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CLASSES AND SURFACE SYMMETRIES
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Abstract

Let a finite group G act on a compact Riemann surface C in a faithful and orientation

preserving way. Then we describe the Moπta-Mumford classes e«(Q;) € H2n(G;Z) of
the homotopy quotient (or the Borel construction) CG of the action in terms of fixed-
point data. This fixed-point formula is deduced from a higher analogue of the classical
Riemann-Hurwitz formula based on computations of Miller [Mi] and Moπta [Mo].

Introduction

The last two decades have witnessed a remarkable progress of cohomological
study of the mapping class group for a surface. D. Mumford [Mu] and S. Morita
[Mol] independently defined a series of cohomology classes of the mapping class
group, whose zeroth term is equal to the Euler number of the surface up to sign.
J. Harer has been obtaining various significant results including the homology
stability of the mapping class groups [HI]. The Morita-Mumford classes play an
important role in the stable cohomology ring of the mapping class groups. It
has been revealed by Arbarello, Cornalba, Harer, Miller, Morita and others [AC]
[H2-3] [Mi] [Mol-4] [KM]. The torsion part of the cohomology of the mapping
class groups has been highly studied by homotopy theorists including Benson,
Charney, Cohen, Lee, Tillmann and Xia [BC] [CC] [CL] [T] [Xl,2]. It is
notable that Glover and Mislin [GM] have proved there exists a nontrivial torsion
class in the Φz-dimensional stable cohomology group for each n > 1 by evaluating
the even Chern classes of GL(Z) on torsion elements of the mapping class
groups.

In the context of surface bundles the Morita-Mumford classes are defined
as follows. Let π: X —> B be an oriented fiber bundle whose fiber is a
2-dimensional connected closed oriented smooth manifold. We call such a
bundle briefly a surface bundle. The relative tangent bundle TX/B is the oriented
real 2-dimensional vector bundle over the total space X consisting of all the
tangent vectors along the fibers. The «-th Morita-Mumford class en is, by
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definition, the Gysin image of the n + 1-th power of its Euler class e :=
e(Tx/B)eH2(X;Z)

en = en(X):=m(e"+ι)eH2n(B;Z),

which is equal to the pull-back of en by the holonomy homomorphism of π\(B)
into the mapping class group. Here and throughout this paper we denote the
Euler class of an oriented real vector bundle η by e(η). If n = 0, eo is equal to
the Euler number of the fibers.

The purpose of the present paper is to study Morita-Mumford classes on
finite subgroups of the mapping class groups. We give an explicit formula for
the Morita-Mumford classes evaluated on an arbitrary finite subgroup of the
mapping class groups in terms of fixed-point data (Theorem B). The authors
hope their explicit formula would be widely used to study the torsion part of the
cohomology of the mapping class groups.

Our fixed-point formula is deduced from a general formula of Morita-
Mumford classes for fiberwise branched coverings of surface bundles. Miller
[Mi] and Morita [Mol], inspired by Atiyah [A], Hirzebruch [Hi] and Kodaira
[Ko], computed Morita-Mumford classes of iterated cyclic coverings to prove the
stable algebraic independence of ew's. Following their computations, we prove it
under a certain transversality condition (Theorem A) in §1.

Let πx : X —> B and πy : Y —> B be two surface bundles, and A I ^ F a
continuous map compatible with the projections. Suppose the map h restricted
to each fiber is an orientation preserving branched covering. Denote by R the
subset of X consisting of all the ramification points of the map h. Now
we assume a transυersality condition that the restriction of πx to R is a locally
trivial fibration, and that there exists a fiber preserving homeomorphism t:
D{TX/B\R) *-* X o n t o a n open neighborhood of R such that t(0x) = x for all
x e R. We call it a fiberwise tubular neighborhood of R. Here we denote by
D(η) the open unit disk bundle associated with a vector bundle η with respect to
a suitable metric. Let JRI, R2,.. ,Rm be the connected components of R, and bj
the ramification degree along R{. Then

THEOREM A. In the situation stated above we have

en(X) =
l=\

for any n > 1, where degΛ e Z is the fiberwise mapping degree of h, and (πχ\R), :
H*(Rt;Z) —> H*(X;Z) is the Gysin map associated with the fibration πχ\Rι

It also holds for the case n = 0. In fact, since e0 is the Euler number of the
fibers, the formula

eo(X) = (degh)eo(Y) + ] £ ( 1 - bt) |t(the fiber of πx\R).
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is exactly the classical Riemann-Hurwitz formula. This is the reason why we
regard Theorem A as a higher analogue of the Riemann-Hurwitz formula.

If the surface bundles %χ and πy are C00-surface bundles, A is a C 0 0 map,
and the ramification locus R is a C°°-submanifold of X transverse to the fibers,
then the transversality condition stated above is satisfied.

As another typical example satisfying the transversality condition we have
Morita-Mumford classes on finite subgroups of the mapping class groups. In
view of the affirmative solution of the Nielsen realization problem by Kerckhoff
[Ke] any finite subgroup of the mapping class group is realized as a holomorphic
automorphism group of a suitable Riemann surface. Therefore we may consider
the following situation.

Let G be a finite group and C a closed oriented connected 2-dimensional
smooth manifold. Suppose G acts on C in a faithful and orientation preserving
way. Then we may regard G a s a subgroup of the mapping class group. The
universal principal G-bundle EG —• BG induces the homotopy quotient (or the
Borel construction) of the action π : CG -» BG. The space CG is, by definition,
the quotient of EG X C by the* diagonal action of G. The map π induced by the
first projection provides an oriented fiber bundle with fiber C

C—• CG —> BG.

Its Morita-Mumford class en(CG) e H*(BG;Z) = H*(G;Z) is equal to the re-
striction of en to the subgroup G.

If πx is the surface bundle π : CG —> Be, τiγ the product bundle BG x
(C/G) —• BG, and h : CG —> BG x (C/G) the canonical projection, then the
transversality condition is satisfied. Therefore Theorem A implies the following
fixed-point formula as is shown in §2.

Denote the isotropy group at a point p e C by Gp. The exceptional set

S := {p e C; Gp Φ {\}}

is a G-stable finite subset of C, since the action is faithful and orientation
preserving. Let ξp be the oriented real 2-dimensional vector bundle over BGp

associated with the action of Gp on the tangent space TPC and e(ξp) e H2(BGp\Z)
= H2(GP;Z) its Euler class. Since the transfer map corg : H*(GP;Z) ->
H*(G;Z) is invariant under conjugation, the cohomology class77 cor^ (e(ξp)

n) e
H2n(G;Z) is constant on each G-orbit.

THEOREM B. In the situation stated above we have

en(CG)=
peS/G

for any n>\.

The right-hand side depends only on the isotropy groups and their actions on
the tangent spaces at the exceptional points. Our formula may be regarded as a
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certain kind of fixed-point formulas of characteristic classes. Especially if the
action is free, the Morita-Mumford classes en{Co) vanish for all n > 1.

1. Riemann-Hurwitz formula for Morita-Mumford classes

In this section we shall prove Theorem A following Miller [Mi] and Morita
[Mo]. Let πx : X -» B, πγ : Y -> B, h: X -> Y, R and R> be as in Intro-
duction. We abbreviate as ex := e(Tx/B), eγ := e(TY/B) and ηt := TX/B\R.
From the transversality condition we have a fiberwise tubular neighborhood
/, : D(ηι) —> X. Since {X — R, ti(D(ηι)); 1 < / < m} is an open covering of X, we
obtain an excision isomorphism

m

f : H*(X, X - R) -^ φH*(E(ηι),Eo(ηί)).

Here E^t) is the total space of the bundle ηt and E^η^) = E(η{) - (zero section).
Let φi : H*'2(Rt) -• H*{E{ηi),E(){ηi)) be the Thorn isomorphism associated

with ///5 and t/, 6 H2(X,X - R) such as t*(Ui) = ^(1) . ^ 2 ( X , X - R) is Z-free
with free basis {t/i, C/2,. , Um}. Clearly we have

(i i) ΠUMI {
I 0, if 1 ̂  7.

Since Tx/B is isomorphic to h*TY/B on X — R, the difference e^ - h*eγ is in
the image of the inclusion homomorphims j * : H2(X, X - R) —• H2(X), i.e., we
have ^ - /ί*^r = 7*(Σ z ΐ i «/t̂ /) e H2(X) for some αf e Z. Restricting it to each
Rh we obtain

(1.2) e(ηt) - b,e(ηι) = a,e%) e H2(R,),

where Z>z is the ramification degree along Rt. From (1.1) and (1.2)

m n+l (n _L 1 \ \( m n+l (

( m n+\

ΣΣ

for any « > 1. Hence we obtain

(1.3) 4 + 1 = A*4+1 + / ( O " 1 ί

for n> 1.
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We denote the fibers of the bundles τiχ : X —> B, πχ\,x_κ, : X — R —> B and
πχ\R : Rι —> B over a point so e B by C, C° and Rj\so respectively. The Serre
spectral sequence of the pair of fiber bundles (X, X — R) induces an isomorphism

nx% : H*(X, X-R)^ H'~2(B; H2(C, C 0)).

As a πi(£)-module, H2(C,C°) decomposes itself into ®ZiH°(RiM' T h e

cohomology group H*~2(B;H°(Ri\so)) is naturally isomorphic to JfiΓ*~2(JR/), and
the integration map H°(Ri\so) —> Z induces the Gysin map (nx\Ri)} : T / * " 2 ^ ) —>
H*~2(B). Therefore we obtain a commutative diagram

H*(X,X-R) ^ U H*-2{B;H2(C,C0)) —

(1.4) H rl

/f (jT) > H*~2(B;H2{C)) ( 4 C ] > ) H*~2(B).

The composite of the lower arrows is equal to the Gysin map πχι in the definition
of the Morita-Mumford classes, and that of the upper ones equal to (®φjx) o t*.
Consequently, from (1.3), we obtain

This completes the proof of Theorem A.

2. Fixed-point formula for surface symmetries

In order to prove Theorem B, fix a complete system of representatives
{P\iPii iPm) ̂  $ w i t n respect to the action of G. We abbreviate as G, = GPι

and ξt = ίA. The quotient Ec/Gi can serve as the classifying space Bgr

Consider the canonical projection

h: CG = (EGx C)/G-+ BG x (C/G), (x,z)modGκ> ( imodG,zmodG).

The homotopy quotient SG '= {EG x S)/G may be regarded as a closed subset of
CG, and coincides with the ramification locus R of the branched covering
h. Clearly π\Sc : SG —> 5 G is a locally trivial fibration.

Each representative ^, corresponds to a connected component of R. We
introduce a map /, : BGι —>- CG ("multi-valued section of π") by f,-(xmod Gj) :=
(JC,/?,-) mod G. From a G-stable decomposition S = JJ^ j G /?, we find SG =
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IX^i fi(BGι). Choose a sufficiently small G rstable open disk D\ c C centered at
each pr The map defined by

U : (EG x Di)/Gi -> CG, (x, z) mod G, ι-> (*, z) mod G

can be regarded as a tubular neighborhood of the connected component f^Bc,)-
Thus the branched covering h satisfies the transversality condition in Theorem A.

The relative tangent bundle TCG/BG is equal to the homotopy quotient
of the tangent bundle TC, TCG/BG = (EG x TC)/G. Hence the disk bundle
(EQ* Di)/Gi is isomorphic to the unit disk bundle of ζt — (EG X TPιC)/Gi.
Clearly e(TBGX{C/G)/BG)

n+l = 0 for n > 1. Since bt = (JG/, we have *,*?(£,) = 0 e
H2(BG). Therefore Theorem A implies

m

en{CG) =

for « > 1.
Conceptually a transfer map results from a Gysin map. In this section,

however, we replace the Gysin map {π\/.(BG))i w ^ h ^ e transfer map cor^ in an

explicit manner. For we believe it will be good for future actual computations.
Consider the relative cohomology H2(C, C°), where C° = C - S. Let

v/ e Hι(C, C°) be the image of the positive generator of #2(A? A - {/?/})• The
evaluation at v, induces a G-isomorphism

m

v, : # 2 ( C , C°) - ^ 0Hom z [ C i ] (Z[G],Z)

by the universal mapping property of coinduced modules, and an isomorphism

1=1

by Shapiro's Lemma (cf. e.g., Brown [B].) Therefore we have a commutative
diagram

H*-2(BG]H
2(C,C0))

; H2(C))

from the definition of the transfer map cor^. Comparing it with the com-
mutative diagram (1.4), we obtain

m m

en(CG) = ΣW^)).WU") = Σ c < ( ^ ) " )
«=i ' 1=1

for /z > 1. This completes the proof of Theorem B.
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3. Applications

Let G be a perfect finite subgroup of the mapping class group of genus g,
and C a compact Riemann surface on which G acts as a holomorphic auto-
morphism group. Then, for any element γ e G, we have

since H2(G\Z) = Έxtx

z{H\(G;Z),Z) = 0. Here we denote by <j> the subgroup
of the mapping class group generated by γ. Therefore we obtain

LEMMA. If ei(C<y>) ^ 0 e ί ί 2 ( ( y ) ; Z ) , there is no perfect finite subgroup
containing γ in the mapping class group.

As an example, consider two complex plane curves

w2 = \-z2°+\ w2 = zx(z]g+x - \)

for g> 1. Glueing them each other by the map z\ — z~x, w\ = z~9~xw, we
obtain a hyperelliptic curve C of genus g ζ := exp(2π\/^T/(2# -f 1)) defines
an automorphism of the curve by z ι-> ζz and w t-> w. It induces an element y of
order 2g + I of the mapping class group of genus g. Let wo e// 2(<y>;Z) be
the Euler class associated with the complex 1-dimensional G-module given by
multiplication by ζ. u% generates the group H2n((γ}\Z)^Z/(2g + 1) for each n.
Then Theorem B implies

en(C<γ}) = u"0 + u"0 + ((-g - l)uo)n = (2 + g")u"0 e H2"((y};Z)

for any n > 1. Especially ei(C<y>) φ 0 if f̂ > 2. Hence the element γ is not
contained in any perfect finite subgroup of the mapping class group of genus
g > 2 from the lemma stated above. Moreover we obtain e\ φ 0 for any n > 1
as a torsion element of the cohomology group of the mapping class group of
genus #, provided that 2g + 1 is not a power of 3.

The second author has found some finite cyclic subgroups satisfying eo^ = 0
and ei φ 0. Moreover he has found a cyclic subgroup satisfying e\ = eι — 0 and
3̂ φ 0. The details will be appear elsewhere. It would be interesting that there

would exist a finite subgroup satisfying e\ — ei = = en-\ = 0 and en φ 0 for
each n > 4.
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