y in dR.

Proof We take a p e ^(R) such that Hj + εp e Ψ*y for every positive
number ε (cf. e.g. [1, p. 21]). Let F be the set of points y e dR such that
lϊmmΐxeRίX-+yp(x) = +oo. Since εpei£F (χF being the characteristic function
of F on dR) for every ε > 0, we see that F is of harmonic measure (i.e. dω
-measure) zero. Let y e dR\F. Then Hj + εp e i^j implies that

n n

f(y) < liminf (Hf(x) + εp(x)) < limsup Hf(x) + εliminf p(x)
xeR,x-+y J xεR,χ^y J xeRx^y

for every ε > 0. Since 0 < limmfxeRjX^yp(x) < oo, we conclude that the in-
equality of the right hand side of (2.1) holds by letting ε j 0. To show the left
hand side of (2.1) observe that H_^ is also harmonic since H_f = ~K/ is
harmonic by the assumption on H^. Therefore, by the same argument as above,
we see that

n

-f(y) < limsup77_y(Λ;)
xeR,x—>y

holds for rfω-a.e. y in dR, which is nothing but the validity of the left hand side
of (2.1), and the proof is herewith complete. •

For two functions φ and φ we denote by φ U φ = max(#>, φ) and φ Π φ =
nάn(φ,φ). One should not be confused by these with u v v and u A V used
only for harmonic functions u and v. Since H^ = H^uo — HF_j ,U0, we see that
Hds(R) <= HP(R) and actually Hds(R) is a vector sublattice of the vector lattice
HP(R). Of course Lι(dR,dω) is a vector lattice under the lattice operations U
and Π. Then we can conclude using (2.1) that Hds{R) is isomorphic to
Lι(dR,dω) as vector lattices. In fact, for example, in addition to the triv-
ial implication from / > 0 on dR to Hf > 0 on R, (2.1) assures the inverse
implication from Hf > 0 on R to / > 0 on dR.

3. Quasiboundedness

In Introduction we introduced the class Hqb(R) of quasibounded harmonic
functions on R, which is also a vector sublattice of HP{R). A function u e
HP(R) is said to be singular if (u A λ) v (—λ) = 0 o n i ^ for any positive number
λ. The totality of such functions is denoted by HS(R). Then we have the
Parreau decomposition HP(R) = Hqb{R) φ HS(R) (the direct sum).

Take any f e Lι(dR,dω), which is equivalent to / being resolutive. Then
(Hf Λ λ) v (-λ) = (Hf Λ H*) v HR

λ = Hfnλ v HR

λ = H{%λ)ϋ{_λ) - JaΛ
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(f(y)nλ)Ό(-λ)P(y, )dω(y)9 which, by the fact that \(ff)λ)Ό(-λ)\ < \f\ and
(fΠλ)U (—λ) —> f as λ t oo on R and by the Lebesgue dominated convergence
theorem, converges to ίdRf(y)P(y, )dω(y) = Hf on R. This means that Hf e
Hqb(R). Thus we have established the following inclusion relation

(3.1) Hds{R) cz Hqb{R)

for every bounded domain R. The Parreau decomposition with (3.1) assures that
Hds(R)ΠHs(R) = {0}.

Next we exhibit a simple example of a domain R for which the inclusion
relation (3.1) is proper. We denote by B the open unit ball in Rd. Let X =
B\{χ = (χx,..., χd) : χι > 0, xd = 0}. Then our claim is that

(3.2) Hds(X) < Hqb{X),

where < means the proper inclusion: c and φ. We denote by B+ =
{x = (*', xd) e B : xd > 0} and Br = {x = (*', xd) e B : xd < 0}. Similarly we
set b+ = {x = (x\... ,xd) € B : xι > 0,xd = 0} and b~ = {x = (x\ ... ,x*) e
B : x1 < 0, xd = 0}. Let u := H^_ (χ-^ being the characteristic function of b+ on
dB+), which has boundary values zero on dB+\b+ and in particular on b~ and 1
on b+ so that u > 0 on B+. By the reflection principle, u can be continued to X
across b~ so as to satisfy u e H(X) and u{x) = —u(x) (x e X), where x =
(x', -xd) for x = (xf,xd). Since it is bounded, we trivially have u e Hqb(X). We
wish to show that uφHds(X)' Contrariwise suppose ueHds(X) so that there
exists an f e Lι(dX,dω) with u=_H* on X. By the boundary behavior of
u\B+ we see that u = 0 on dB\b+. Hence / = 0 on dB\b+ by Proposition
2.1. This means that Hj is symmetric with respect to the plane
{x = {χ\χd) : χ

d = 0}. Then u is symmetric (i.e. u(x) = u{x) (x e X)) and at the
same time antisymmetric (i.e. u(x) = —u(x) (x e X)) which must imply u = 0,
which contradicts u\B+ > 0.

In view of (3.1) and (3.2) we are naturally led to investigate the question
when Hds(R) = Hφ(R) occurs. The example in (3.2) suggests that to have the
identity there should not be too many boundary points of R at which R is not
locally connected. For the rest of this paper we are concerned with such a
sufficient condition.

4. Continuous domains

We call a coordinate system on Rd a Cartesian coordinate {polar coordinate,
resp.) if it is obtained from the standard Cartesian coordinate x = (x1,... ,xd) =
{x',xd) (the standard polar coordinate x = rξ = (r,ξ) with r > 0 and \ξ\ = 1,
resp.) by translation and rotation on Rd.

For a Cartesian coordinate x = ( x 1 , . . . ,xd) = (x',xd) we use the following
notation: for any positive number a > 0 we set

β{a) := {x' G Rd~ι : \xf\ := ^/(x1)2 + + (xd~1)2 < a}
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and, for any a, b > 0 and any real number c we consider a cylinder

U(c\ a, b) := {x = (*', xd) : x' e β(a), \xd - c\ < b}.

The point with coordinate (O',c) will be referred to as the center of the cylinder
U(c;a,b), where 0' = (0, . . . ,0) is the origin of Rd~ι in this coordinate.

For a polar coordinate x = rξ = (r, ξ) we use the similar notation as above:
for any α e (0,2) we set

β(a):={ξeSd~ι:\ξ-eι\<a}

with Sd~ι = {ζ e Rd : \ξ\ = 1} and eλ = (1,0,.. . ,0) e Sd~ι and, for any 0 < a <
2 and c > 0 and for any 6e(0 ,c) we consider a sectorial ring

U(c; a, b):={x = rξ:ξe β(a), \r - c\ < b},

for which the point with coordinate ce\ will be called its center.
Consider a domain R in Rd. A point p e dR is said to be a Cartesian

graphic point for R if there exists a Cartesian coordinate Λ; = (x',xd) for which
the coordinate of p is (0',c) (c > 0) and there exist two positive numbers a and b
and a continuous function xd = φ{x') defined on β(ά) such that sup^α)|#> - c\ < b
and

U(c;a,b)ΠR = {x = (x',xd) : x' eβ{a),c- b < xd < φ{x')}

and at the same time we have

U{c\a,b) PidR = {x= (xf,xd) : x' eβ{a\xd = φ(x')}.

In this case the neighborhood U(c;a,b) of /? is said to be an admissible
neighborhood of p and the function xd = φ(xf) is called the local representing
function of R (or <λR) associated with U(c\a,b).

A point p e dRis said to be a /?o/αr graphic point for i? if there exists a polar
coordinate x = rξ for which the coordinate ofp is cei (c > 0) and there exist two
numbers 0 < a < 2 and 0 < b < c and a continuous function r = φ(ξ) > 0 defined
on β(a) such that s u p ^ | ^ - c\ < b and

U(c;a,b)ΠR= {x = rξ : ζeβ(a),c- b<r< φ(ξ)}

and simultaneously it holds that

t/(c; α, ft) Π 3Λ = {* = r{ : f e j»(<i), r =

In such a case the neighborhood U{c\ a, b) of p is referred to as an admissible
neighborhood at p and the function r = φ(ξ) is said to be the local representing
function of R (or <λR) associated with U(c;a,b).

In either of the above two parallel definitions of graphic points we assumed
that φ is continuous. However this is not a thing to be assumed but the con-
sequence of the very definitions: if we simply assume that φ is merely a single
valued function in either of the above two definitions, then we can prove that φ
must be automatically continuous. It should also be noted that there is a plenty
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of examples of R such that dR contains points which are Cartesian (polar, resp.)
graphic points but not polar (Cartesian, resp.) graphic points.

Finally a point p in dR is referred to simply as a graphic point for R if p is
either a Cartesian graphic point or a polar graphic point. A bounded domain R
in Rd will be called a continuous domain (cf. e.g. [3]) if every boundary point of R
is a graphic point for R. It may happen for continuous domain R that there are
two points in dR one of which is a Cartesian graphic point for R and another of
which is a polar graphic point.

For any continuous domain R we can find a finite open covering {^}o<z</
of R such that each J7/(l < i < I) is an admissible neighborhood U(cϊ,ai,bi)
whose center is a point in dR and Uo <= R Such a covering {£/;}()<*</ is
referred to as an admissible covering of R. A partition of unity {^}0 <κm on R
is said to be an admissible partition of unity on Ϊ£ subordinate to an admissible
covering {Ui}0^ι^ι of R if the following three conditions are satisfied: each
φtG C^(Rd) (0 < / < m); {^}o<,<m is subordinate to the admissible covering
{Ui}o<ι<ι °f ^ s u c h ^ a t th e support spt φ0 oϊφ$ is contained in Uo and for each
I < i<m there is a 1 < j < I with spt φt c= £/,; Y^LX ψι = l o n a neighborhood of
dR and Σi=o /̂ = ' o n a neighborhood of R. The existence of such an ad-
missible partition of unity on R can be easily shown.

5. Wiener algebra

Consider^ a real valued function / on a bounded domain R in Rd. We

denote by IV f the class of functions s e ^(R) having compact subsets Ks a R

such that s > f on R\KS. We denote by h^ the lower envelope of the class if j

and set hf := —h_f. The functions hj and hf are either harmonic or identically

f o o on i? and satisfy h^ > h^ on R. If hj = h^ on R and the common

function is harmonic on R, then we say that / is harmonizable on R and we

denote the common function by h* (cf. [1, pp. 54-55]).
Still assuming R to be bounded we denote by N(R) the class of bounded

continuous functions f on R which are harmonizable on every subdomain of
R. It is known that N(R) forms a Banach algebra having the multiplicative
identity 1 equipped with the supremum norm and also N(R) is a vector lattice
under the lattice operations U and Π (cf. [4, pp. 223-227]). The most important
point is that N(R) is an algebra and complete with respect to the uniform
convergence. The operator /1-> h^ : N(R) —• HB(R) is seen to be a homo-
morphism as vector lattices. Thus we have e.g. h^Πg = hf A h^ on R.

We denote by Cb(R) the class of bounded continuous functions on R. It is
not difficult to see that any function s e Sf{K) Π Cb(R) is harmonizable on any
subdomain V of R. In fact, let u be the greatest harmonic minorant of s and

l be an exhaustion of V by regular domains. Then R^VnV | u as /1 °°>
^ v v

where Rs is the balayage of s over the set V\Vt with respect to the domain

V. Since R s " v e ifs , we see that RΓ^V"V > hs > Yζ >u on F, which
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implies that h[ = ^ = M O Π V. Hence we see that

(5.1) Sr(R)ΠCb(R)cN(R).

Let / e C(Rd) and S be a bounded domain with R c S. As is well known
there are sequences (•?•);>i and (sl/)i^ι in y(S) Π C(5) such that (^) / > 1 with
Si = s[ — s" converges uniformly to / on R. By (5.1), s^ and s" and hence st

belong to N(R). By the completeness of N(R) in the uniform convergence, we
can conclude that f e N(R). Hence we have the following relation:

(5.2) C(Rd)\RczN(R).

We will use (5.2) in the following fashion. Let u e HB(R) ad φ e Co°° (Rd).
It is obvious that ueN(R), and by (5.2), φeN(R). Hence the closedness of
N(R) under multiplication assures that φueN(R).

6. Wiener extremization

Fix an admissible neighborhood U(c\ a, b) with a center /?0 in the boundary
dR of a continuous domain R and set V := i£Π U{c,a,b). According as
U(c;a,b) is considered with respect to a Cartesian coordinate or polar coor-
dinate, we let the coordinate of the center p0 be (0;, c) in the Cartesian coordinate
or ce\ in the polar coordinate in question. We will prove the following result.

LEMMA 6.1. If veN{R)+ satisfies v = 0 on R\U{c af\V) (0 < a' < a,
0 < b' < b), then tiζ can be continuously extended to R by setting h^ = 0 on R\V
and the extended tiζ is subharmonic on R and has boundary values zero at each
point of dR\U(c;a,b). Moreover the extremization of hζ on V to R is hf in the
sense that

(6.1) hϊ-hζ

where hζ is considered to be the above extended subharmonic function on R.

Proof For simplicity we set A := U(c;a,b) and C : = U(c;a',b') so that
V = RΠA. Observe that (6.1) is equivalent to 0 = GHM[A^ - hζ] = h* -
LHM[Ay

κ], where GHM^] ( L H M [ J ] , resp.) means the greatest harmonic minorant
(the least harmonic majorant, resp.) of a superharmonic (subharmonic, resp.)
function s on R. Thus we only have to show that

(6.2) LHM[Λ,K]=*,Λ.

Consider t:=R^ΠR'v, where the term on the right means the balayage of
the constant function 1 on CΠR relative to the domain V so that t is the
harmonic measure of COR on the domain V\C. By the cone condition every
point of d V\A is regular and thus t has boundary values zero at every point in
dV\A. The delicate points are those in δAΠdR but this set is contained in
dV\A. Let γ := supΛi;. Clearly γt e iTυ and hence 0 < hζ < γt so that h%
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also has boundary values zero at every point in dV\A. Hence hζ can be
continuously extended to R by setting hζ = 0 on R\V and the extended hζ
has boundary values zero at each point of dR\U{c\a,b). Hereafter we use
the notation hζ in this extended sense. Clearly tiζ -e — £f(R), i.e. hζ is sub-
harmonic on R.

For the proof of (6.2) we need a function p e ^(R)+ with the following
property:

(6.3) hv + LpeW
v

v (rneN),

where N is the set of positive integers. We now explain the procedure of the
construction of p and show it actually satisfies (6.3).

Fix an arbitrary point xo e V and choose uι e Wυ such that Uj(xo) —
h[(xo)<2-1 for each ieN and set q := ΣZifa;~ K)> w h i c h belongs to
Sf{Vγ. Modify q to u := RCΠR,V e ^(V)+. Again by the cone condition, u
can be continuously continued to R Π dA on which u takes the value 0. In view
of this if we take a' < a" < a and b' <b" < b sufficiently close to a and b, then

sup u < oo,
RΠdB

where B := U(.c,a",b"). Next take w := AfΠ R R, the harmonic measure of
BΠR on the domain i?\£, i.e. w e £f(R)+f)C(R)Γ\H(R\B) with w = 1 on

BΠR. Take a large ball D such that ^ c i ) . Then w' := κf>Z) takes the values
less than I on dA. Since 0 < w < w' on R we see that

sup w < 1.
RΠdA

Therefore if we choose a positive number M' sufficiently large, then the following
inequality holds:

1
sup w < 1 — sup u.

RΠdA M Rf]dB

We fix such a n M ' . Then we can find a positive number M such that

M ( 1 \
—y 6 sup w, 1 - — sup M .

We also fix such an M. Then, since Mr sup Λ Π ^ w < M = u + M on i£Π 3̂ 4, we
see that

u + M > M'w on RΠdA.

Similarly, since supRf]dBu + M < M' = M'w on RΠdB, we obtain

u + M < M;w on î  Π d£.

Using the above last two displayed inequalities we can easily see that the function
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p on R defined by

ί
u + M on BΠR

min(w + M, M'w) on (A\B) Π R

M'w on R\A
is superharmonic on R, i.e. /? e

Let £, be a compact set in F such that ut > v on K\^ for each 1 < i < m
for an arbitrarily fixed m and set K := ( J ^ ^ , which is a compact set in V.
Then (l/mJΣ^f/,-^!; on F\ΛΓ. Hence, on (CΠR)\K,

1 1 1

K+ip = h"' + l(u + M)>hϊ+-qKYJ{iK)
l=\ l=\

i.e. hζ + (\/m)p > v on (CΠR)\K. This is also true on V\C since v = 0 there.
Thus Ay

F + (l/m)p > v on F\^Γ, which implies (6.3).\
D

Choose an arbitrary w e ^ so that there is a compact set K a R such that
u>v on R\K. By v = 0 on R\C, u>v holds on R\KΠB and a fortiori on

V\K Π 5 so that we have u \ V e ΊVυ . Thus u > hζ holds on V and naturally on
R, which implies that hf > hζ and in turn LHM[/^F] < h*. Conversely, take an
arbitrary u e 6f(R)+ such that hζ < u on R. By (6.3), there is a compact set
K a V such that hζ + (\/m)p > v on V\K. The last inequality is trivially true
on R\V and therefore

1 ΊV 1
m v m

n

on R\K, i.e. w + (l/m)p e ΊVV and thus u + (l/m)p>h* on î . On letting\ (/)p V (/)p
m t oo and then on taking the infimum with respect to u e &*(R) with u > hζ on
R, we can conclude that LHM[Ay

F] > Af, which proves (6.2).

7. Dirichlet extremization

Let U(c\a,b) and V := RΠ U(c;a,b) be as in §6. We set α : = U(c]a,b)Π
dR, which is a subset of dV and at the same time a subset of dR. Let/be a
bounded nonnegative Borel function on α vanishing continuously at each point of
dU(c;a,b) Π dR. We extend / to Rd by setting / = 0 on Rd\u. Hence if we
write Hj {Hf, resp.), then the boundary function/is understood to be f\dV
(f\dR, resp.). The following result is a counterpart to (6.1) but its proof this
time is easy and immediate.

LEMMA 7.1. The function Hj on V can be continuously extended to R by
setting Hj = 0 on R\V and thus extended Hj is subharmonic on R. Moreover
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the extremizatίon of Hj on V to R is Hf in the sense that

(7.1) Hf-Hje0>(R),

where Hj is understood to be the extended subharmonίc function on R.

Proof By the cone condition every point in dU(c;a,b)Γ\R is regular.
Since / = 0 on dV\oc, we see that Hj has boundary values 0 on dV\ot. Thus if
we extend Hj to R by setting Hj = 0 on R\ V, then it is continuous on R and
easily seen to be subharmonic on R.

To see (7.1) we take a Borel function φ on dV defined by φ = 0 on α and
φ = Hf on dV\μ. We first note that

In fact, take an arbitrary s e ̂  . Since s > Hf on V, we have s e i^f+φ and a

fortiori Hf\V> Hj+φ. Similarly H*f \ V > H^f_φ, which means Hf \ V <

Hf+φ Thus we have deduced the above displayed identity. Note here that the

sign of/is immaterial in the above argument so that considering —/ in addition

to / is allowable.
We extend Hj and H% to R by setting Hj = 0 and Hζ = Hf on R\V.

Then by the above displayed identity we still have Hf = Hj + Hζ on R so that

TTR TTV _ τjV

Hf -Hf - Hφ

on R. To deduce (7.1) we only have to show that the extended Hζ is a
potential on R. Since every point in RΠ dV = dV\oc is regular with respect to V,
the extended H^ e C(R). Since Hf > Hζ > 0 and / vanishes continuously at
each point of dU(c;a,b)ΠdR9 we see that H% e£f{R) and Hζ has boundary
values zero at every regular point of dR. This with the boundedness of H^
assures that it is a potential. •

8. Construction of boundary function

Fix an admissible neighborhood U(c; α, b) with a center p in the boundary
dR of a continuous domain R and set V := RΠ U(c; a, b). According to whether
p is a Cartesian or polar graphic point, we let the coordinate of the center p be
(O',c) in the Cartesian coordinate or ce\ in the polar coordinate in question. We
now prove the following result.

LEMMA 8.1. If v is a bounded nonnegative harmonic function on V having
boundary values zero on dV\U(c;a,b), then there exists a bounded nonnegative
Borel function f on dV vanishing continuously at each point of dV\U(c;a,b) such
that

(8.1) v(x)=Hf(x) (xeV).



DIRICHLET SOLUTIONS 127

Proof. Without loss of generality we may assume that 0 < v < 1 on V.
There is a y e (0,b) such that even U(c;a,b — y) is admissible. We now define
Vι and Vj for i > z'o separately according as p is a Cartesian graphic point or p is a
polar graphic point.

In the case p is a Cartesian graphic point we set z'o '-— 1 + [1/y], where [•]
is the Gaussian symbol. For each i > z'o we set Vt := {x + (l/ήβd : x e V}
where ed = (0,...,0,1) e Rd. Consider a function vt eH(VιΠR)Γ\ C(V) given
by Vi(x) :— v(x — {\/ί)ed) for x e Vt Π R and Vi(x) — 0 for x e V\Vt. In the case
p is a polar graphic point we set z'o := 1 + [(<? — 6)/y]. For each z > k we set
F, := {(1 + (l//))x : x e V}. Consider a function ι?, e #(K, Π Λ) Π C(P) given
by ^.(x) := ϋ((l + (l/i))" 1 ^) for x e Fz Π i^ and ^(x) = 0 for x e V\Vt. In either
case we set w, := ^ J , where ft = Vi\dVe C(dV) and satisfies 0 < /j < 1 on 3F.

We denote by dωζ the harmonic measure on dV evaluated at x e V; fixing
an arbitrary point x$eV we set dω = dω^; there is a function P(-,x)e
U»{dV,dω) such that rfωx

F = P(Ίx)dω (cf. §2). We denote by (Lι(dV,dω))*
the dual space of Lλ(dV,dω) which is U®(dV,dώ). By the Alaoglu theorem,
the closed unit ball B in L™{dV,dω) = (Lι(dV,dω))* is weakly * compact,
which is characterized by the fact that any generalized sequence in B has a cluster
point in B. Hence the particular generalized sequence ( / J ^ ^ in B has a cluster
point / ' in B. We will show that

(8.2) υ{x) = Hj,{x) (xeV).

For this purpose we only have to show that

(8.3) \v(x) - HμX)\ < ε

for any positive number ε > 0 and any point x e V chosen arbitrarily and then
fixed in advance.

If i > k is sufficiently large, then xeVtΓ\R and hence Vj(x) — v(x) =
v(x - (l/i)βd) - v(x) or v((l + (l/i))~ιx) - υ(x)9 according as p is a Cartesian or
polar graphic point, tends to zero as i ] oo by the continuity of v on V. Therefore
there exists a number j \ > z'o such that

(8.4) \υ,(x)-v(x)\<j (i>M).

We introduce an auxiliary function w :=_H^, where the boundary function φ
on dV is given by φ\RΓ\dV = 0 and φ\ VV\dR— 1. Then w has boundary
values zero on RΠdV and one at every regular point in dV\RΓ\dV. Clearly
0 < w < 1 on V. Choose a sufficiently large ball B(p,p) := {x : \x - p\ </?}=> R
and a function q e H(B(p,p)\dRΓ\dV)+ such that q has boundary values 0
on dB(p,p) and +oo at each irregular point of dRΠdV with respect to V.
Examining the boundary values of the harmonic function w — w, + δq on V on
d V for an arbitrary positive number δ we see that w + δq > wz_on V so that w >
Wi on F b y letting δ j 0. In particular 0 < vv? < s u p ^ F w on V\Vt. Once again
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by examining the boundary values of the harmonic function w, - vι —δq —

Vι w on VtΠR on d^ΠR) for an arbitrary positive number δ, we see it is
inonpositive on VtΠR and then on V so that, by letting δ [ 0,

0 <Wi — Vj < sup w
V\Vι

on V. The rightmost term of the above tends to zero as /1 °° Therefore we
can find a number j 2 > z'o such that

(8.5) K (*)-»,(*)|<f (i>j2).

Finally, since / ' is a cluster point of the generalized sequence (/J,>,0 in the
dual space {Lλ{dV,dω)Y = U°{dV,dω), for the number j 3 :=m.ax(Jι,j2) > io,
there is a number i\ > j 3 such that fh is contained in the given neighborhood of
/ ' in the dual space determined by P( ,x) e Lι(dV,dω) and the positive number
ε/3, i.e.

f P(y,x)ftι(y)dω(y)-\ P(y,x)ff(y)dω(y)
JdV JdV

which means that

(8.6) K ( x ) - # / , ( * ) ! < | .

Since i\ > j \ and j 2 , from (8.4) with / = i\, (8.5) with / = i\, and (8.6), the
desired relation (8.3) follows so that we can conclude (8.2). We can find a Borel
function / " with 0 < / " < 1 on dV such that υ = Hv

ft = Hv

fl, on V (cf. §2). Since
v has boundary values zero on Rf)dV, by Proposition 2.1, we can replace f" by
f'" := /"XyndR (XyndR ̂ eing Λe characteristic function of VΠdR on dV), which
is still a bounded nonnegative Borel function on 3F (since VΠdR is a Borel
subset in dV) vanishing continuously on RΠdV and satisfies v = ^w, = Hv

f,,, on
f f

V. Finally let β := dU(c;a,b)ΠdR and /?(ί) (^(ί), resp.) be the set of points
xedV (xeV, resp.) such that there is points yxeβ with \x - yx\ < ΐ for
a positive number t. Since f vanishes continuously at each point of /?, there is
a strictly decreasing sequence (^)/> I °f positive numbers u [ 0(i t oo) such that
ί, := supβ'^v I 0(i T oo). By v = H%n on V and by Proposition 2.1, we see that
0 < / ' " < j , rfω-a.e. on j8(ί, ) and hence on β(ti)\β(ti+\) (iεN). Hence if we
replace / ' " by

OO

/ : = Σ(/WΠs*)XβW\β(tM) +°'Xβ + ff"Xδv\β{tι),
l=\

then we still can conclude that/is a bounded nonnegative Borel function on dV
and v = //L = 7/^ on K and moreover / vanishes continuously on the set d V\
U{c\a,b) and especially on β = dU(c;a,b)Γ\dR. •
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9. Proof of Theorem 1.1

Given a w e Hφ(R) for a continuous domain R and we are to find an / e
Lι(dR,dω), or equivalently a resolutive boundary function / on dR, such that

(9.1) u = Hf onR,

where dω = dω£o for a fixed xo e R. First we remark that we may and thus we
will assume that 0 < u < 1 on R in proving (9.1). In fact, since Hφ(R) is a
vector lattice, a general u e Hφ(R) can be expressed as u = u+ — u~ (w+ = M V O ,
uΓ — -u /\ 0). If (9.1) holds for functions in Hφ(R)+, then there are f± e
Lλ (dR, dω)+ such that u± = H*±. Hence the choice f •= f+ - f~ e Lλ (dR, dω)
suffices to deduce (9.1) for u. Hence we can assume that u > 0. Next let
Ui :=u A IE HB(R)+ for each i e TV. Then ut \ u on R. If (9.1) is valid for
functions in HB(R)+, then there are ft e Lι(dR,dω) such that Ui = Hf(ieN).
By Proposition 2.1, 0 < /, < i and /, < / ϊ + 1 (/ e N). Hence / := lim^oo'/, exists
and is ί/ω-measurable on dR. Since 0 < J a Λ/, dω = w, (xo) ^ M(^O)J we
have 0 < $dRfdω = lim/Too \$Rfιdω <u(x0), i.e. / e Lι(dR,dω). Hence //f t
Hf(i] oo) and //^ = «, T w(z | oo) assure the validity of (9.1) for u. Thus
we can assume that ueHB(R)+ in proving (9.1). For ueHB(R)+ there is a
constant c> 0 such that 0 < cw < 1 on R. If cu = Hf for an / e Lι(dR,dω),
then u — Hf_x,. Therefore, finally, we have seen that we may assume 0 < u < 1
in proving (9.1).

Let {£//}()<*</ be an admissible covering of R and {^} 0<,<m be an
admissible partition of unity on R subordinate to {^}o<*</ (°f §4) F ° r e a c r i

0 <i <m there exists a y = y, (0 < j < I) such that spt φt a Uh with j0 = 0 and
jtφ0 (\ <i<m). We set F, := Ujt OR (0 < i < m). By (5.1) and in fact
trivially u e N(R) and by (5.2) we have φt e N(R) (0 < ί < m). Since N(R) is an
a l g e b r a , Ui : = u Ψ i e N ( R ) ( 0 < i < m ) ( c f . § 4 ) a n d u = u > l = u Σ ™ 0 φ t = Σ Z o
uΨi = Σ z = 0 U i O n ^ » ί e W e

with Ui G N(R) (0 < i < m) and («/, F,) plays the role of (r, F) in §6 for each
ί(\ <ί<m). In view of A^ = 0, we have

Here h£ are understood to be nonnegative continuous subharmonic functions on
R by setting /zM

F< = 0 on R\Vt. By Le ^ F

thus P := Σ" i (A^ " < ' ) e ^(Λ) and

H e r e h £ a r e u n d e r s t o o d t o b e n o n n e g a t i v e c o n t i n u o u s s u a c u
R b y s e t t i n g /zM

F< = 0 o n R \ V t . B y L e m m a 6 . 1 , Λ ^ — λ M

F ' e 0>(R) ( \ < ί < m ) a n d
h P Σ"i(A^ < ) ^(Λ) d

(9.2) u = 2^%'+P onR-
ι=l
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Since hζι e H(Vt) and, in view of Lemma 6.1, has boundary values zero on
dVt\Ujl9 there is, by Lemma 8.1, a Borel function gt on dVι with 0 < Qi < 1 and
Qi vanishes continuously at each point of dVι\Uji such that h£ = H^1 on
Vt (1 < i < m). We set /, = gt on Vt Π dR and /, = 0 on Rd\Vt Π cLR. Then /
is a Borel function on Rd with 0 < ft < 1 and hζι = i/J' on F, and hence on /?
by setting H% = 0 on R\Vt (1 < / < m). Let / := X;^ / p which is a bounded
nonnegative Borel function on dR. We have

ι=l ι=\ ι=l ι=l

z - !
 ι=\ ι=\

on 7̂ . Since Hf - Hv

f

ι e 0>(R) (i = 1,... ,/w) by Lemma 7.1 and thus Q : =

< ) ' ( ) , we have

(9.3) 2 ^ hζι =Hf - Q onR.
l=\

By (9.2) and (9.3), we see that u = Hf + P- Q on R, which implies that

on i£. Since the nonnegative subharmonic function \u — H*\ on R is dominated
by the potential P + g on i?, we must have \u — Hf\ = 0 on R, which proves
(9.1). •
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