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STRONG CONVERGENCE OF APPROXIMATING FIXED POINTS
FOR NONEXPANSIVE NONSELF-MAPPINGS IN BANACH SPACES

JonG Soo0 JUNG AND TAE Hwa KmMm

Abstract

Let E be a reflexive Banach space with a uniformly Gateaux differentiable norm, C
a nonempty closed convex subset of E, and 7 C — E a nonexpansive mapping
satisfying the inwardness condition. Assume that every weakly compact convex subset
of E has the fixed pomnt property. For ue C and e (0,1), let x, be a umque fixed
pomt of a contraction G; C — E, defined by Gx = tTx + (1 — f)u, xe C. It 1s proved
that if {x,} 1s bounded, then the strong lim,_x, exists and belongs to the fixed point set
of T Furthermore, the strong convergence of other two schemes involving the sunny
nonexpanstve retraction is also given 1n a reflexive and strictly convex Banach space with
a uniformly Gateaux differentiable norm.

1. Introduction

Let C be a nonempty closed convex subset of a Banach space E, and let T :
C — E be a nonexpansive mapping (i.e., |Tx — Ty|| < ||x — y|| for all x,y e C).
Given a ue C and a re(0,1), we can define a contraction G,: C — E by

(1) Gx=tTx+(1-tu, xeC.

If T is a self-mapping (i.e., T(C) < C), then G, maps C into itself, and hence, by
Banach’s contraction principle, G, has a unique fixed point x, in C, that is, we
have

(2) x; =tTx; + (1 — t)u.

(Such a sequence {x,} is said to be an approximating fixed point of T since it
possesses the property that if {x,} is bounded, then lim, ||7x, — x;]| =0.) The
strong convergence of {x;} as ¢t — 1 for a self-mapping T of a bounded C was
proved in a Hilbert space independently by Browder [2] and Halpern [10] and in
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a uniformly smooth Banach space by Reich [18]. Thereafter, Singh and Watson
[21] extended the result of Browder and Halpern to a nonexpansive nonself-
mapping T satisfying Rothe’s boundary condition: T(0C) = C (here dC denotes
the boundary of C).

Recently, Xu and Yin [27] proved that if C is a nonempty closed convex (not
necessarily bounded) subset of Hilbert space H, if T: C — H is a nonexpansive
nonself-mapping, and if {x,} is the sequence defined by (2) which is bounded,
then {x,} converges strongly as t — 1 to a fixed point of 7. They also studied
other two schemes involving the nearest point projection P from H onto C, which
were introduced by Marino and Trombetta [10]. Jung and Kim [11] extended
Xu and Yin’s results [27] to a uniformly convex Banach space with a uniformly
Gateaux differentiable norm with the additional condition upon C. Kim and
Takahashi [12] also generalized Xu and Yin’s results [27] to a smooth and
reflexive Banach space with a weakly sequentially continuous duality mapping.

Very recently, Xu [26] showed that if E is a uniformly smooth Banach space,
if C is a nonempty closed convex subset of E, and if T : C — E is a nonexpansive
nonself-mapping with a fixed point, which satisfies the inwardness condition, then
the sequence {x,} defined by (2) converges strongly as ¢t — 1 to a fixed point of
T. He also gave the strong convergence theorem in a uniformly convex and
uniformly smooth Banach space with the weak inwardness condition upon the
mapping T.

In this paper, we establish the strong convergence of {x,} defined by (2) for a
nonexpansive nonself-mapping 7" in a reflexive Banach space with a uniformly
Gateaux differentiable norm. We also prove the strong convergence of other
two schemes studied in {12, 13, 27] in a reflexive and strictly convex Banach space
with a uniformly Géteaux differentiable norm. Our results extend and improve
the results in [18, 26, 27].

2. Preliminaries

Let E be a real Banach space with norm || - || and let E* be its dual. The
value of x* € E* at x € E will be denoted by (x,x*).

A Banach space E is called strictly convex if its unit sphere U = {x€e E:
||x|| = 1} does not contain any linear segment. For every & with 0 < & < 2, the
modulus d(¢) of convexity of E is defined by

x+y

oe) = inf{l -1

E is said to be uniformly convex if d(¢) > 0 for every ¢ > 0. If E is uniformly
convex, then E is reflexive and strictly convex.

The norm of E is said to be Gdteaux differentiable (and E is said to be
smooth) if

Al <L Iyl < 1, Jx— ]l = }

3]l = X))
(3) i =————
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exists for each x,y in its unit sphere U = {xe E: ||x|| =1}. It is said to be
uniformly Gateaux differentiable if, for each y € U, this limit is attained uniformly
for x € U. Finally, the norm is said to be uniformly Fréchet differentiable (and E
is said to be uniformly smooth) if the limit in (3) is attained uniformly for (x, y) €
U x U. Since the dual E* of E is uniformly convex if and only if the norm of E
is uniformly Fréchet differentiable, every Banach space with a uniformly convex
dual is reflexive and has a uniformly Gateaux differentiable norm. The converse
implication is false. A discussion of these and related concepts may be found in

(5].
The (normalized) duality mapping J from E into the family of nonempty (by
Hahn-Banach theorem) weak-star compact subsets of its dual E* is defined by

J(x)={feE": (x,f)=|IxII” = I £’}

for each x e E. It is single valued if and only if E is smooth. It is also well-
known that if E has a uniformly Gateaux differentiable norm, J is uniformly
continuous on bounded subsets of E from the strong topology of E to the weak-
star topology of E*. This fact is explicitly proved in Lemma 2.2 of [19] (see also
(4, 6, 7]).

Let 4 be a mean on positive integers N, i.e., a continuous linear functional
on /% satisfying ||u|| =1 = u(1). Then we known that u is a mean on N if and
only if

inf{a, :ne N} < u(a) < sup{a, :ne N}

for every a = (a1,az,...) € /*. According to time and circumstances, we use
U,(a,) instead of u(a). A mean u on N is called a Banach limit if

Hn(an) = ty(An+1)
for every a = (a1, az,...) € /°. Using the Hahn-Banach theorem, we can prove
the existence of a Banach limit. We know that if 4 is a Banach limit, then
liminf a, < w,(a,) < limsup a,
h—o0 n— oo
for every a = (aj,az,...) €. Let {x,} be a bounded sequence in E. Then we
can define the real valued continuous convex function ¢ on E by

$(z) = pyllxn — 2|
for each ze E.
The following lemma which was given in [8, 9, 23] is, in fact, a variant of
Lemma 1.3 in [17] (cf. [20, p. 171]).

LeMMA 1. Let C be a nonempty closed convex subset of a Banach space E
with a uniformly Gdteaux differentiable norm and let {x,} be a bounded sequence
in E. Let u be a Banach limit and ue C. Then

2 . 2
Ul Xn — ul]” = min g, |Ix, — y||
yeC
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if and only if
e (x —u, J(x, —u)) <0
for all xe C.

Let Ic(x) be the inward set of a closed convex subset C of E at x given by
Ic(x)={zeE:z=x+ Ay — x) for some y e C, A > 0}.

A nonself-mapping T : C — E is said to satisfy the inwardness condition if Tx €
Ic(x) for all xe C. T is also said to satisfy the weak inwardness condition if
Txecllc(x) for all xe C, where cllc(x) is the closure of Ic(x) in norm
topology.

Recall that a closed convex subset C of E is said to have the fixed point
property for nonexpansive self-mappings (FPP for short) if every nonexpansive
mapping 7 : C — C has a fixed point, that is, there is a point p € C such that
Tp = p. It is well-known that every bounded closed convex subset of a uni-
formly convex Banach space has the FPP (cf. [7, p. 22]).

Finally, let C be a nonempty closed convex subset of E. A mapping Q of C
into C is said to be a retraction if Q> = Q. If a mapping Q of C into C is a
retraction, then Qz = z for every z € R(Q), where R(Q) is the range of Q. Let Q
be a retraction of E onto a closed subset C of E. Q is said to be sunny if each
point on the ray {Qx+ ¢t(x — Qx):¢> 0} is mapped by Q back onto Qx, in
other words,

Q(Qx + 1(x — Qx)) = Ox
for all >0 and xe E. If there exists a retraction Q:E — C which is
both sunny and nonexpansive, then C is said to be a sunny nonexpansive
retract. Sunny nonexpansive retracts appear in [16, 17].
The following lemma is well-known (cf. [7, p. 48; 14, p. 65]).

LemMMaA 2. Let C be a closed convex subset of a smooth Banach space E and
let Q:E — C be a retraction. Then the following the equivalent:

(@) (x—Qx,J(y—0x)) <0 for all xe E and ye C;

(b) |0z — Ow||> < (z = w,J(Qz — Ow)) for all z and w in E;

(c) Q s both sunny and nonexpansive.

3. Main results

In this section, we study the strong convergence of {x,} defined by (2) in a
reflexive Banach space with a uniformly Gateaux differentiable norm.
Now, we state and prove the first main result.

THEOREM 1. Let E be a reflexive Banach space with a uniformly Gdteaux
differentiable norm, C a nonempty closed convex subset of E, and T:C — E a
nonexpansive nonself-mapping satisfying the inwardness condition. Assume that
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every weakly compact convex subset of E has the FPP. Suppose that for each
ueC and te(0,1), the contraction G, defined by (1) has a (unique) fixed point
x;€ C. Then T has a fixed point if and only if {x;} remains bounded as t — 1 and
in this case, {x;} converges strongly as t — 1 to a fixed point to T.

Proof. If the fixed point set F(T') of T is nonempty, then {x,} is bounded.
In fact, we have ||x; —v|| < |lu—v| for all € (0,1) and ve F(T).

Suppose conversely that {x,} remains bounded as t — 1. We now show
that F(T) is nonempty and that {x,} converges strongly as t — 1 to a fixed
point of T. To this end, we follow ideas of [22] and [23]. Let#, — I and x, =
xt,. Define ¢:E — [0,00) by #(z) = p,||x, — z||>. Since ¢ is continuous and
convex, ¢(z) — oo as ||z|| — oo, and E is reflexive, ¢ attains its infimum over C
(cf. [1, p. 79]). Let ze C be such that

2 .
tllxn = z||* = min g, [|x, — y?
yeC

and let

M = {x& Cpmln = I = mi o — 1.
Then M is a nonempty bounded closed convex subset of C. Since
4) 1% — Tx|| = (1 = 0)||Tx, — x|]| —» 0 as t — 1,

we have for xe C

() $(Tx) = X0 — Tel|* = 1| T — Tx|®

< tallxn = X7 = ().

Now we prove that the inwardness condition of T on C implies the inwardness
condition of T on M, that is,

(6) Tx e Iy(x) forxe M.

In fact, let xe M. The inwardness condition of 7 on C implies that Tx =
x+ AMy—x) for some ye C and 1 >0. If A<, then Tx € C by convexity of
C. From (5), it follows that Tx € M < Ip(x) and (6) is verified. Assume 4 > 1,
we can write y in the form y=rTx+ (1 —r)x, where r=2""€(0,1). By
convexity of f and (5), we obtain

#(») < rd(Tx) + (1 — r)d(x) < ¢(x) for xe M.

This implies that y € M and therefore Tx = x + A(y — x) belongs to Ip(x) for
xe M and (6) is proved. Thus it follows from Theorem 16.1 of Goebel and
Reich [7] that T has a fixed point z e M, that is, F(T) is nonempty. On the
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other hand, for ve F(T), we have
(xp — Txp, J (x4 — v) = (x4 — To+ Tv — Txp, J (X — v))

= ||xn = To||> = (T — Tv,J (xXn — 1))
> |}%n = To||> = || Ty — To]| [|x, — o]
> ||x, — To||> = ||x, — To[|> =0

for all n. Since x, — Tx, = (1 — t,)(u — Tx,), we get from the above inequality

0 < (xp — Txp, J(x, — v))
= (1= ) (u = T, J (30 — v))

for all ve F(T) and all n. Thus from (4) and (7), we obtain

(8) (X0 —u, J(xy —0)) <0

for ve F(T). From Lemma 1, it follows that

()

y(x —2,J(x, —2)) <0
for all xe C. In particular, we have
9) = 2, (30 — 2)) 0.
Combining (8) and (9), we get
Fon(n = 2, (% = 2)) =ty — 2[|* < 0.

Therefore, there is a subsequence {x,} of {x,} which converges strongly to
z. To complete the proof, suppose that there is another subsequence {x,} of
{x,} which converges strongly to (say) y. Then y is a fixed point of T by
(4). It follows from (8) that

(z-uJ(z-y))<0
and

(y—uJ(y—2)<0.
Adding these two inequalities yields

E=»Jz=y))=lz-yI*<0
and thus z=y. This prove the strong convergence of {x;} to z.

COROLLARY 1 [26]. Let E be a uniformly smooth Banach space, C a
nonempty closed convex subset of E, and T : C — E a nonexpansive nonself-
mapping satisfying the inwardness condition. Suppose that for each ue C and t €
(0,1), the contraction G, defined by (1) has a (unique) fixed point x,€ C. Then T
has a fixed point if and only if {x,} remains bounded as t — 1 and in this case,
{x:} converges strongly as t — 1 to a fixed point of T.
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For the second main result, we need the following result which was es-
sentially proved by Takahashi and Jeong [24] and here present the brief proof for
the sake of completeness.

LemMA 3. Let E be a uniformly convex Banach space, C a nonempty closed
convex subset of E, and {x,} a bounded sequence of E. Then the set

2 . 2
M = {u € C: p,||Xn — ul|” = min p,[|x, — ]| }
zeC
consists of one point.

Proof. Let ¢(z) = u,||x, — z|* for each ze E and r=inf{¢(z):ze C}.
Then, since the function ¢ on C is convex and continuous, ¢(z) — oo as
|lz]| — oo, and E is reflexive, it follows from [1, p. 79] that there exists u € C with
#(u) =r. Therefore M is nonempty. By Theorem 2 of [25], || - ||* is uniformly
convex on any bounded subset of E; especially, we have a continuous increasing
function g =g, : [0, 00) — [0, 00), with g(0) =0, such that

[Ax+(1=A)ylI> < x>+ (1 =DlyI> = A1 -Dg(llx~yl), 0<i<1, x,yeB,

where B, is the closed ball centered at 0 and with radius r that is big enough so
that B, contains {x,}. It follows that

P(Ax+(1-4)y) < Ag(x)+(1-1)g(y) - A1 =Ag(lx=yl), 0<i<l, x,yeB.

This implies that ¢ is a strictly convex function on E. Thus the minimum point
u of ¢ is unique, that is, M consists of one point.

THEOREM 2. Let E be a uniformly convex Banach space with a uniformly
Gdteaux differentiable norm, C a nonempty closed convex subset of E, and T :
C — E a nonexpansive nonself-mapping satisfying the weak inwardness condi-
tion. Suppose that for each ue C and t € (0,1), The contraction G; defined by (1)
has a (unique) fixed point x, € C. If the fixed point set F(T) of T is nonempty,
then {x;} converges strongly as t — 1 to a fixed point of T.

Proof. Let we F(T). As in proof of Theorem 1, we have |x, —w| <
lu —w|| for all ze (0,1) and hence {x;} is bounded. We now show that {x}
converges strongly as t— 1 to a fixed point of 7. To this end, let ¢, — 1
and x, = x;,. As in the proof of Theorem 1, we define the same function ¢ :
E —[0,%) by $(z) = ]l — zI|* and let

M= {x & C: il — x| = min sy lxn — y||2}.
yeC

Then, by Lemma 3, we know that M consists of one point, say z. We must
show that this z is a fixed point of 7. Since T satisfies the weak inwardness
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condition, there are some v, € C and 4, > 0 such that
Wy := z + Ay(vy — z) — Tz strongly.

If 4, <1 for infinitely many » and these n, then we have w, € C and hence Tz e
C. We have Tz =z by (5). So, we may assume 4, > 1 for all sufficiently large
n. We then write

Uy = FyWn + (1 — 1p)z,

where r, = 4, ! Suppose r, — 1. Then v, — Tz and hence Tze C. By (5),
we have Tz =z. So, without loss of generality, we may assume r, <a < 1.
By Theorem 2 of [25], || - ||* is uniformly convex on any bounded subset of E;
especially, we have a continuous increasing function g =g, : [0,00) — [0, c0),
with g(0) =0, such that

[Ax+(1=A)p|I* < Ax|P+ A= yII> - 21-Dg(lx~yl), 0<i<1, x,yeB,

where B, is the closed ball centered at 0 and with radius r such that B, contains z
and {w,}. It follows that

$(Ax+(1-4)y) < Ag(x)+(1-A)P(y)-A(1-Dg(llx=yl) 0<A<1, x,yeB.
Noting v, € C, we derive that
$(2) < ¢(va)
< rnp(Wn) + (1 = ra)$(2) — ra(l = ra)g(llwn — z|)

and hence

(I =a)g(lwn = zll) < (1 = ra)g(llwn — zl]).
Taking limit as #» — oo, we obtain

9(ITz — z[|) < §(Tz2) — ¢(2) < 0

by (5). Therefore, Tz = z, that is, z is a fixed point of T. The proof of the
strong convergence of {x;} to z is the same as given in the proof of Theorem 1.

Remark 1. (1) Theorem 1 generalizes Xu and Yin’s result [27, Theorem 1]
to a Banach space setting.

(2) Corollary 1 extends Reich’s result [18] to nonself-mappings.

(3) Theorem 2 also improves slightly Theorem 2 in [26].

(4) To guarantee the existence of a fixed point of the contraction G, defined
by (1), the weak inwardness condition upon the mapping T is used. In fact, it is
well-known (cf. [7, 15]) that if C, a bounded closed convex subset of a Banach
space E, has the FPP and a nonexpansive T : C — E is weakly inward, then
the contraction G, has a fixed point for every te (0,1). Hence we have the
following corollary.
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COROLLARY 2. Let E, C, T be as in Theorem 2. Suppose in addition that C
is bounded. Then for each ue C, the sequence {x,} defined by (2) converges
strongly as t — 1 to a fixed point of T.

Remark 2. (1) Corollary 2 generalizes Corollary 1 in [27] to a Banach space
setting.

(2) Since Rothe’s boundary condition: 7(0C) < C implies the weak in-
wardness condition, Corollary 2 also improves upon Theorem in [21].

Next, we denote by Q the sunny and nonexpansive retraction of E onto C.
Now let T: C — E be nonexpansive and let u € C be fixed. Following Marino
and Trombetta [10], we define the contraction U, from C into itself by

Ux=1t0T(x)+ (1 —tu, xeC
and
Rix=QTx+ (1 -tu), xeC.

Then Banach’s contraction principle yields a unique point x, (resp. y,) € C that is
fixed by U, (resp. R;), that is, we have

(10) x =1tQT(x;)+ (1 — t)u
and
(11) Y= Q(tTy, + (1 - tyu).

The following lemma is well-known (cf. [1, p. 79; 7, p. 12]).

LeMMA 4. Let C be a closed convex of a reflexive and strictly convex Banach
space E. Then C°={xe C: x| =inf{|y|: ye C}} is a singleton.

THEOREM 3. Let E be a reflexive and strictly convex Banach space with a
uniformly Gdteaux differentiable norm, C a nonempty closed convex subset of E,
and T : C — E a nonexpansive nonself-mapping satisfying the weak inwardness
condition. Suppose that C is a sunny nonexpansive retract of E, and that for some
ue C and each te (0,1), x; is a (unique) fixed point of the contraction U, defined
by (10), where Q is a sunny nonexpansive retraction of E onto C. If the fixed
point set of T 1s nonempty, then {x,} converges strongly as t — 1 to a fixed point
of T.

Proof. We follow an idea of [22]. Let we F(T). Then it is easily seen
that ||x, — w| < |lu—w| for all te(0,1) and hence {x,} is bounded. As in
the proof of Theorem 1, we define the same function ¢ - C — [0, 0) by ¢(z) =
tnllxn — z||* and let

2 . 2
M= {x € C: ol — x| = min g, — v }
yeC
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Then M is invariant under Q7. In fact, since
xc = OTx/|| = (1 = )|QTx, — x| = 0 ast—1,
we have for xe M

$(OTx) = t||xn — OTx||* = p,|| QT — OTx|>

< tallxn = x|1* = $(x),
and hence QTx e M because QTx € C. Furthermore, M contains a fixed point
of QT. To this end, define

M° = {veM: lv — w|| = min ||w — J’“}-
YEM

Then, by Lemma 4, M° is a singleton. Denote such a singleton by z. Then we
have
19Tz —w| = [|QTz — QTw|| < ||z — w]|

and hence QTz =z. Applying the method of the proof of Theorem 1 to the
nonexpansive mapping Q7T, we obtain that {x,} converges strongly as t — 1 to a
fixed point z of QT. It remains to show that z is a fixed point of 7. Indeed,
since Q is sunny and nonexpansive retraction, from Lemma 2, we get

(12) (Tz—2z,J(z—y)) =0 forall yeC.

On the other hand, Tz belongs to clIc(z) by the weak inwardness condition.
Hence for each integer n > 1, there exist z, € C and a, > 0 such that

(13) YV =2z + ay(z, — z) — Tz strongly.

Since E has a uniformly Géiteaux differentiable norm, J is uniformly continuous
on bounded subsets of E from the strong topology of E to the weak-star topology
of E*. Thus it follows from (12) and (13) that

0<(Tz—-z,a,J(z — z,))
= (Tz — z,J(an(z — z,))
=(Tz-z2,J(z—y,) = (Tz—2,J(z,Tz)) = —||Tz = z||*.
Hence we have 7z = z.

THEOREM 4. Let E be a reflexive and strictly convex Banach space with a
uniformly Gdteaux differentiable norm, C a nonempty closed convex subset of E,
and T : C — E a nonexpansive nonself-mapping satisfying the weak inwardness
condition. Suppose that C is a sunny nonexpansive retract of E, and that for some
ue C and each te (0,1), y, is a (unique) fixed point of the contraction R, defined
by (11), where Q is a sunny nonexpansive retraction of E onto C. If the fixed
point set of T is nonempty, then {y,} converges strongly as t — 1 to a fixed point
of T.
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Proof. The proof follows an idea of [22]. Let x be a fixed point of T.
Then we have

% =yl = 1@x = Q(tTy, + (1 - t)u)|
<tllx =Tyl + (1 = )lx - ull
< tlx =yl + (1 = 0)lx —ul
and hence ||x — y,|| < |lx —u| for all te (0,1). So {y,} is bounded. We now

show that {y,} converges strongly as t — 1 to a fixed point of 7. To this end,
let t, -1 and y, =y, . As in proof of Theorem 1, define ¢: C — [0,00) by

é(z) = w,lly, — z||? for each ze C and let

M= {ueC:pylly, = ull* = min g1y, = yII}
Then M is invariant under Q7. In fact, since {Ty,} is bounded and
(14) ly: = QTy |l < 1Ty, + (1 — )u — Ty|

=1 =0)lu— Tyl

we have y, — QTy, — 0. So, we have for ze M,

lyw = QTz|| < ||y, — OTy,l + 19Ty, — OTz||

< lyn =2l + lya — Tyl

and hence

2 2
tun“yn - QTZ” =< /un”yn - Z” .

Then QTz € M because QTz € C. Furthermore, by the proof of Theorem 3, we
know that M contains a fixed point of QT, that is, there is a point z such that
QTz =z. Since Q is sunny and nonexpansive retraction, from Lemma 2, we
have

(Tz—2z,J(z—w)) >0 forallwe C.

On the other hand, Tz belongs to cllc(z) by the weak inwardness condition.
Hence for each integer n > 1, there exist z, € C and a, > 0 such that

Xp =z + ay(z, — z) — Tz strongly.
As in the proof of Theorem 3, we have Tz =z. For any ve F(T), we have

tv—uwy+u=tw+(1-u=0(tv+ (1 -1tu)

and hence

vy = ) + 10 = wlI* = 1Q(Ty, + (1 = )u) — u— 1o~ u)||?



270 JONG SOO JUNG AND TAE HWA KIM

= [1Q(¢Ty, — u) + u) — Qt(v — u) + w)|?
< 11Ty, — u) = t(v — )|
< 2y, —of?
= 2|y, —u) = (v —w)||*.
So, we have
2

02 ||(y, —u) = tlo—w)* = |1y, —u) — t(v — w)
> 2((1 = 0)(y, —u), J(t(y, — v)))
=2(1-0t(y, —u,J(y, — v))
and hence
(15) (yi—u,J(y,—v)) <0

for ve F(T). From Lemma 1, it follows that

:un(x - va(yn - Z)) <0
for all xe C. In particular, we have

(16) u,,(u—z,J(yn—Z)) <0.
Combining (15) with v =z and (16), we get

:un(yn - Z»J(yn - Z)) = ﬂn'lyn - Z”2 < 0.

Therefore, there is a subsequence {y,} of {y,} which converges strongly to z.
Suppose that there is another subsequence {y,} of {y,} which converges
strongly to (say) y. Then y is a fixed point of QT by (14) and also of 7. Thus,
as in the proof of Theorem 1, we have z =y and hence y, — z.

COROLLARY 3. Let E, C, T, Q be as in Theorem 3 (resp., Theorem 4).
Suppose in addition that C is bounded and that every weakly compact convex
subset of E has the FPP. Then for each ue C, the sequence {x,} (resp., {y,})
defined by (10) (resp., (11)) converges strongly as t — 1 a fixed point of T.

COROLLARY 4 [27). Let H be a Hilbert space, C a nonempty closed convex
subset of H, T :C — H a nonexpansive nonself-mapping satisfying the weak
inwardness condition, P: H — C the nearest point projection, and {x,} the se-
quence (resp., {y,}) defined by (10) (resp., (11)) with P instead of Q. If T has a
fixed point, then {x,} (resp., {y,}) converges strongly as t — 1 to a fixed point of T.

Proof. Note that the nearest point projection P of a Hilbert space H onto a
closed convex subset C is a sunny and nonexpansive retraction. Thus the result
follows from Theorem 3 (resp., Theorem 4).
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Remark 3. Theorem 2, Theorem 3 and Theorem 4 apply to all uniformly
convex and uniformly smooth Banach spaces and in particular, to all L? spaces,
1< p<oo.

Note added in proof. 1. Since E is uniformly convex, the existence of the
minimum in proofs of Lemma 3 and Theorem 2 also follows from [7, Proposition
2.2].

2. Since {x,;} is a bounded approximating sequence and FE is uniformly
convex, the existence of a fixed point of T in proof of Theorem 2 also follows
from Browder’s demiclosedness principle [3].

3. The authors noticed, in the process of referring, the fact that Theorem 3
and 4 were proved in [22] with no assumption of strict convexity of E, using the
stronger version of Theorem 1 for the self-mapping 7 : C — C, where C is a
nonempty closed convex subset of E which has normal structure.
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