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(n — 1)-CONNECTED 2n-MANIFOLDS
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Abstract

In this paper we determine the group &(X v Y) of pomted homotopy self-
equivalence classes as the quotient of an 1terated semi-direct product mvolving &(X),
&(Y) and the 2n-th homotopy groups of X and Y, in the case where X and Y are
(n — 1)-connected 2n-manifolds or, more generally, are CW-complexes obtained by
attaching a 2n-cell to a one-pomt union \/™ S" of m copies of the n-sphere for which a
certain quadratic form has non-zero determinant (» > 3). In the case of manifolds this
determinant 1s +1. We mclude some examples, in particular one in which &(X v Y)
does not 1tself mherit a semi-direct product structure.

§0. Introduction

A method was given in 1958 by Barcus and Barratt [1] for calculating the
group &(X) of (pointed) homotopy self-equivalence classes of simply-connected
CW complexes of the form X = K U, e9*! obtained by attaching a (g + 1)-cell to
a complex K of dimension <gq — 1: this method was extended by Rutter [13] to
general simply-connected complexes. Since 1958 general results about the group
&(X), such as conditions for finite presentability, have been obtained and many
calculations have been made.

P. J. Kahn [6] made calculations of &(X) for X = (§" v --- v ") U, e*
and, in particular, for (n — 1)-connected 2n-manifolds. In this note we calculate
&(X v Y) in the case where X and Y are (n — 1)-connected 2n-manifolds (n > 3)
or, more generally, are spaces obtained by attaching a 2n-cell to a union of n-
spheres for which a certain quadratic form has non-zero determinant. Our main
result stated in §1 is that, for such spaces, &(X v Y) is a quotient of a certain
iterated semi-direct product in case X #7Y, and involves a further semi-direct
product in case X = Y. We also give criteria for which this quotient is not
itself a semi-direct product: in previous cases calculations have been completed in
general only in cases where a corresponding extension is a semi-direct product.

Previous calculations of £(X v Y) for a one-point union have been made in
cases where either X or Y is an A-cogroup (see for example Maruyama—Mimura
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[8], Oka—Sawashita—Sugawara [9], Rutter [14] and [15], Sieradski [17] and
Yamaguchi [20]). In our case the spaces are not in general A-cogroups. Proofs
and other results are given in §2 and §3, and some examples, including one which
involves a non-trivial extension are given in §4.

§1. Main results

We consider complexes X, = \/" S” U, e?" obtained by attaching one 2n-cell
to a union of n-cells (n > 3). By the Hilton—Milnor theorem, the attaching map
o has the form

m
o= E oa + E [tiy 1] 0 a”.
=1 1<y

Here o € m,—1(S"), af € mp_1(S*1), and 1;: 8" — \/™S" is the canonical
inclusion of the i-th sphere S” in \/™ S". We define an integer matrix Q(x) =
(aj) by

deg a¥, fori<y
a; =1 (=1)"deg o, fori>j
H(a"), fori=j,

where H(a') is the Hopf invariant of «': in case n is odd, we have a; =0.
Therefore Q(a) is symmetric in case » is even, and is skew-symmetric in case # is
odd. The matrix Q(«) can also be defined as the matrix of the cup product form
on H"(X) (compare [19] and [3]). In what follows we consider only those
complexes X, for which the matrix Q(«) has non-zero determinant. Any (n — 1)-
connected 2n-manifold has the homotopy type of a space X, as above, and its
associated matrix Q(a) is unimodular (see [19, page 169]): in this case the matrix
QO(a) is, up to sign, the inverse of the matrix of the n-symmetric bilinear form
determined by linking numbers on X\int E2 (see [19, pages 164 and 182]).

We shall in general use the same symbol to denote a map and its homotopy
class.

Let X = X, = (\/™ 8§")Uye? and Y = X = (\/"™ S") Uge* (n = 3), where
\/™ S" denotes a one point union of m copies of the n-sphere. A map h: X —
Y induces a homotopy commutative diagram

s2n-1 « \/’"l NG ! X 4 §2n Sa \/’"l gnt+l
;;fl f,l hl ;;l s;.l
S2n—1 B \/m2 NG v Y » S2n SB \/mZ Sn+l

of cofibre sequences, where the vertical maps are unique up to homotopy, and
where h ~ Sh’. If h is cellular, & and & can be chosen so that the two middle
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squares are strictly commutative. We shall always assume that the three maps
are chosen in this way.

The fibre sequence QX *x QY 5 X v Y 2, X x Y induces the exact sequence
of pointed sets

XVY,QX«QY]S[(XvY,XvY]S[XvYXxy],

where the preferred element for exactness is the class of the trivial map. In this
paper we prove that j, induces a faithful representation of &£(X v Y) onto the
quotient of an iterated semidirect product. This representation involves, besides
é(X) and £(Y), some groups related to the homotopy groups of X and Y. One
of these is

G- i,[S?" v 87", QX x QY]
Cim TG v e v B)Ni[S? v S QX x QY]
where T(zvi,av f):[\/" S v /™S X Vv Y - [S"vS"XvVvY] is
the homomorphism defined in [10, §3.2]. We recall the definition of this ho-
momorphism in §3. For n >3, the group i,[S* v $? QX % QY], and hence
G, is a finitely generated free Z/2-module (see §2 and §3). We also define (for
n=>3)

Ryp = (S2)"[\/™ 5™, 7]
. (Sa)* [\/™ 5™+, \/™ 57
= B (SP )N (S2) [V ST\ S

and similarly Rg, = (SB)*[\/™ "1, X]: each of these is also a finitely generated
free Z/2-module for n > 3. Our main result is the following theorem.

THEOREM A. Let X4 Y, let n >3, and let Q(a) and Q(f) be non-singular
matrices. Then the map j, :[X Vv Y,Xv Y- [XvYXxY] induces a
faithful representation of (X v Y) onto the quotient of an iterated semi-direct
product:

g(X \% Y) = (G><1 ﬁ)/(Rﬁ,a X Raﬁﬂ),

where U = (1m2,(\/™ S") x L. (\/™ S™)) % (6(X) x &(Y)). Furthermore G,
Ry and R, g are finitely generated free Z /2-modules.

The proof of Theorem A is given in §2. In Proposition 6 we describe the
action of U on G (see Proposition 1) for the semi-direct product G > U. In
Proposition 5 we describe Rg, X R, p as a subgroup of the semi-direct product
structure G < U. In Proposition 10 we compute G. We also give, in Prop-
osition 7, precise conditions under which the structure on &(X v Y) as the
quotient (G X U)/(Ryp X Rgy) of a semi-direct product induces on &(X v Y) the
structure of a semi-direct product of the form G < U.
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Where X >~ Y we may assume X = Y without loss of generality. In this
case we denote by S(X v X) the subgroup of &(X v X) corresponding to the
group obtained by putting ¥ = X in the quotient of the iterated semi-direct
product given in Theorem A. Thus (see §2)

P(X v X) = {aeg(x v X):j.(o) = ({ Z),f,k e &(X), Ha(g) = 0= fl*(h)}.

The group (X v X) is determined as a further split extension in the following
way.

THEOREM B. Let n > 3, and let Q(a) be a non-singular matrix. Then there
is a split exact sequence of groups and homomorphisms

P(X v X)—EX v X)>Z)2

The splitting is given by {1,—1} — &(X v X) where (—1) maps to the homeo-
morphism T : X v X — X v X given by (x,y) — (y,x).

The proof Theorem B is given in §2. In Proposition 8 we note the action of
Z/2 on (G > U)/(Rys % Rg,) in the split extension (G > U)/(Ryp X Rgy)
(X v X) > Z/2 of Theorem B.

In §4 we give some examples.

§2. Proofs and further results

Each element of the set [X v Y,X X Y] can be written as a matrix
(£ 9)e (0 oy
h k (x,Y] [Y,Y])
The following result characterises the elements in the image of j, : (X v Y) —

[X v Y, X x Y]. Its proof is given, for m; = my, in [2] for n even, and in [7] for
n odd. The same proofs yield the case m; # m;.

TueoreM. Let X =\/™ §"U,e? and Y =\/™ S"Uge* such that Q(a)

f g

) k>’ where e [X v Y,

and Q(p) are non-singular matrices, and let j (o) = (

X v Y] Then, ceé&(X v 7Y) if, and only if, either

(1) f and k are homotopy equivalences and h and g are homologically trivial,
or

(ii) g and h are homotopy equivalences and f and k are homologically trivial.

Using this result, Theorem B is an elementary consequence of Theorem A.
By obstruction theory, a map & : X — Y is homologically trivial if, and only
if, hep*iim,(\/™ S"). Also by obstruction theory the group structure on
!m,(\/™ S") induces a group structure on p*iim,(\/™ S") for which p* is a
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homomorphism. We note the following isomorphisms:

(" 57 = 2V S

~ ~—* - and
ﬂ*nzn(SZn—l)

77:2,,(\/m2 S")
B.man(S21=1) + (Se) " [\/™ 741, \/™ S
We consider the set of matrices

f(r 9 &(X) P\ S7)
U‘{(h k)e(p*z;nh(\/’"zs") &(Y) )}

We shall often identify U with a subset of [X v Y, X x Y] as indicated above.
We consider also the set of matrices

_ J(r g E(X) L (\/™ S™)
U‘{(E k>e<z;n2n(\/’"2s") () )}

The set U, endowed with the operation
(4 0)o(f Yo (, S5 S0
hok bk By +khy  kky )’

is a group with identity ((1) (l)) The maps f, and k; have been defined in §1.

p"l;nz,,(\/m2 S~

— ~1 —-1-7
The inverse of j_( g is J —_— -/ gk . Using the standard
h k —k7'hf k!

properties of the induced cofiber sequence, we can prove that (hfy + kh))p' and
(fg, + gk1)p' are mdependent of the choices of maps &, hy, g, g, satisfying hp =

h, Gp' =g, ip=hy, §,p' = g1. Therefore the group structure L U, ) determines
a group structure on the set U under the obvious projection z : U — U. We have
the following Proposition.

PROPOSITION 1. The projection (U,0) — &(X) x &(Y) determines the semi-
direct product
U = (tmon(\/™ S™) x tLman(\/™ S™)) X (8(X) x £(Y))

with the (left) action given by (f,k)-(g,h) = (fgk',khf™"). The projection
(U,0) = &(X) x (Y) determines the semi-direct product

U= (p"ma(\/™ S") x p*tim,(\/™ 8")) % (8(X) x &(Y))
with a similar action. Also there is a group extension

Rﬂya X Ra,ﬂ > U—» U.
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Now assume X 3 Y and denote by
0:6XvY) U

the map induced by j,. We prove that ¢ is an epimorphism and find a ho-
momorphism s: U — &(X v Y) such that s ==. If 7 has a right inverse, so
does 6. Later, in Proposition 7, we study the general conditions under which 6
has a right inverse.

First we recall some of the properties of the coaction in a principal cofi-
bration. Let C, = BU, CA be the mapping cone of a map «: 4 — B. There is
a coaction ¢ = ¢¢, : C, — S4 v C, given by

o(b) =b, forbe B

1
(a,2t) € SA, forOSISEandaeA
o(a,1) = )
(a,2t — 1) € C,, forzstslandaeA.

Given {:SA — Z and A: C, — Z, we define
(1A= Ae:C,— Z.

If two maps A,4; : C, — Z coincide on B, then there is a difference map d =
d(A, A1) : SA — Z, given by

Aa,2t), 0<t< !
d(a,1) = L
A(a,2 —21), 5 <t<l
The maps d(4,4;) LA and 1 are homotopic relatively to B, but the homotopy
class of d is not uniquely determined by the homotopy class of 4 and A;. In the
sequel it is convenient to denote also by ¢, the composite X — S v X — X v
S?" of gy and the switching map.

Now we define

- f g _
50— ) by (5 7)o v Ron(@ v Kiey).

ProPOSITION 2. O=j,:&X v Y)— U is an epimorphism, s:U —
E(X v Y) is a homomorphism and the composite Os is the epimorphism
n:U—-U.

Proof. Let o,00€8(X v Y), and 60(o) = (i Z)’ 0(ay) = ({1 i]>

- - 1 ki

Choose decompositions &= hp, hy = hip, g = gp’, 91 = g,p’.

The component X — Y of 8(oo;) has the form

x 2 xvy2lsny,y My

The elements (p v 1)o1ix and (f; v h)gy are mapped to the same element by
the induced function [X,S%* v Y] — [X,S* x Y]: this latter function is a bi-
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jection since §?" v X — $?" x X is (3n — 1)-connected. Therefore we have

(h,k)arix = (h,k)(p v Dorix = (B, khi)ox = (hfy, kl)(1 v p)oy.
A similar argument for (1 v p)py and X 5 8% % §2 v § in [X,8% v §2
proves that these elements coincide and hence

(h,k)orix = (hfy, kh)(1 v p)py = (hfy + ki) p.

Using the standard properties of the induced cofibre sequence, we have that this
construction is independent of the choices of 4 and h; satisfying hp = h and
hip =h;. Applying similar arguments for the other components, we obtain

o) = ( Cfh U +gic.)p'),
(hfl + khl)p kk,

and therefore 6 is a homomorphism. Since 6s is the epimorphism 7 : U — U, it
follows that @ is surjective.

Given u = < £ Z) and u; = (7{1 Igci) consider the composite

s()s(u)ix = ((f v h)oy, (G v K)oy)(fi v hi)py)

=((/ v Boxfi,(G v k)oyh)py.

Now hy : S — Y factors through the n-skeleton of Y and therefore, by cellular
considerations, (g v k)pyh1 = iykhi. Also ¢y f ~ (f] v fi)@x since they have
the same image under [X,S* v X] — [X,S8% x X], which is a bijection since
S v X — 8% x X is (3n— 1)-connected. Thus (f v h)oyfi = (hf, v ff)ox.
Therefore

s()s(u)ix = (ff; v W)ox, ivkh)px
= (ix /1y, ivhfy, ivkh) (px, Doy
= (ix ffy, iv(khi + By))ox
= (ffy v (khi +hf)))py = s(uow)ix.
Similarly s(u)s(u;)iy = s(uou;)iy. Hence, s is a homomorphism. O
We now investigate the kernel of . In the following diagram, induced by
1vi':A=\/S"v \/S" — X v Y, the horizontal sequences of pointed sets are
exact and the diagram is commutative by [10, (3.2.2) and §3.3]: the preferred
elements for exactness are as indicated. Also the vertical sequence is exact, and,

by obstruction theory, the left and right vertical maps are isomorphisms as
indicated.
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[SA,X x Y] o (S7vsnXx Y] LL[XvY,XxY], — [4,Xx Y]

J.T; ,.[ ,ﬂ ,,F

[SA,XVY] —— [SZvS¥ X VY] LXVY,XVvY], — [4,XVvY]

Is Imono

[S2"v 8% QX « QY]

1vi')

v’

The functions # and x4’ and given by u(«) =a L1 and #'(f) =B L. The image
of u consists precisely of those classes which extend the identity on the n-skeleton.
Also T=T(G@v,avp) and T'=T(jz v '), v f). We recall the definition
of T'(u, f) in §3.

PrOPOSITION 3. The sequence

L[S? v S QX x QY] L exX vY) S U1

is an exact sequence of groups.

Proof. Since p v p’ is trivial on the image of i,, it follows from [13, pages
276-277] that u: i,[S™ v S, QX * QY] — [X v Y, X v Y] is a homomorphism
from the usual group structure to composition. As easy argument using ho-
mological considerations shows that the image of this homomorphism is con-
tained in &(X v Y). Let 6(o) =j,(6) =j. Then, by the commutativity and
exactness of the above diagram, we have o = u(d) say. Furthermore, we have
J.(d) =T'j,(c) say, and therefore d = I'(c) + i.(b) say. But u(I'(c)) =1, so that
o = u(d) = p(i.(b)). This proves the inclusion Kerf < Im p. The proposition
now follows since j,ui, = u'j,i, is constant. O

From this proposition and the diagram above we obtain an exact sequence

0-G6Lexvy)iu—i
where
~ L[S¥ v S QX QY]
Cim T v e v B)NL[S™ v 8§20, QX x QY]

Note that the kernel of [S** v " X v Y] 5 &(X v Y) is im i, +imT, and that
u(im i) = p(im i, +im I'). The construction d — i,(b) induces the isomorphism

imi,+imD[ _ im i,
imT T imi,NimT’

In the homotopy fibre sequence QX x QY LxvYydxx Y, the map i
may be regarded as the generalized Whitehead product [—ex,ey| of evaluation
maps (see [11, §3]). Moreover, by obstruction theory, we have that the canonical



338 IRENE LLERENA AND JOHN W. RUTTER

map
X \/mlmZ S2n-—1 ~ (\/ml Sn—l) % (\/mz Sn-l)
- QS(\/™ $" 1) xQS(\/™ ") - QX x QY
is (3n — 2)-connected, and, without loss of generality, it may be regarded as the
inclusion into QX x QY of its (3n — 2)-skeleton.
PROPOSITION 4. The map y induces an isomorphism

P (_BZmnmzZ/z ~ [S2n v SZn’\/mlmz S2n—1] N [S2n v SZ",QX*QY].

Proof. Since y is (3n — 2)-connected, y, is an isomorphism for n > 4 and an
epimorphism for » = 3. We consider the case n = 3. For a homotopy coloop
Z, the evaluation map SQZ — Z has a homotopy section (see for example [12]).
Thus QS (\/™ s ‘)*QS(\/"” sy = SQS(\/™S"™H A Qs(\/ s -
S(\/"” N ' ) A ng”\/’"z Sn=Ty \/’”' Sy A SQS(\/™ S*1) — (V™ S* 1) A

S(\/™ s+ sn=1y \/'"2 S"~1) has a homotopy section. Up to
a homotopy self-equlvalence of (\/™ S” D« (\/™ 8" 1), this composite is a
homotopy co-section of y. Hence y, is an isomorphism. O

By Proposition 4, 1.[S?" v $?" QX x QY] = (—Bzm'mzZ/Z, and G ~ @NZ/Z,
with N < 2mym; (see Proposition 10). The composite w = iy factors as

w=iy:\/™™ MU VA Y V"8 "cX VY,

and, after a suitable choice of orientation of the (2n — 1)-spheres, the mym;

components of w are easily shown to be the Whitehead products Wys = [tr, 1]

of "% \/™S"<c X and §" 5 \/"S"c ¥, r=1-my, s=1---m,.
Finally, in the following pull-back square of groups

G — G

I

Rﬁ,axRa,ﬂ —_— F — éa(XV Y)

;l él al
Rﬂ,aXRa,ﬁ—’ U _n_) U

the map s: U — &(X v Y) induces a cross-section of 6, so that

E

EEGNU, and g(XVY)gW
ﬂYa a’ﬂ

This completes the proof of Theorem A.
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In order to describe the inclusion of Rg, x R, p into E let us choose the
isomorphism GXUE=&X v Y)xyU to be given by (y,u)=y+u+s
(u(), 1) + (s(u),u) = (,u(y)s(uq,u). The inverse isomorphism is given by (a,u)
— (y,u), where u(y) =os(u)” . Thus the element (1,u) e ker (E — &(X v Y)),
is identified under this isomorphism with the element (y,u) € G < U where u(y) =
s(u)™" = s(u™') and u € ker 7.

We decompose y in G as y = (y!,y?) corresponding to the isomorphism
(S v S X Vv Y| =X VvY)xau(XvY).

PROPOSITION 5. The monomorphism Rg, X Ry5— G > U is given by

THATE)!

where u(y) =s<( 11)/(5 “11*57)) €&(X v Y). Furthermore, if g= (SB)*({x)
— .

and h = (Sa)*({y), then
y = Ty, B)(x) — (SB)"(Lx), Tlixt,0)(Ly) — (Sa)"(Ly))-

Proof. The first part is already proved. For the second observe that p is
a sum of Whitehead products which lie in the kernel of j,. The result follows on
applying [9, 3.4.3] or using the computation of I'(iyz,a)({y) — (S«)*({y) given in
§3 below. O

In the next proposition we describe the action of U on G in the extension
G—E—>»U.

PROPOSITION 6. Let u= (g Ii) €U and y=(y,,7,)€G. Then y =
(y],75) = u-y is given by

= vkyS!
= vEpnk!

In particular the subgroup Rg, X Ryp of U acts trivially on G.

Proof. By definition, the action of U on G is given by u- (y,,7,) = (¥],75)
say, where (y],7) L1=s()((y1,7,) L1)s(u7!). Since [X,8%" v X] — [X, 5% x
X] is bijective by obstruction theory, we have ¢y f = (f v f)py for example.

f—l —f_lgic_l )
_k—li_lf—l k!

= (il Zl> say. Since y; and y, are sums of (proper) Whitehead products, we
1k

Similarly, for example, 9y = pg+3g=g. Letu ! = (
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have
s)((r172) L Ds@™") = s@) (11, 72), Doxy v (i v oy, @1 v ki)oy)
= s()((n/y + I, f1)ox, (v2ki + 31, k1 )oy)
= s@)((1/1,7k1), 5 oy v

= ((f v, (f v k)pka) L1,
where f, =f_1 and ky =k~ O

We now give a necessary and sufficient condition that the semi-direct product
structure on G X U on E carries over to a semi-direct product structure G X U
on & X v Y). By Proposition 6, the action of U on G induces the action of U
on G. So we can consider the 5-term exact sequence [5, Theorem VI 8.1]

0 — Der(U, G) — Der(U, G) — Homy(Rp,y X Ry, G) — H*(U,G) — H*(U,G)

associated to the group extension Rg, X R, U - U and the U-module G.
Here Der(U, G) is the group of derivations (crossed homomorphisms) from U to
G, that is the group of functions d: U — G such that d(u;-up) =d(uy) +
uy -d(uy) for all uj,upe U. The group H*(U,G) classifies the extensions of
the group U by the U-module G. We denote the restriction of the section s to
R,B,a X Ray B by

st Rgy X Ry p — pu(G) = G.

PROPOSITION 7. The group of homotopy self-equivalences &(X v Y) is a
semidirect-product, or more precisely, 6 has a right-inverse, if and only if s' extends

to some derivation from U into G.

Proof. 1t follows from the diagram after Proposition 4 that the cohomology
class in H%(U, G) of the extension G = &(X v Y) - U maps to the cohomology
class corresponding to the semidirect-product E, that is to the zero element
of H>(U,G). We now show that the cohomology class which classifies the
extension G &(X v Y) —» U is given by s’. The section s’ is a U-module
homomorphism since, for u = n(#) € U and r € R, x R, 3, we have

s'"(u-r) = s'(ara~") = s(@)s(r)s@™") = u- s(r).

To see that s’ maps to the extension G &(X v Y) —» U, observe that the
commutative diagram of group extensions

Rﬂ,axRa,/; _— _n) U

] R

U
|
G —eXxvYy U
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induces the commutative diagram

Homy(G,G)  —— H*(U;G) —— H2(&(X v Y);G)

A

Homy(Rg,« X Ry 5, G) —— Hz(U; G) — Hz((_/; G).
The proposition now follows. |

As an aid to calculation, we note by Proposition 5 that

s'((SB)"(Lx), (S0)"(Ly))
= (T(iyt", B)(Lx) = (SB)"(Lx), T(ixt, 0)(Ly) — (S2)*(¢y))-

In §4 Example 5 we give examples of spaces for which # has no right-inverse.
We now consider the case where ¥ = X. We define p: (X v X) — Z; as
follows: let O(c) = (i ]gc), then p(o) = +1 if fand k € £(X) and p(o) = —1 if
g and he £(X). That p is a homomorphism follows easily using the techniques
of the proof of Proposition 2. This homomorphism has a section given by —1
— T, where T(x,y)=(y,x). The action in the split extension ¥ (X v X) —
(X v X)>»Z/2 is given by (—1)-6=TocT. We have, as above, the iso-
morphism GX U~ #(X v Y) xy U given by (y,u) — (u(y)s(u),u): the in-
verse of this isomorphism is given by (o,u) — (y,u), where u(y) = os(u)” . The
proof of the following proposition 1s straightforward.

PROPOSITION 8. The action in the split extension G > U /Rpy X Ryp >
E(X v X)>»Z/2 s given by

0 (0 (4 1)) = (e (5 1)

§3. The group G

Let Z and W be (pointed) spaces. For any map u:Z — W, the u-based
track group mn(W;u) is the set of homotopy classes in the space of functions
(ZANTIT=ZxI[zox I — W, satisfying ((z,0) = {(z,1) = u(z), for all ze Z.
The set nZ(W;u) is a group with the obvious operation. If Z is a co-H-space,
W< is an H-space and there exists an isomorphism

up : wZ(Wiu) — a2 (Wiuut) = nf(W; %),

1

defined in the following way. Let F be a homotopy u-u~" ~ *, then
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F(z,1 - 41), for 0 < 1 %

-1 1 1 3

up(&)(z,0) = (Su™')od® z,2t—§ , forzgz 3
F(z,4t - 3), for% <t<l1,

where ®:ZAIt 5 (ZVvZ)ANITT2(ZATT)V(ZAIY)Y S (ZATT)VZ is
the map induced by the comultiplication of Z followed by the projection.

Given co-H-spaces 4 and B and pointed maps f: B— A, u: 4 — X, we
define

T, f) ¢ [S4, X] ~ 2 () <20 2B ur) “2% (5B, X).

For a detailed account of the properties of I'(u, f) see [10, §3].

In our case B=S%"1 v §~land 4 =\/™ 8" v \/™ §". By [10], for any
L3 e V™S X v Y] x [\/SL X v Y] = [/ S v /S X v Y]
we have

L(ev o v (8% = (T(ixn o) (E), T(ivt, £)(E2)-
Hence, as a subgroup of [S X v Y] @[S, X v Y],
imT@Gv,avB)Ni*[S% v S QX « QY]
~ (im T(ix1, o) Nker j,,im T(iyd', B) Nker j,).
Here ker{j, : [S¥,X v Y] — [S?", X x Y]} = i,[S¥", QX xQY].

Observe that [\/S" X v Y]~ [\/S"LX]|®[\/S"!,Y]. So we only
need to study the image of I'(ixz,a) and I'(iy?’, ) on these two direct summands.
Let (' =¢) A CY e [\/"'SMUX]) x [\/™ s Y] = [\/™ $™! X v Y] and sim-
ilarly 2= CX +CY We have

T(ix1, o) (ix), = (ix), (1, a).
Hence kerj, NT(ix1,){{}} = 0, and, similarly, ker j, N\T(iy?’, $){¢3} = 0. Now
7. Tixt, ) () = (Sx)* (L)) by [10, (3.4.3)] and, therefore,

im T'(ix1, @) Nker j, = T(ixt,0){y : (Sx)*(¢}) = 0}.
Similarly
im L(iyt', ) Nker j, = T(ivt, B{L} : (SB)" (%) = O}
We have proved the following Proposition.
ProposITION 9.
imCGv eV B)NL[S? v 87, QX « QY]
= T(ix, ){Cy : (S0)"(y) = 0} + T, B){C% : (SB)"(C3) = 0}

Let us compute these groups. Write a« in the form o=) na'+
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> icjltiylelj. For nodd H(a') =0, o' = ¢' is a suspension element and a; = 0.
Here we use the notation introduced in §1 to define the matrix Q(«). For n even
(n+#2,4,8), since H[y,1;;] = +2, we have o' = t' + (1/2)a;[u;,1;] where ¢ is a
suspension element. For n=2,4,8, we have o' =t'+ a;3 where ' is a sus-
pension element and 9 is the Hopf map: observe that in this case S(a') # S(t')
in general. With this notation we have by [10, (3.3.3) and (3.3.6)]

T'(ix1,a) =T (ix1, E Lot)+ E aT (ix1, (1, 4])

1<)
Sa +Zza,, ixt, [, 1)) +Za,, (ix1, [1i,1]), for neven,#2,4,8,
1<J
= (Sn)”* +Za,, ixt, ;%) +Za,, (ixt, 1, 1]), forn=2,4,8,
1<
(SOC)*"‘ZaijF(in, [, 1]), for n odd.
\ 1<J

Consider the map [1;,4] as the composition of w:S~! — §" v S" and
(15,7) : S"v 8" —\/™ §". By [10, (3.4.2)], for {} = (1, .-+, m) D™ [S™, Y],
we have

r(in’ [lh l]])(C;’) = r(in(li’ lj)a w)F(in, (li7 l]))(gly)
= r(in(li’lj)a w)(Cn{j)
= [é’n iX”j] + [iX”ia C]]a

since all elements are of order 2. Also, for the Hopf maps §:5% ! — §”
(n=2,4,8), we have (11 +12)% =03+ 13 + [11,12). Therefore, by [10, 3.4.3],

T(ixt, 5:9)(CY) = (S)*(&) + [& ixmi]-
Since 7,1 Y =~ (—szn,,HS”, we can write {, in the form {, =", e,’lczm,Hn, where
n is the generator of 7m,.1S8”, e} =0,1, 1;: S" — \/™'S" v \/™ 8" is the in-
clusion onto the i-th sphere of the union and ¢ = (1 v 7'): \/™8" v \/™ §" —
X v Y is the inclusion onto the n-skeleton. With this notation iyu; = c1; and we
have

r(ina [li7 l]])(g;) = Cx <Z(ell[ljv 1m1+l77] + ef'[l,‘, lm|+l77])> ) and

A=1

my
Tixt,u9)(CY) = (S9* (L) + . <Z el lm,+ﬂ7]> .
i=1
Therefore, for all n,

F(ixt, @) (C}) = (0" (L) + . (Z agey, zmlﬂryl) :

ALy
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where the sum runs over all 1 <i, j<m;, 1 <A<m;. Observe that the
Whitehead products [1;, 1,,+,7] generate some of the last summands in

mn(\/ ™ 8" v \/™ S") = 1o (\/ ™ S™) @ 1on(\/ ™ S @ Y man(S™).

A<u
Now the natural isomorphism
Tt (X v Y, \/S" v /S = m2n1 (X, S") @ mon1 (Y, \/ S")

commutes with the connecting homomorphism :

tt (X VY, \/S"VVSY s mu(\VSTVVST) S mu(X v Y)

| |

Ton1 (X, \/S") @211 (Y, \/S") —— m2a(\/S") D72n(\/S")

Since ker ¢, = im d, the map c, is injective on the subgroup -, , 72,(S**~") of
n2n \/Sn \/ n

Also 1,[S™ v Sz” QX x QY] is the subgroup of ¢, [S?" v §2,\/S" v \/ S"]
given by

l*[Szn v S2n7QX*QY] = @<[lja1m|+l’7]>® @<[lm|+i7lj”]>
7,4 1A

where 1 < j<m; and 1 <1 <my. So, we can describe its elements as couples
(D1, D) of non-square matrices over Z/2. With this notation the element

(T(ix1, o) — (Sa)™) Z(Zatj > (1, ty+211),

is represented by the matrix D) = EQ(x) where E is the my x mj-matrix with
entries e} € Z/2 and Q(«) denotes the reduction of the matrix Q(«) modulo 2. In
particular

dim(im{T"(iyz,a) — (Sa)*}) = my rank Q(«).

On the other hand, ¢ i, e ker(Sa)™ if and only if >, {;Sa’ = 0, that is, if and only
if ET, =0, where T, the one-column matrix with entries Sa' e m,,(S"*!). We
define

o = dim{ee (%Z/Z ceT, = 0} - dim{ee g—éZ/Z ceT, =0,e0(a) = 0}
and
rp = dim{ee é"éZ/z ceTy = 0} - dim{ee én—sl/Z ceTy=0,e0(p) = 0}.

We have
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dim{(} : (Sw)*¢} = 0} = dim{E e #(my x my, Z/2) : ET, = 0}
= my dim{e € (%2/2 eTy = 0}
and
dim T(ix1,0){{y ¢ (S®) "L} = 0} = mor,.
This together with Proposition 9 proves the following proposition.

ProposITION 10.  The group

G L[S v §2", QX x QY]
Tim T v Y a v B NS v §2, QX x QY]

is a free Z/2-module of dimension N = 2mimy — mor, — myrg.

COROLLARY. Let (Sa)* =0 and (SP)* =0, then the dimension of the free
Z /2-module G is N = 2mymy — my rank Q(a) — my rank Q(B)).  Given further that
det Q(«) and det Q(B) are both odd, then G =0 and

EXvY)=U, for XY
EXVvY)=2=UXZ/2, forX~Y.
Remark. Where X =\/S"U,e®" is a manifold, we have det Qo) = +1

and hence rank Q(x) =m. More generally rank Q(x) =m in case det Q(a) is
odd. In the case where n is odd, we only can have det Q(«) # 0 if m is even.

§4. Examples

Example 1. X =Y = HP? = S*U,, €8, the quaternionic projective plane.
The group n3(S*) =~ Z/2 x Z/2 is generated by elements vqn; and Sv'y,
where 7, is the generator of 7y, 1(S¥). Since #yv4 = v’y [18, page 44], we have

n3(S)

ns(S) = G (s

= Z/2 = {n,Sws},

and
ng(S*) _
(v4),7s(S7) + (Sv)"[S3, 8%

Clearly U 5 U has a right inverse and therefore S(HP? v HP?) ~ G > U. By
(6],

prmg(SY) = 0.

Z)2 = ng(HPY) % &(HP?),
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where the isomorphism is given by u(¢) =¢11, & eng(HP?). Thus
U=&HP?) x & HP?) =Z/2x Z)2.

The generator of ns(HP?) is iy, and (Svs)*in, = 174(Sva) = 1(SV' ), # 0

is the generator of ng(HP?). Therefore, by Proposition 9,
G=1i[S* v S, QHP* x QHP?| = {[1,/In;} x {1,/ 1} = Z/2 x Z)2.
The isomorphism u shows that, for each self-equivalence f, f =1. Moreover,
from fvs = v4f, we deduce that degf = 1. Therefore
(f v LT = @ v ) V), pln = b1,

and, by Proposition 6, the action of U on G is trivial. Finally, by Theorem B,

&HP* v HP?) = (G < (§(HP?) x &(HP?)) % Z/2 = (Z/2)* x Z/2,
where the action is given by

(=D.(r1,72:. 1,k) = (v2, 715k, f)-

Thus &(HP? v HP?) =~ D(Z/4 x Z/4), the dihedral extension, where the copies
of Z/4 are generated by ([1,/]n7,—1) and (,(Svs),—1) in (Z/2)* > Z/2.

Example 2. X =Y = CP? = S¥U,e'®, the Cayley projective plane.

The group 716(S®) =Z/2x Z/2x Z/2x Z/2 is generated by elements
oshys, (Sa')ns, s and &g.  Since S(n,03) = (So')n;s + Vs + &3, [18, page 64], we
have

m16(S?)
(03),m16(S1) ~

mi6(S®)
= (0'8) 7'[16(515) + (SO'g) [S9 SS] =

generated by {#g(Sas), Vs, es} and {¥s, 5} respectively. Therefore z: U — U has
a right inverse and S(CP? v CP?) = G < U. By [9, Example 4.1], £&(CP?) =
Z/2x Z/2, generated by u((So')n;s) and u(vs) = u(ng), where u(&)=¢L1.

Hence
o= {0 )= (2% 7 2n))

As in Example 1, we have f = 1 and f = 1, for each self-equlvalence f. There-
fore, U acts trmally on G (Proposmon 6) and U= (Z /2)%. This is a con-
sequence of Proposmon 1, since fgk= fig' = zf g’ = g, and similarly khf =
The generator of 7o(CP?) is w3 and (Sas) g = ms(Sas) = 1((So’)nys + Vg +as)
# 0. Therefore, by Proposition 9,

1L716(S®) = ~Z/2xZ/2x ZJ2 and

prLms(S) = ~Z/2xZ]2

G =1[S" v S, QCP? x QCP?| = {[1,|n;s} x {1,V Ims} = Z/2 x Z)2.
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Finally, by Theorem B,
&(CP* v CPY) = (Gx U)X Z/2=(Z/2)"" x Z)2,
where the action of Z/2 is given by

(_1).((V1,yz),(£ i)) = ((yz’m’(g f‘))

Example 3. X =Y =8"x 8" = (8" v §") Uy, ,je*" (n > 3).
In this case S[1,12] =0 and X and Y are both manifolds. Therefore G =0,
L(S"x 8" v §"x 8") = U, and

E(S"xS"vS"xS")=xUXZ/2.
Using the isomorphism
7o (S™ v ")
ﬂ*ﬂzn(Sz”_l)—l- (So()*[S’”'l v S"H,S” v Sn]
72a(S™) X 1, (S™),

prilmo,(S" v S") =

[K

we have

2, S Sl
man(S™) X mn(S) E(Y)

with the semi-direct product structure given in Proposition 1. The action of Z/2

on U is again given by
S a9\ _(k h
(_1)'(/1 k) \g f)

The groups &(S” x S") have been computed (see [6] and [16]). For n=35, we

have
wesrmome (3 (4 D0 ) e

Example 4. X =Y = 8"U;, je*" (n > 3), where 1 is the generator of 7,(S").
Again S[t,1] =0 and Q([t,7]) =0. Thus, in Proposition 10, r;; =0 and

G= i*[Szn v Szn7QX*QX] = {[l?l,]’hn—l} X {[laﬂ]’hn—l} = Z/2 X Z/2

We also have U = U and (X v X) =~ G < U. By Proposition 6, the action is
given by

(f VR, gy = (1 v l’)(f 4 k)[’lylz]ﬂzn—l = (degf deg l})[lal’]'hn—l‘

T2nS" @@(X) K, .
Let K, be the group p™*1,m,S" & ——=———, so that U = ( is a
d {[s,dn2n1} K, &(Y)
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semi-direct product, as in Proposition 1. Here
(1] }_{O, forn= —1(4) orn=2,6,
b1 = /2, otherwise.

In the case where n is even, we have f =1 for each self-equivalence f. In the
case where 1,7,,S" = Z/2 (e.g. n=2,6,12,...), &(X) acts trivially on this group
and U=Z/2x Z/2x &(X) x £(X). Also (see [9, Example 4.4])

D(K,) x Z/2, for r odd,

&S 2n —
(5" Up.ie™) {D(K,,), for n even.

By Theorem B, we have
EXvX)=(GXU)XZ/2.

Example 5. X =53 x 83, Y = (8% v §%)Ugeb, with B = un?+un?+u,n).
0 1 2
We have Q(a) = Q(f) = ( ) 0), T,=0and Tp = (’72) Hence, with
- n
the notation of Proposition 10, r, =2 and 73 =1, so that G = (Z /2)2. On the
other hand, R, s =0 and

Rpo = (SB)*[S* v 84,83 v 83 = (n*> @ ) = n6(S®) @ 76(S®) = m6(S® v S?).

By obstruction theory we have that the composite 7(S® v S3) —» £(X v ¥) —
[X v Y,X x Y] has trivial kernel and therefore the map s': Rg, X R, p — G is
an isomorphism. By Proposition 7, §(X v Y) is a semidirect-product if and
only if s’ has a extension to a derivation from U to G. By Proposition 6, the
subgroup 1,73,(\/™S") x 1.7,(\/"S") of U always acts trivially on G. Hence,
each derivation from U to G is a homomorphism on this subgroup. In our
example s’ has no extension to a homomorphism on 1,76(S> v §3) x 1/7n6(S> v
S3) since

Rpu=Z/2x Z)2 c1m(S° v S*) = Z/(12) x Z/(12).
Therefore £(X v Y) is not a semi-direct product of G by U.
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