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Abstract

Let $ be an ample vector bundle of rank r on a smooth complex projective

manifold X of dimension n > r + 3. Pairs (X, $) as above are investigated under the

assumption that $ has a regular section vanishing along a Fano manifold Z of index

dim Z - 1 and Picard number p(Z) > 2.

Introduction

Let X be a complex projective manifold of dimension n and let $ be an
ample vector bundle of rank r <n — 2 on X having a regular section, i.e. there
exists a section s e Γ(^) whose zero locus Z := (s)0 is a smooth subvariety of the
expected dimension n — r. Triplets (X,$,Z) as above have been investigated in
several papers ([LM1], [LM2], [LM3], [dF], [LM4]) under the assumption that Z
is some special variety. In particular the case when Z is a Fano manifold of
index dimZ - 1 and Picard number p(Z) = 1 was discussed in [LM1, (2.4)]. In
this paper we focus on the case p(Z) > 1, assuming that d imZ > 3. Actually as
the results in [LPS] show, the same study when Z is a surface is far from being
complete even in the case of divisors, i.e. when r = 1. We recall that extending
several classification results known in the setting of ample divisors is the main
motivation for investigating triplets (X,δ,Z) as above [LM1].

To relate our Z to the title note that Fano manifolds of index dim Z — 1
coincide with del Pezzo manifolds, with the only exception given by the pair
(P3,0p i(2)). So, having assumed that dimZ > 3, according to the classification of
del Pezzo manifolds, [F, Chapter I, §8], Z is one of the following:

(0.1) P2 x P 2 , P(TP2), Bq(P3), Pι xPι x P\

where Bq(P3) stands for P3 blown-up at a point q. Note that this threefold has
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a P1-bundle structure over P 2 , a section of which is the exceptional divisor of the
blowing-up. So in all cases Z = Ps(&), where S = P2 and J* is any twist of
Θβ3, Γp2, ΘPi(\)®ΘP2 in the first three cases, while S == Pι x ? 1 with J* any
twist of the trivial bundle of rank 2 in the last.

The main result of this paper is that triplets (X, $, Z) as above with Z as in
(0.1) satisfy a very strong restriction. In fact the P-bundle structure of Z
described above extends to a P-bundle structure of X. More precisely we have

THEOREM 1. Let X be a smooth complex projective n-fold and let $ be an
ample vector bundle on X of rank r, 2 < r < n — 3, having a regular section with
zero locus Z. If Z is a Fano manifold of index d imZ — 1 with p(Z) > 2 then
X = Ps(^) where !F is an ample vector bundle of rank n—\ over a surface

( P 1 xP\ if Z = Pι xPι xPι

[ P 2 , otherwise.

Moreover & = H (x) f*&, where H is the tautological line bundle of 3F on X,
f : X —> S is the bundle projection and <&, a vector bundle of rank r on S, is the
dual of the kernel of the vector bundle surjection 3F —> & corresponding to the
fibrewise inclusion of Z — Ps(^) into X.

The proof relies on a thorough analysis of the Mori cone of X in comparison
with that of Z. Due to the ampleness of δ the cone of Z can be seen as a
subcone of X in the same real vector space Rp^. Moreover the special structure
of Z allows us to prove that a negative extremal ray of Z is also a negative
extremal ray for X. The corresponding contraction is the morphism /. To see
that it makes X a P-bundle over S we construct a suitable ample vector bundle of
rank n — 2 on X, whose adjoint bundle is not nef, to which a result of Maeda [M]
applies.

Now, let h e Pic(Z) be the ample line bundle such that —Kz = (dimZ - \)h.
Then, due to the ampleness of $ there exists a unique line bundle Jf e Pic (if)
such that Jfz = h When Jίf is ample all possible triplets {X, S, Jf) occurring
for dimZ > 2 have been classified in [LM4, Theorem 4]; in particular it turns out
that for dimZ> 3 it cannot be p(Z) > 1. In other words in our setting Jίf
cannot be ample. On the other hand, when p(Z) = 2 and X is Fano, X has a
second negative extremal ray, whose contraction morphism has been analyzed in
[SzW]. This allows us to obtain a nice application of Theorem 1, improving the
above conclusion as follows.

THEOREM 2. Let X be a smooth complex projective n-fold and let $ be an
ample vector bundle on X of rank r, 2 < r <n — 3, having a regular section whose
zero locus Z is a Fano manifold of index dim Z — 1 with p(Z) = 2. Let —Kz =
(dimZ-l)λ, with hePic(Z) ample, and let 3tf e¥\c{X) be the line bundle
extending h to X. Then Jf is not nef
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As to Theorem 1, in fact we cannot assert that our result is effective.
Actually it is well known that products like P2 x P2 and Pι x Pι x Pι cannot
occur as ample divisors [S, Proposition IV]. The same is known for Bq(P3) [F,
p. 66]. This leads us to suspect that these cases should not really occur also in
our setting.

The paper is organized as follows. In Section 1 we collect some background
material and prove a key lemma for comparing the cones of Z and X. The
proof of Theorem 1 takes Sections 2 and 3. In Section 4 we prove Theorem 2.

1. Background material

(1.1) We only consider complex projective varieties. A smooth projective
variety is frequently called a manifold, sometimes an «-fold to emphasize its
complex dimension n. We use standard notation in algebraic geometry, but
following current abuses we do not distinguish between vector bundles and the
corresponding locally free sheaves. Moreover we adopt the additive notation for
the tensor product of line bundles, reserving the multiplicative one for inter-
sections in the Chow rings. We denote by $z the pull-back of a vector bundle δ
on a manifold X via an embedding Z c X.

(1.2) Let X be a manifold, and set

Nι(X) := ( R φ O / = ) ® Λ , Nχ(X) := (

where = denotes the numerical equivalence. These R-vector spaces are in
duality through the intersection of 1-cycles and divisors. Their dimension p(X)
is the Picard number of X. In N\(X) the numerical classes of effettive 1-cycles
span a convex cone whose closure is denoted by NE(X). The corresponding
dual cone in Nι(X), which is spanned by the numerical classes of nef divisors, is
the closure of the cone Amp(l r) spanned by the classes of ample divisors, due to
the Nakai-Moishezon-Kleiman ampleness criterion. If D is a divisor of X, we set

NED^{X) := {[C] E NE(X) \ C D^O}.

According to [K, Chapter II, Definition 4.9], if V is a closed convex cone in
Rn, a subcone W a V is called extremal if it is so in the sense of convexity. A
polyhedral extremal subcone is called an extremal face. A one dimensional
subcone is called a ray. A ray R of NE(X) is said to be negative if it belongs to
NEχx<o(X). A divisor L is a good supporting divisor of an extremal face W of
NE(X) if L is nef and NEL=Q(X) = W.

(1.2.1) THE CONE THEOREM [M], [KMM]. Let X_be a manifold. Then there
exist countably many negative extremal rays Rt of NE(X) such that

Such rays Rt are locally discrete in the open halfspace NEκχ<o(X), and each of
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them contains the numerical class of a rational curve Ct such that

0 < -KxQ < d i m X + l .

(1.2.2) THE CONTRACTION THEOREM [KMM]. Let X be a manifold and let R
be a negative extremal ray. Let L be a good supporting divisor of R. Then \mL\
is base point free for m » 1. Thus, through Stein factorization, it defines a
morphism fR : X —> Y over a normal variety Y, with connected fibres, such that
—Kx is fR-ample and, if C is any irreducible curve on X, then fR(C) is a point if
and only if [C] e R. Moreover p(Y) = p{X) - 1.

(1.3) Let R be a negative extremal ray of an n-ΐold X. We recall that the
length of R is defined as

l(R) := min{-Kx C \ C is a rational curve, [C] e R}.

By the Cone Theorem (1.2.1) this number satisfies the inequality:

(1.3.1) 0<l(R)<n+l

Now let S be an ample vector bundle on X, and consider the set Ω(X, S) of
those negative extremal rays R of NE(X) having negative intersection with the
adjoint bundle Kx + det S. If such set is not empty, for any R e Ω(X, g) and C
a rational curve in R such that —Kx C = l(R) we define the positive number

Λ(JT, g, R) := ~(Kχ + det g) C.

(1.3.2) PROPOSITION. Let $ be an ample vector bundle on X and assume that
Ω(X, g) is not empty. Then for every R e Ω(X, S)

We refer for this to [Wl, Theorem (3.3)]. Note that though stated for g
ample and spanned, its proof does not involve the spannedness assumption,
simply relying on the first part of [Wl, Lemma (3.2)], where g is simply supposed
to be ample.

(1.3.3) THEOREM [W2, Theorem (3.3)]. Let R be a negative extremal ray on
a manifold X, f = fR : X —> Y its contraction, E := Exc(/) the locus of the points
of the curves belonging to R, F the general fibre of f\E. Then

dim£ + dimF > dimX - 1 + l(R).

(1.4) LEMMA. Let Z be a smooth irreducible subvariety of a manifold X, and

assume that the inclusion induces an isomorphism N\(Z) =N\(X). Let R be a

negative extremal ray in NE(X) and let fx : X —> Y be the corresponding con-

traction. Then the restriction fx\z of fx to Z is not a finite morphism if and

only if R is an extremal ray inNE(Z) as well. In this case, if R is also negative in

NE(Z), denote by fz the relative contraction of Z\ then fx\z factors through fz

and a finite morphism.
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Proof. The fact the fx\z is not a finite morphism if and only if R aNE(Z)
is a consequence of the Contraction Theorem (1.2.2); the extremality of R in
NE(Z) follows from its extremality in NE(X) and the inclusion of the cones
NE(Z) ^NE(X).

Now suppose that R is a negative extremal ray both in NE(X) and NE(Z).
f^_ is defined starting from a good suporting divisor L of R as extremal ray of
NE(X); by inclusion of the cones of the curves, / := Lz is also a good supporting
divisor of R as extremal ray of NE(Z). Let φ\mL\ : X —> Yo and φ^ : Z —> PFo.
Note that φ\mL\ \z is φ\ml\ followed by a projection π from some linear subspace of
P(H°(ml)). Let

z ^ Y -^ r0, z ^> w -^ PFo,
be the corresponding Stein factorizations, where u and v are finite morphisms.
Then

(uofx)\z = πovofz.

Call A this morphism. Let G be a positive dimensional connected component of
a fibre of h. Then every irreducible curve C c G is contracted by / z ; hence
[C] G iΐ, but since R is also an extremal ray of Z we see that / Z ( C ) , hence
/ Z ( G ) , is a point. It thus follows that π is finite. Moreover fx\z factors
through fz and a morphism t/ factoring no v. But t/ has to be finite, so being
no υ. •

2. The Pn2-bundle structure of X

(2.1) Let (X, δ,Z) be as in the assumption of Theorem 1. Then Z is one
of the four manifolds appearing in (0.1). Since in all cases d i m Z > 3 , the
Lefschetz-Sommese theorem [LM3, Theorem (1.1)] tells us that the inclusion
/: Z —> X induces isomorphisms both on the second cohomology groups and on
the Picard groups:

(2.1.1) Γ :V\c{X) - ^ M c ( Z ) .

Recall that, on the Picard groups, numerical and homological equivalence
coincide (e.g. [H, Proposition 3.1]). Then, taking quotients with respect
to numerical equivalence, (2.1.1) still induces an isomorphism between the nu-
merical equivalence class groups. So, by tensoring with R and using duality, we
get isomorphisms:

(2.1.2) N\X) s N\Z), NX{X) s M(Z),

and under these identifications we have the obvious inclusions

NE(X) =>NE(Z), Amp(X) c Amp(Z).

Note that for any [C] GNE(Z) we have Kx C = (Kz - det^ z) C < 0,
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which means that NEκχ<o(X) is not empty. Hence by the Cone Theorem
(1.2.1) there exists at least a negative extremal ray R of NE(X). Moreover
Ω(X, S) it is not empty because {Kx-\-άQiS)z = Kz is not nef.

(2.1.3) From now on we consider i ? e Ω ( I , l ) and [C] eR such that — Kx

C = l(R). We denote by / = f\ : X -> Y the contraction of R, by E := Exc(/)
the locus of the points of the curves belonging to R and by F the general fibre of
f\E. Note that it can be E = X.

We are going to investigate the contraction fR of X according to the four
cases in (0.1).

(2.1.4) CLAIM. R has length n — 1, and f is a morphism of fiber type onto a
surface Y whose restriction f\z to Z factors through the contraction of an extremal
ray of NE(Z) and a finite morphism. Moreover there exists an ample vector
bundle £' of rank n-2 on X such that Kx + det<f' is not nef

We will prove the Claim by cases.

(2^2) CASE Z^P2 XP2. In this case Nγ(X) ^ Nχ{Z) £ R2, hence NE(X)
and 7Vis(Z) are 2-dimensional cones. This implies that both admit exactly two
extremal rays. The extremal rays of NE(Z) are spanned by the numerical classes
of two lines C\ and Cι belonging respectively to fibres of the two projections of Z
onto the factors. We can think of these two curves as the generators of N\(Z),
hence of N\(X), through the identification (2.1.2). The line bundles corre-
sponding to such curves by duality are h\ := 0z(l,O) and /*2 := $z(0,1). We
denote by Ht (i = 1,2) the line bundle on X corresponding to A, through the
isomorphism (2.1.1).

Let R = R>o[C) and / = fR be as in (2.1.3). We can write [C] = Σιλi[ci]
where

j

Hence

0 < A(X, β,R) = ~{Kχ + detί) C = -Kz Ύ^λfQ = 3 ]Γλ,,

which implies \{X,£,R) > 3. So l(R) >n-\ by (1.3.2). Now by Theorem
(1.3.3) we get

(2.2.1) d i m £ + άimF >n-l+ 1(R) >2n-2.

(2.2.2) Suppose tha t/ i s birational, i.e. dimis < n. Then (2.2.1) implies that
dim is = άivnF = n—\. So E is a divisor and f{E) is a point. Note that E
cannot contain Z, since otherwise / would map Z to a point while Lemma (1.4)
tells us that f\z cannot be the contraction of the whole cone NE(Z). Then,
restricting the divisor E to Z, we see that Ez = E Π Z is an effective divisor of Z
which is nontrivial in view of the isomorphism (2.1.1). Therefore f\z is a



AMPLE VECTOR BUNDLES AND DEL PEZZO MANIFOLDS 89

birational morphism of Z on /(Z) which contracts the divisor Ez. But this
cannot happen because P2 x P2 does not admit any divisorial contraction, and so
this case does not occur.

(2.2.3) Therefore / is of fiber type: dimE = n, dimF > ί(R) - 1 > n - 2
and dim Y — n — dimi7 < 2. Note that f\z is not finite: by appying Lemma
(1.4) we get that R is also a (negative) extremal ray ofNE(Z), say for example
R = i?>o[Ci], and f\z : Z —> Y factors through one of the two projections of Z
on P2 and a finite morphism. We deduce in particular that dim Y = 2 and

=n-l.
(2.2.4) Note that H2 = Θχ(0,1) is a good supporting divisor of R, and

in particular that [H2} e Amp(X). Since Amp(X) cz Amp(Z), we deduce that
[{\/m)H\ + 7/2] e Amp(lr) for a sufficient large me N. In other words there is
an ample line bundle of the form H := H\ + m# 2 . Let £f \=£ ®H ®H. Then
<?' is an ample vector bundle of rank n - 2 whose adjoint bundle Kx + άQtS' is
not nef, since

(Kx + d e t O d = (Kz + 27fz) Q = - 1 .

^ Z^_P(Tp2). In this case TVi(X) ^ TVi(Z) ^ Λ2 and the two
cones NE(X) and NE(Z) are 2-dimensional. As is well known,

Z = {(*, y)eP2xP2\ xoyo + xιy}+ x2y2 - 0} e | ©P2xp2(l, 1)|

and Kz = -2A, where h := ^p2x/,2(l, l ) z . Note that

Z x : ZΠ ({x} x P2) ^{yGP2\ xoyo + ̂ iJi + ̂ 2^2 = 0} = Pl

for any xeP2 and, symmetrically, Z^ = ZΠ (P2 x {7}) ^ Px for any yeP2.
Hence Z has two structures of Pι-bundle over P2 induced by the two projections
of P2 x P2. The extremal rays of NE(Z) are spanned by the numerical classes
of the corresponding fibres C\ and C2, and Kz C, = -2.

Arguing as in the case (2.2), we find that if R is as in (2.1.3) then l(R) >
n-\. Then proceeding as in (2.2.2)-(2.2.4) we get that / = fR is of fibre type,
R is an extremal ray of NE(Z), e.g. R = R>o[C\], and f{X) is a surface do-
minated by P2. In the same way as we did in (2.2.4), we construct an ample line
bundle H on X inducing on Z a tautological line bundle for the Px -bundle at
hand and then $' := δ 0 H is an ample vector bundle on X, whose adjoint
bundle is not nef.

(2.4)_ CASE Z_^ Bq(P3) ^ Pp2(ΘP(l) θ ΘP) Here N{(X) ^ N{(Z) ^ R2,
and soNE(X) and7Vis(Z) are 2-dimensional cones. In this case the two extremal
rays of NE(Z) are spanned by [C{\ and [C2], where C\ is the strict transform of a
line of P 3 passing through q through the blow-up σ : Z ^ Bq(P3) -> P 3 , and C2

is a line on the exceptional locus A of σ. By duality the two extremal rays
of Amp(Z) are spanned by [h\] and [A2], A/ being determined by the conditions
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hi Cj = δij. Sθ

hx = σ*Opi(l), h2 = σ*βp*(l) - A.

Let HιeY\c(X) be such that (Hι)z = hi, i= 1,2. Thinking of Z as the P 1 -

bundle π : P(0J>J(1) 0 Opi) —> P 2 , Ci can be seen as a fibre of π; hence (XZ)Q =

Ĵ Cu and so

=-2.

On the other hand, thinking of Z as the blow-up of P 3 , since A ^ P2 is
the exceptional locus, we have ΘA(A) ̂  ΘPi(-\) and Λ^ = 0/>2(-3); so, by
adjunction, (KZ)A = KA - ΘA{A) ^ Θpi(-2). Therefore

Kz C2 = [Kz)A C2 = -2.

Let i? = R>o[C] and let / : X -• 7 be as in (2.1.3). As in (2.2) we have
[C] = Σ ^ / I C ] with λtGZ, and

0 < A(X,*,R) = ~{Kχ + det ί) C = -AΓZ

which implies A(X,£,R) > 2. So /(Λ) > w - 1 by (1.3.2), and again

(2.4.1) dim£ + dimF > n - 1 + l(R) >2n-2.

(2.4.2) BIRATIONAL CASE. In this case dim E<n. Then dim£' = dimi7 =
« — 1 by (2.4.1). So E is a divisor and f(E) is a point. As we have seen in
(2.2.2), E cannot contain Z, hence Ez = EΠZ is a nontrivial (effective) divisor
on Z and f\z is the divisorial contraction of such divisor. So necessarily Ez =
A and f\z = σ. This means in particular that the ray /£ is spanned by [C2].

In the same way as we did in (2.2.4), we get that H := mi/i + H2 is an
ample line bundle on X for a large me N. Let <f; := <f © /f. Then $' is an
ample vector bundle on X of rank n — 2 with non nef adjoint bundle, since

(Kx + det<T) C2 = (Kz + Hz) C2 = - 1 .

By applying [M] or [Z, Theorem 1.1], we conclude that

and / : X -» 7 is the blow-down of E to a smooth point of Y. In particular Γ
is smooth. Then [LM2, Lemma (5.1)] applies and so £ = f*δ ® Θχ(-E), where
$ is an ample vector bundle on Y with a regular section vanishing along /(Z) =
σ{Z)^P\ This in turn implies that ( r , £ ) s ( P n , ^ ( l ) e ( n " 3 ) ) by [LM1,
Theorem A]. So we would get that X ^ Bq(Pn) is P Λ blown-up at a point ^ and
^ = pΘP-{\)®{n~^ ®Θχ(-E). However note that this is a contradiction be-
cause each summand of $, f*&pn(l) ® Θχ(—E), is not ample, having intersection
0 with the proper transform of every line of Pn passing through q.
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(2.4.3) FIBERING CASE. NOW assume that/ is of fiber type, i.e. dimE = n.
Since Y has at least dimension two, as we have seen before, we deduce by (2.4.1)
that dim Y = 2, dimF = n-2 and l(R) = n — 1. By applying Lemma (1.4) we
have that R is spanned by [C\] and P 2 dominates Y. By arguing as in the
previous cases we find an ample line bundle H on X inducing Θp\ (1) on the fibres
of Z. Then $' — & 0 H is an ample vector bundle on X whose adjoint bundle is
not nef.

(2.5) CASE Z ^ P 1 x P 1 x P 1 . In this case Nχ(X) ^ Nχ{Z) ^ Λ^_and the
cones of the effective curves are 3-dimensional. The extremal rays oΐNE(Z) are
spanned by the numerical classes of three lines C\, C2 and C3 which are re-
spectively fibres of the three different projections of Z on P 1 x P 1 . As in (2.2),
we look at their classes as the generators of N\(Z), hence of N\(X) through the
identification (2.1.2). Let hi e Pic(Z) be the corresponding dual line bundles and
Ht G Pic(X) such that (Hι)z = hh i= 1,2,3.

Let R = R>o[C] and / be as in (2.1.3). Exactly as in (2.2) we can write
[C] = X), Af[C/] with λteZ, and we have

0 < A(X,g,R) = -{Kx + detί) C = - # z Σ λ i C ι =

which implies \{X,δ,R) > 2. So /(Λ) > n - 1 by (1.3.2).
(2.5.1) By applying (1.3.3) and_arguing as in (2.2.2), (2.2.3), we get that R is

one of the three extremal rays of NE(Z), say R>o[C\], and f\z : Z —• Γ factors
through a projection of Z onto P1 x Pι and a finite morphism. Hence F is a
surface dominated by P 1 x P 1 and l(R) = n — 1.

(2.5.2) Let Λ_=_Jϊ̂ o[CΊ]. By the Cone Theorem R is an isolated extremal
ray on the cone NE(X). Then there are two distinct 2-dimensional extremal
faces V\ and V2 of NE(X) of which R is the common edge. Let L\ and L2 be
the corresponding good supporting divisors. Note in particular that Lt C\ — 0,
hence, by duality, their numerical classes are necessarily contained in the cone W
spanned by [H2] and [H3].

Let Wf be the cone spanned by [L\] and [L2]: this is a 2-dimensional
subcone of W, since L\ and L2 are not numerically equivalent, and any divisor H
with numerical class [H] in the interior of W is a good supporting divisor
of i£. FT' is an extremal 2-dimensional face of Amp(X); more precisely W =
Amp(Z) Π Ŵ . Then we can find a (J-divisor H' = (I2H2 + ^3^3 in W such that
[fi#i + H'} e Amp(X) for ε > 0 small. This implies that H := if 1 + m2i/2 +
m3i/3 is an ample line bundle if w, = mα, (/ = 2,3), where m is a sufficiently large
common multiple of the denominators of α2 and 03. Now let $' \= $ ® H.
Then (^ is an ample vector bundle of rank n — 2 and its adjoint bundle

is not nef, since

(Kx + detrf') Ci = ( # z + H) Ci = - 1 .

This concludes the proof of the Claim (2.1.4).
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(2.6) Due to (2.1.4) we have the following commutative diagram

Z ^ X

fl\ \f

where ff denotes the contraction of R as ray of NE(Z), v is a finite morphism
and

f P1 xP1, if Z = Pι xP 1 xP 1

[ P 2, otherwise.

Applying [M] to the pair (X, £') and splitting g'F as gF Θ Hf{ά{mZ~2) for every
fibre F off, we get that / : X —> 7 is a Pw~2-bundle over a smooth surface, and
SF^Θpn-2(\)φr for every fibre F. Finally, if S^P2, the smoothness of 7
combined with the existence of a surjective morphism v.: P 2 —> 7 implies that
7 ^ P 2 . In the same way, if S ^ P 1 x Pλ we get 7 ^ P 2 or P 1 x P 1 . But the
equality of Picard numbers ρ( Y) = p(X) - 1 = p(Z) — 1 = p(S) rules out the first
possibility. Therefore Y = S.

3. Concluding the proof of Theorem 1

As shown in Section 2, in each one of the four cases (0.1), X is a PΛ~2-
bundle over a smooth surface S, where

if Z = Pι x P 1 x P 1

otherwise

and $F = (9pn-i(\)®r. Moreover in each case we constructed an ample line
bundle H eVic(X) such that HF ^Θpn-i(l). Thus (X,H) is a scroll over
S. Let 3* = f^H, where / : X —• S is the bundle projection; then J^ is an ample
vector bundle of rank n - 1 on S, X = Ps{^) and // = i / ^ ) is the tautological
line bundle of #\ Moreover, since <f ® H~ι restricts trivially to every fibre F we
conclude that there is a vector bundle ^ := f*(δ® H~ι), of rank r, on 5 such
that g = H®f*<g.

Write Z = Ps(@), where J^ —> J^ is the vector bundle surjection corre-
sponding to the fibrewise inclusion of Z in X. Let si denote the kernel; then we
have an exact sequence on S:

According to [LPS, Lemma 0.8], the normal bundle of Z inside X is Nz/χ =
(H ® f*sf*)z. On the other hand, NZ/χ = <$z, and then the expression of $
given above combined with the injectivity of / * identifies s/ as the dual ^ * of
^ . In other words, for any vector bundle !F defining the scroll structure of X,
3F and the corresponding vector bundle ^ = f^{β ® H(^)~ι) are connected by
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the exact sequence

(3.0.1) o - ^ * - * ^ " - * * - ^ .

This concludes the proof of Theorem 1.
In particular, taking the first Chern classes, (3.0.1) gives the relation

(3.0.2) cι(9) = cι(a)-Cι(&).

4. The case p = 2

Let (X,$,Z) be as in Theorem 1. Condition p(Z) = 2 is equivalent to
assuming that S = P2. Recall that, according to Section 2, Nι(X) is generated
by the classes of the line bundles H2 = f*Θp2(l) and H\, which is the line bundle
extending either $z(l,0), the tautological line bundle of Tpi(-l) on Z, or the
line bundle σ*ΘP3(l), according to whether

i) Z = P2 x P 2 ,
ii) Z = P(Tp2) or
iii) Z = Bq(P3).

Note that in all three cases we have

-Kz = (dim Z-l)(Hx+ H2)z.

So, the line bundle tf := H\ + H2 extends (dimZ - l ) " ^ - ^ ) to X. Note that

(4.1) ffl cannot be ample.

This follows from [LM4, Theorem 4], as we observed in the Introduction.
Alternately (4.1) can be directly seen as a consequence of Theorem 1. Actually,
since S = P2, up to twist with a line bundle, we can replace the vector bundle 3F
in Section 3, with a new vector bundle #Ό whose tautological line bundle Ho :=
H(βF§) is nef non-ample. Then, according to the constructions made in Section
2, we have

(4.1.1) H0 = Hι+mH2,

where m is a nonnegative integer. Recall that the boundary of the ample cone
Amp(X) consists of the rays generated by the classes of Ho and H2. Therefore
Jf is ample if and only if m = 0. Note however that m = 0 would imply
Amp(X) = Amp(Z), hence NE(X) = NE(Z). Let Rf = R>o[C2]. Then i^
would be a negative extremal ray of X. Moreover A(X, S, Rf) > 0 and then the
same arguments as in Section 2 show that l(R') = l(R) = n — 1. Therefore

- ^ - (-Kx Ci)#! + (-** C2)H2 = (n- I)JT.

Thus (X,Jίf) would be a del Pezzo manifold. But the classification [F, p. 72,
Theorem 8.11] shows that this is impossible since p(X) >2 and n > 5. This
gives

(4.2) PROPOSITION, m > 1 IΛ (4.1.1) αra/ equality holds if and only if 2tf is
nef
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Proof. The argument above shows that m > 1. If m = 1 then J4? = Ho,
which is nef by construction. Conversely let Jf be nef; then, since it is not
ample, its class lies on the boundary of Amp(JT), i.e. generates an extremal
ray. Since J f is not a multiple of H2, this is the same extremal ray as that
generated by HQ. But then comparing the expression of J f with (4.1.1) we see
that m=L •

(4.3) Assume that 3tf is nef. By adjunction

-Kx = άetδ= (dimZ - l)jf.

Thus —Kx is ample, being the sum of an ample and a nef line bundle, i.e. X is a
Fano manifold. Since S = P2 and X is Fano, [SzW] gives a list of possibilities
for X. In most cases X appears as the blow-up of some projective variety. All
these cases cannot occur in our setting since X does not admit divisorial con-
tractions of negative extremal rays, as we proved in Section 2 (see (2.2.2) for case
i), (2.3) of case ii), (2.4.2) for case iii)). The surviving cases in [SzW] are the
following:

(a) #Ό = Θ®{n~ι) (hence X = P2 x Pn~2),

(b) ^o = Tp2(-l)®Θpn-3\
(c) J^o fits into an exact sequence 0 -> ΘPi{-2) -> Θf? -> J^o -> 0. More-

over J^o has a trivial summand Θpi as soon as its rank is >6.
Note that in all these cases the bundle #Ό in normalized in the sense of

[SzW, p. 92].

(4.4) LEMMA. Let <$o = f*{δ ® H^x). If there exists a section Sf(^P2) of
f : X —• P2 such that {Ho)s, is trivial, then ^0 is ample. Moreover if Jf is nef
then ^o(l) is always ample.

Proof Let Sr be such a section. Since $ = Ho (x) /*^o is ample, so is its
restriction to Sf:

which shows that ^0 is ample.
Since

£ = Ho® f*OP2(-l) ® (/*^o(l)) = (ffo - H2) ® (

in the same way we see that ^o(l) is ample provided that/has a section S' to
which Ho — H2 restricts trivially. In fact we can always find such a section. To
do this take a section of f\z : Z —> P2 on which h\ has trivial restriction. Then
{H\)s, is trivial; on the other hand Ho - H2 = H\ by Proposition (4.2). •

Now we are ready to prove Theorem 2.

(4.5) Proof of Theorem 2. Let (X,δ,Z) be as in Theorem 1, with p(Z) = 2
and, by contradiction, suppose that Jf is nef. We will show that all cases (a),
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(b), (c) appearing in (4.3) lead to contradict the exacteness of the sequence

(4.5.1) o-> #0*->#-<>-> Λo-> 0,

obtained by an appropriate twist from (3.0.1). Note that

<%0 = Θp2(l)®\ 7 > , or 0^2(2)0 0^(1),

according to whether Z is as in i), ii), or iii) respectively. It is also convenient to
note that

(4.5.2) A°(Λ0) = 9,8,9,

according to the three cases above.
Assume that X is as in case (a). Then the exact sequence (4.5.1) becomes

(4.5.3) 0 -> % -> 0®**-1) _> ̂ o -> 0.

Thus, since J^o is trivial, (3.0.2) gives ci(^o) = 3 in all three cases i), ii), iii). On
the other hand, let S' := P2 x {p} a X: this is a section of / : X -> P 2 and
(f/o)^/ = (0*(0,1))^/ = #s" Hence ^ 0 is ample by Lemma (4.4). We thus get

n - d imZ = rk<ί = r k ^ 0 < ci(^o) = 3.

So either « = 3 + dim Z and ^o is a uniform bundle of rank 3 of splitting type
(1,1,1), or n = 2 + d imZ and ^o is a uniform bundle of rank 2 of splitting type
(2,1). According to [OSS, Theorem 3.2.1, p. 51 and p. 59], this gives the
following three possibilities:

(1) % = Θp2(\)®\
(2) % = Θp2(2)®Θp2(l),
(3) % = Tp2.

Taking into account cases i), ii), and iii), this leads to nine possibilities for the
exact sequence (4.5.3). We rule out all of them. In case (1), the exact co-
homology sequence induced by (4.5.1) gives

0 = H°(ΘP2(-l)®3) -> H°(Θ®2

{n-l)) -> H°(a0) -• Hι((9P2(-l)®3) = 0,

the last term being zero by the Kodaira vanishing theorem. Thus

(4.5.4) n - 1 = h°(Θ®2

{n-l)) = /*°(^0),

which contradicts (4.5.2), since « = dimZ + rk^o < 7. In case (2) we get the
same contradiction since by the Kodaira vanishing theorem the cohomology
sequence induced by (4.5.3) still gives (4.5.4). Finally consider case (3). In this
case (4.5.3) becomes

(4.5.5) 0 -> Ωj,2 -> Θ®2

{n-χ) - ^ o ^ O .

Its extension class lives in Hι(Ωp2 ®^l) If Z is as in i) or iii), then Bott
formula [OSS, p. 8] immediately shows that this Hx is trivial. So (4.5.5) would
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split, which clearly gives a contradiction, since the vector bundle in the middle is
decomposable, while the summand Ωp2 is not. Finally suppose that Z is as in
ii). Then (4.5.5) becomes

0 -> Ω p 2 -+ Θp2 -> Tp2 -> 0.

Taking cohomology we thus get

A^Ω^) = h\Tp2) - h°(Θ®4) = 8-4,

which gives a contradiction, since hι(Ωι

p2) = 1 [OSS, p. 8]. This concludes the
proof in case (a).

Now assume that Xis as in (b). Since #Ό has a trivial summand, there is a
section S' of / : X —» P2 satisfying the hypotesis of Lemma (4.4), hence ^o is
ample. Note that c\(&o) = 3 - 1 = 2 by (3.0.2). Then ^ 0 must have rank 2
and splitting type (1,1), so it is uniform, which in turn implies that ^o = ^ ( l ) ® 2

by [OSS, Theorem 3.2.1, p. 51]. Thus the exact sequence (4.5.1) becomes

Taking cohomology and noting that / / ^ ( ( ^ ( - l ) ® 2 ) = 0 for # = 1 , 2 , we get
° ° ; but this contradicts (4.5.2), since

h°(^0) = h\Tp2{-\) φ Θ®2

{n~3)) = 3 + n-3 = n = r k % + d i m Z = 6 , 5 , 5 ,

according to cases i), ii), iii) respectively. In conclusion, case (b) does not occur
as well.

It remains to examine case (c). In this case c\(&o) = 3 — 2 = 1 by (3.0.2).
If rk J^o > 6, then J^o has a trivial summand; hence there is a section Sf of
/ : X —> P2 satisfying the hypotesis of Lemma (4.4). But this implies that ^o is
an ample vector bundle, with rk^o > 2 and c\(&o) = 1? which is impossible. So
rk J^o = Λ — 1 < 5 and ^o is not ample. We have the following possibilities:

(1) Z as in i), n = 6, rk#Ό = 5, r k ^ 0 = 2,
(2) Z as in ii) or iii), n = 5, rk J^o = 4, rk^o = 2, or
(3) Z as in ii) or iii), n = 6, rk#Ό = 5, r k ^ 0 = 3.
Note that by the second part of Lemma (4.4) any splitting type of ^o must

have nonnegative indexes; hence ^o has splitting type either (1.0) or (1,0,0)
according to the rank. In particular ^o is uniform, and applying [OSS, Theorem
2.2.2, p. 211 and 3.4, p. 70] we get:

^ 0 = φp2{\) 0 Θp2 or Tp2(-l) in cases (1) and (2),

^ 0 = (9p2{\) © op or Tp2(-1)@ΘP2 in case (3).

In any case H1(&Q) = 0. Then the cohomology sequence induced by (4.5.1)
shows that there is a surjection H°(^Ό) ~^ H°(&Q) —> 0. Now, comparing the
dimensions, we get in all cases

5 - c2(#Ό) < 6,
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by [SzW, (2.10)] recalling that ^2(^0) = 4. But this contradicts (4.5.2). This
concludes the proof. •
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