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STRONG CONVERGENCE OF APPROXIMATING FIXED POINTS

FOR NONEXPANSIVE NONSELF-MAPPINGS IN BANACH SPACES

JONG SOO JUNG AND TAE HWA KIM

Abstract

Let E be a reflexive Banach space with a uniformly Gateaux differentiable norm, C

a nonempty closed convex subset of E, and T C —• E a nonexpansive mapping

satisfying the inwardness condition. Assume that every weakly compact convex subset

of E has the fixed point property. For u e C and / e (0,1), let xt be a unique fixed

point of a contraction Gt C —> E, defined by Gtx = tTx + (1 — t)u, x e C. It is proved

that if {xt} is bounded, then the strong l im^ix, exists and belongs to the fixed point set

of T Furthermore, the strong convergence of other two schemes involving the sunny

nonexpansive retraction is also given in a reflexive and strictly convex Banach space with

a uniformly Gateaux differentiable norm.

1. Introduction

Let C be a nonempty closed convex subset of a Banach space E, and let T :
C —> E be a nonexpansive mapping (i.e., \\Tx - Ty\\ < \\x - y\\ for all x j e C).
Given a « e C and a t e (0,1), we can define a contraction Gt : C —> E by

(1) Gtx = tTx+(l -ήu, xeC.

If T is a self-mapping (i.e., T[C) c C), then Gt maps C into itself, and hence, by
Banach's contraction principle, Gt has a unique fixed point xt in C, that is, we
have

(2) xt = tTxt + (\-t)u.

(Such a sequence {xt} is said to be an approximating fixed point of T since it
possesses the property that if {xt} is bounded, then linv^i| |7x, — *ί| | = 0.) The
strong convergence of {xt} as t —• 1 for a self-mapping T of a bounded C was
proved in a Hubert space independently by Browder [2] and Halpern [10] and in
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a uniformly smooth Banach space by Reich [18]. Thereafter, Singh and Watson
[21] extended the result of Browder and Halpern to a nonexpansive nonself-
mapping T satisfying Rothe's boundary condition: T(dC) cz C (here dC denotes
the boundary of C).

Recently, Xu and Yin [27] proved that if C is a nonempty closed convex (not
necessarily bounded) subset of Hubert space Hy if T : C —• H is a nonexpansive
nonself-mapping, and if {xt} is the sequence defined by (2) which is bounded,
then {xt} converges strongly as t —» 1 to a fixed point of T. They also studied
other two schemes involving the nearest point projection P from H onto C, which
were introduced by Marino and Trombetta [10]. Jung and Kim [11] extended
Xu and Yin's results [27] to a uniformly convex Banach space with a uniformly
Gateaux differentiable norm with the additional condition upon C. Kim and
Takahashi [12] also generalized Xu and Yin's results [27] to a smooth and
reflexive Banach space with a weakly sequentially continuous duality mapping.

Very recently, Xu [26] showed that if E is a uniformly smooth Banach space,
if C is a nonempty closed convex subset of E, and if T : C —• E is a nonexpansive
nonself-mapping with a fixed point, which satisfies the inwardness condition, then
the sequence {xt} defined by (2) converges strongly as / —> 1 to a fixed point of
T. He also gave the strong convergence theorem in a uniformly convex and
uniformly smooth Banach space with the weak inwardness condition upon the
mapping T.

In this paper, we establish the strong convergence of {xt} defined by (2) for a
nonexpansive nonself-mapping T in a reflexive Banach space with a uniformly
Gateaux differentiable norm. We also prove the strong convergence of other
two schemes studied in [12, 13, 27] in a reflexive and strictly convex Banach space
with a uniformly Gateaux differentiable norm. Our results extend and improve
the results in [18, 26, 27].

2. Preliminaries

Let E be a real Banach space with norm || || and let E* be its dual. The
value of x* e E* at x e E will be denoted by (x,x*).

A Banach space E is called strictly convex if its unit sphere U = {x e E :
||x|| = 1} does not contain any linear segment. For every ε with 0 < ε < 2, the
modulus δ(ε) of convexity of E is defined by

δ(e) = ii

E is said to be uniformly convex if δ(ε) > 0 for every ε > 0. If ^ is uniformly
convex, then E is reflexive and strictly convex.

The norm of E is said to be Gateaux differentiable (and E is said to be
smooth) if

(3) hmt±lytiM
tO t
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exists for each x, y in its unit sphere U = {x e E : \\x\\ = 1}. It is said to be
uniformly Gateaux differentiable if, for each y e U, this limit is attained uniformly
for x e U. Finally, the norm is said to be uniformly Frέchet differ entiable (and E
is said to be uniformly smooth) if the limit in (3) is attained uniformly for (x, y) e
U x U. Since the dual E* of E is uniformly convex if and only if the norm of E
is uniformly Frechet diίferentiable, every Banach space with a uniformly convex
dual is reflexive and has a uniformly Gateaux differentiable norm. The converse
implication is false. A discussion of these and related concepts may be found in

[5]
The (normalized) duality mapping J from E into the family of nonempty (by

Hahn-Banach theorem) weak-star compact subsets of its dual E* is defined by

for each xe E. It is single valued if and only if E is smooth. It is also well-
known that if E has a uniformly Gateaux diίferentiable norm, / is uniformly
continuous on bounded subsets of E from the strong topology of E to the weak-
star topology of E*. This fact is explicitly proved in Lemma 2.2 of [19] (see also
[4, 6, 7]).

Let μ be a mean on positive integers N, i.e., a continuous linear functional
on *f°° satisfying \\μ\\ = 1 = μ(l). Then we known that μ is a mean on N if and
only if

inf {an : n e N} < μ(a) < sup{an : n e N}

for every a = (a\,ci2,...) e /°°. According to time and circumstances, we use
μn(an) instead of μ(a). A mean μ on N is called a Banach limit if

μn(an) =μn(an+ι)

for every a = (a\,aι,...) e /°°. Using the Hahn-Banach theorem, we can prove
the existence of a Banach limit. We know that if μ is a Banach limit, then

liminf an < μn(an) < limsup an

for every a = (a\,ai,...) e ^°°. Let {xn} be a bounded sequence in £". Then we
can define the real valued continuous convex function φ on E by

φ(z)=μn\\xn-z\\2

for each z e E.
The following lemma which was given in [8, 9, 23] is, in fact, a variant of

Lemma 1.3 in [17] (cf. [20, p. 171]).

LEMMA 1. Let C be a nonempty closed convex subset of a Banach space E
with a uniformly Gateaux differentiable norm and let {xn} be a bounded sequence
in E. Let μ be a Banach limit and ue C. Then

Vn\\xn - u\\2 = mm μn\\xn - y\\2

yeC
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// and only if

μn(x-u,J(xn - u)) < 0

for all xeC.

Let Ic{x) be the inward set of a closed convex subset C of E at x given by

Ic(x) = {z e E : z = x + λ(y - x) for s o m e yeC,λ>0}.

A nonself-mapping T : C -* E is said to satisfy the inwardness condition if 7x e
Ic(x) for all x e C . Γ is also said to satisfy the weak inwardness condition if
Tx eel Ic(x) for all xeC, where cl/c(x) is the closure of Ic(x) in norm
topology.

Recall that a closed convex subset C of E is said to have the fixed point
property for nonexpansive self-mappings (FPP for short) if every nonexpansive
mapping T : C —> C has a fixed point, that is, there is a point p e C such that
Tp = p. It is well-known that every bounded closed convex subset of a uni-
formly convex Banach space has the FPP (cf. [7, p. 22]).

Finally, let C be a nonempty closed convex subset of E. A mapping Q of C
into C is said to be a retraction if β 2 = g. If a mapping Q of C into C is a
retraction, then Qz = z for every z e Λ(β), where R(Q) is the range of Q. Let β
be a retraction of is onto a closed subset C o f £ 2 is s a ί d to be swfmjμ if each
point on the ray {Qx+ t(x- Qx) : t > 0} is mapped by Q back onto ζλx, in
other words,

Q(Qχ+t(x-Qx)) = Qx

for all t > 0 and x e £". If there exists a retraction Q: E -> C which is
both sunny and nonexpansive, then C is said to be a sunny nonexpansive
retract. Sunny nonexpansive retracts appear in [16, 17].

The following lemma is well-known (cf. [7, p. 48; 14, p. 65]).

LEMMA 2. Let C be a closed convex subset of a smooth Banach space E and
let Q : E —» C be a retraction. Then the following the equivalent:

(a) (x - Qx, J(y - Qx)) < 0 for all x e E and y e C;

(b) | |Qz - Qw\\2 <(z- w,J(Qz - Qw)) for all z and w in E;
(c) Q is both sunny and nonexpansive.

3. Main results

In this section, we study the strong convergence of {xt} defined by (2) in a
reflexive Banach space with a uniformly Gateaux differentiable norm.

Now, we state and prove the first main result.

THEOREM 1. Let E be a reflexive Banach space with a uniformly Gateaux
differentiable norm, C a nonempty closed convex subset of E, and T : C —• E a
nonexpansive nonself-mapping satisfying the inwardness condition. Assume that
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every weakly compact convex subset of E has the FPP. Suppose that for each
u e C and t e (0,1), the contraction Gt defined by (1) has a {unique) fixed point
xt € C. Then T has a fixed point if and only if {xt} remains bounded as t —•> 1 and
in this case, {xt} converges strongly as t —» 1 to a fixed point to T.

Proof If the fixed point set F(T) of T is nonempty, then {xt} is bounded.
In fact, we have \\xt - v\\ < \\u - υ\\ for all t e (0,1) and v e F(T).

Suppose conversely that {xt} remains bounded as ί—> 1. We now show
that F(T) is nonempty and that {xt} converges strongly as ί ^ 1 to a fixed
point of T. To this end, we follow ideas of [22] and [23]. Let tn —> 1 and xn =
xtn. Define φ : E —> [0, oo) by φ{z) — μn\\xn — z\\2. Since φ is continuous and
convex, φ(z) —> oo as ||z|| —> oo, and E is reflexive, φ attains its infimum over C
(cf. [1, p. 79]). Let ze C be such that

μn\\xn - z\\2 = mm μn\\xn - y \ \ 2

yeC

and let

M = jx e C : μj|xn - x||2 = min //J|xn - ^|

Then M is a nonempty bounded closed convex subset of C. Since

(4) | | x , - Txt\\ = (l- t)\\Txt - x\\ -> 0 a s ί ^ 1,

w e h a v e for x e C

(5) φ{Tx) = μn\\xn - Tx\\2 = /ιπ||Γxπ - Γx| |2

<// r t | | x r t -x | | 2 = φ{x).

Now we prove that the inwardness condition of T on C implies the inwardness
condition of T on M; that is,

(6) TXGIM(X) ϊovxeM.

In fact, let x e M. The inwardness condition of T on C implies that Tx —
x + λ(y — x) for some y e C and A > 0. If A < 1, then Tx e C by convexity of
C. From (5), it follows that Tx e M a IM(x) and (6) is verified. Assume λ > 1,
we can write y in the form y — rTx -f (1 - r)x, where r — λ~ι e (0,1). By
convexity of / and (5), we obtain

φ(y) < rφ(Tx) + (1 - r)φ(x) < φ(x) for xeM.

This implies that y e M and therefore 7x = x + λ(>> - x) belongs to IM(X) for
xeM and (6) is proved. Thus it follows from Theorem 16.1 of Goebel and
Reich [7] that T has a fixed point zeM, that is, F(T) is nonempty. On the
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other hand, for veF(T), we have

(xn - Txn, J(xn - v) = (xn -Tv+Tv- Txn, J(xn - v))

= \\Xn-Tv\\2-(Txn-Tv,J(xn-v))

>\\Xn-Tv\\2-\\Txn-Tv\\\\xn-v\\

>\\Xn-Tv\\2-\\xn-Tv\\2 = 0

for all n. Since xn - Txn = (1 - tn)(μ - Txn), we get from the above inequality

0<(xn-Txn,J(xn-v))

= (l-tn)(u-Txn,J(xn-v))

for all veF(T) and all n. Thus from (4) and (7), we obtain

(8) μn(xn-u,J(xn-v))<0

for veF(T). From Lemma 1, it follows that

μn(x-z,J(xn -z)) <0

for all x e C. In particular, we have

(9) μjμ- z,J(xn-z))<0.

Combining (8) and (9), we get

μn(xn - z,J(xn - z)) = μn\\xn - z\\2 < 0.

Therefore, there is a subsequence {xnj} of {xn} which converges strongly to
z. To complete the proof, suppose that there is another subsequence {xUj} of
{xn} which converges strongly to (say) y. Then y is a fixed point of T by
(4). It follows from (8) that

( z - w , / ( z - j ) ) < 0

and
(y-u,J{y-z))<0.

Adding these two inequalities yields

(Z-y,J(z-y)) = \\Z-y\\2<0

and thus z = y. This prove the strong convergence of {xt} to z.

COROLLARY 1 [26]. Let E be a uniformly smooth Banach space, C a
nonempty closed convex subset of E, and T : C —» E a nonexpansive nonself-
mapping satisfying the inwardness condition. Suppose that for each ue C and t e
(0,1), the contraction Gt defined by (I) has a (unique) fixed point xt e C. Then T
has a fixed point if and only if {xt} remains bounded as t —> 1 and in this case,
{xt} converges strongly as t —• 1 to a fixed point of T.
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For the second main result, we need the following result which was es-
sentially proved by Takahashi and Jeong [24] and here present the brief proof for
the sake of completeness.

LEMMA 3. Let E be a uniformly convex Banach space, C a nonempty closed
convex subset of E, and {xn} a bounded sequence of E. Then the set

M= lueC: μn\\xn - u\\2 = mm μn\\xn - z\\2\

consists of one point.

Proof Let φ{z) = μn\\xn - z\\2 for each z e E and r = mϊ{φ(z) : z e C}.
Then, since the function φ on C is convex and continuous, φ(z) —> oo as
||z|| —> oo, and E is reflexive, it follows from [1, p. 79] that there exists ue C with
φ[u) — r. Therefore M is nonempty. By Theorem 2 of [25], || || is uniformly
convex on any bounded subset of E\ especially, we have a continuous increasing
function g = gr : [0, oo) —» [0, oo), with g(0) = 0, such that

\\λx+(l-λ)y\\2 < λ\\x\\2 + (\-λ)\\y\\2-λ(l-λ)g(\\x-y\\), O < Λ < 1 , x , y e Br,

where Br is the closed ball centered at 0 and with radius r that is big enough so
that Br contains {xn}. It follows that

φ(λx+(\-λ)y)<λφ(x) + (l-λ)φ(y)-λ(l-λ)g(\\x-y\\), 0 < A < 1, x, y e Br.

This implies that φ is a strictly convex function on E. Thus the minimum point
u of φ is unique, that is, M consists of one point.

THEOREM 2. Let E be a uniformly convex Banach space with a uniformly
Gateaux differentiable norm, C a nonempty closed convex subset of E, and T :
C —> E a nonexpansive nonself-mapping satisfying the weak inwardness condi-
tion. Suppose that for each ue C and t e (0,1), The contraction Gt defined by (1)
has a (unique) fixed point xt e C. If the fixed point set F{T) of T is nonempty,
then {xt} converges strongly as t —> 1 to a fixed point of T.

Proof Let weF(T). As in proof of Theorem 1, we have ||x, - w\\ <
\\u-w\\ for all t e (0,1) and hence {xt} is bounded. We now show that {xt}
converges strongly as t —• 1 to a fixed point of T. To this end, let tn —> 1
and xn = xtn. As in the proof of Theorem 1, we define the same function φ :
E -> [0, oo) by φ{z) = μn\\xn - z\\2 and let

ί 2 2l
M = ix e C : μn\\xn - x\\ = mm μn\\xn - y\\ j .

Then, by Lemma 3, we know that M consists of one point, say z. We must
show that this z is a fixed point of T. Since T satisfies the weak inwardness
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condition, there are some υn e C and λn > 0 such that

wn := z + λn(vn - z) -> Tz strongly.

If λn < 1 for infinitely many n and these n, then we have wne C and hence 7z e
C. We have 7z = z by (5). So, we may assume λn > 1 for all sufficiently large
n. We then write

vn = rnwn + (l -rn)z,

where rw = λ~ι. Suppose rn —> 1. Then t>Λ —• Γz and hence Γz e C. By (5),
we have Tz = z. So, without loss of generality, we may assume rn < a < 1.
By Theorem 2 of [25], || | | 2 is uniformly convex on any bounded subset of E\
especially, we have a continuous increasing function g = gr: [0, oo) —> [0, oo),
with 0(0) = 0, such that

2 A ( l - % ( | | x - ^ | | ) , 0 < A < l , x,yeBn

where Br is the closed ball centered at 0 and with radius r such that Br contains z
and {wn}. It follows that

λφ(x) + (\-λ)φ(y)-λ(l-λ)g(\\x-y\\) 0 < i < l , x,yeBr.

Noting vn e C, we derive that

φ{z) < φ(vn)

< rnφ(wn) + (1 - rn)φ{z) - rn{\ - rn)g(\\wn - z\\)

and hence

(l-a)g(\\Wn-z\\)<(l-rn)g(\\wn-z\\).

Taking limit as n —• oo, we obtain

g(\\Tz-z\\)<φ(Tz)-φ(z)<0

by (5). Therefore, Tz = z, that is, z is a fixed point of T. The proof of the
strong convergence of {xt} to z is the same as given in the proof of Theorem 1.

Remark 1. (1) Theorem 1 generalizes Xu and Yin's result [27, Theorem 1]
to a Banach space setting.

(2) Corollary 1 extends Reich's result [18] to nonself-mappings.
(3) Theorem 2 also improves slightly Theorem 2 in [26].
(4) To guarantee the existence of a fixed point of the contraction Gt defined

by (1), the weak inwardness condition upon the mapping T is used. In fact, it is
well-known (cf. [7, 15]) that if C, a bounded closed convex subset of a Banach
space E, has the FPP and a nonexpansive T : C —> E is weakly inward, then
the contraction Gt has a fixed point for every ί e ( 0 , 1 ) . Hence we have the
following corollary.
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COROLLARY 2. Let E, C, T be as in Theorem 2. Suppose in addition that C
is bounded. Then for each u e C, the sequence {xt} defined by (2) converges
strongly as t —• 1 to a fixed point of T.

Remark 2. (1) Corollary 2 generalizes Corollary 1 in [27] to a Banach space
setting.

(2) Since Rothe's boundary condition: T(dC) <= C implies the weak in-
wardness condition, Corollary 2 also improves upon Theorem in [21].

Next, we denote by Q the sunny and nonexpansive retraction of E onto C.
Now let T : C —» E be nonexpansive and let u e C be fixed. Following Marino
and Trombetta [10], we define the contraction Ut from C into itself by

Utx = tQT(x) + (1 - t)u, xeC

a n d

Rtx = Q(tTx + (1 - t)u), xeC.

Then Banach's contraction principle yields a unique point xt (resp. yt) e C that is
fixed by Ut (resp. Rt), that is, we have

(10) xt = tQT{xt) + (I - t)u

and

(11) y, = Q(tTy, + (\-t)u).

The following lemma is well-known (cf. [1, p. 79; 7, p. 12]).

LEMMA 4. Let C be a closed convex of a reflexive and strictly convex Banach
space E. Then C° = {x e C : ||JC|| = inf {||j>|| : y e C}} is a singleton.

THEOREM 3. Let E be a reflexive and strictly convex Banach space with a
uniformly Gateaux differentiable norm, C a nonempty closed convex subset of E,
and T : C —> E a nonexpansive nonself mapping satisfying the weak inwardness
condition. Suppose that C is a sunny nonexpansive retract of E, and that for some
u e C and each t e (0,1), xt is a (unique) fixed point of the contraction Ut defined
by (10), where Q is a sunny nonexpansive retraction of E onto C. If the fixed
point set of T is nonempty, then {xt} converges strongly as t —» 1 to a fixed point
ofT.

Proof We follow an idea of [22]. Let weF(T). Then it is easily seen
that ||JC/ - w|| < \\u - w\\ for all r e (0,1) and hence {xt} is bounded. As in
the proof of Theorem 1, we define the same function φ C —» [0, oo) by φ(z) =
μn\\xn -z\\2 and let

M = I x E C : μn\\xn - x\\2 = min μn\\xn - yfi.
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Then M is invariant under QT. In fact, since

||*ί - QTxtW = (1 - ή\\QTxt - x|| -> 0 as / -> 1,

we have for x e M

φ(QTx) = μn\\xn - QTx\\2 = μn\\QTxn - QTx\\2

<μn\\xn-x\\2 = φ(x),

and hence QTx e M because QTx e C. Furthermore, M contains a fixed point
of QT. To this end, define

M° — \v e M : \\v — w\\ = min II w - )
[ yeM

Then, by Lemma 4, M° is a singleton. Denote such a singleton by z. Then we
have

\\QTz - w\\ = \\QTz - QTw\\ < \\z - w\\

and hence QTz = z. Applying the method of the proof of Theorem 1 to the
nonexpansive mapping QT, we obtain that {xt} converges strongly as t —» 1 to a
fixed point z of QT. It remains to show that z is a fixed point of T. Indeed,
since Q is sunny and nonexpansive retraction, from Lemma 2, we get

(12) (Tz - z, J(z - y)) > 0 for all yeC.

On the other hand, Tz belongs to cl/c(z) by the weak inwardness condition.
Hence for each integer n > 1, there exist zn e C and an > 0 such that

(13) yn := z + αn(zw - z) —> Tz strongly.

Since E has a uniformly Gateaux differentiate norm, / is uniformly continuous
on bounded subsets of E from the strong topology of E to the weak-star topology
of E*. Thus it follows from (12) and (13) that

0<(Tz-z,anJ(z-zn))

= (Tz - zj(an(z - zn))

= (Tz - z,J(z - yn)) -> (Tz - z,J(z,Tz)) = -\\Tz - z\\2.

Hence we have Tz = z.

THEOREM 4. Let E be a reflexive and strictly convex Banach space with a
uniformly Gateaux differentiable norm, C a nonempty closed convex subset of E,
and T : C —> E a nonexpansive nonself-mapping satisfying the weak inwardness
condition. Suppose that C is a sunny nonexpansive retract of E, and that for some
ue C and each t e (0,1), yt is a (unique) fixed point of the contraction Rt defined
by (11), where Q is a sunny nonexpansive retraction of E onto C. If the fixed
point set of T is nonempty, then {yt} converges strongly as t —> 1 to a fixed point
ofT.
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Proof. The proof follows an idea of [22]. Let x be a fixed point of T.
Then we have

<t\\x-Tyt\\ + {\-t)\\x-u\\

<t\\χ-yt\\ + (l-ή\\χ-u\\

and hence | | J C - yt\\ < \\x — u\\ for all te (0,1). So {yt} is bounded. We now
show that {y t} converges strongly as t —> 1 to a fixed point of T. To this end,
let tn —> 1 and yn = ytn. As in proof of Theorem 1, define φ : C —> [0, oo) by
^(z) = μ j | j r t — z| | 2 for each z e C and let

M = { " e C : μ w | | Λ - u\\2 = min μ j Λ - y\\2}.

Then M is invariant under QT. In fact, since {Tyt} is bounded and

(14) \\yt- QTyt\\ <\\tTyt + {\ - t)u- Ty,\\

= (l-ή\\u-Tyt\\,

we have yt — QTyt —» 0. So, we have for z e M,

\\yn - QTz\\ < \\yn - QTyn\\ + \\QTyn - QTz\\

and hence

Then QTz e M because QTz e C. Furthermore, by the proof of Theorem 3, we
know that M contains a fixed point of QT, that is, there is a point z such that
QTz = z. Since Q is sunny and nonexpansive retraction, from Lemma 2, we
have

(Tz - z, J(z - w)) > 0 for all weC.

On the other hand, Tz belongs to cl Ic(z) by the weak inwardness condition.
Hence for each integer n > 1, there exist zne C and an > 0 such that

*„ := z + an(zn - z) —> 7z strongly.

As in the proof of Theorem 3, we have Tz — z. For any υeF(T), we have

t(v - ύ) + M = it; -f (1 - ί)w = β(ίt; + (1 - t)ύ)

and hence

| | ( Λ - u) + t(v - u)\\2 = \\Q(tTyt + (1 - t)u) -u-t(v- u)f
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<\\t(Tyt-u)-t(v-u)\\2

<t2\\yt-v\\2

So, we have

0 > \\{yt - II) - t(v - u)\\2 - \\t(yt - u) - t(v - u)f

>2((\-t)(yt-u),J(t(yt-v)))

= 2(1-ήt(yt-u,J{yt-υ))

and hence

(15) (y,-u,J(yι-v))<0

for veF(T). From Lemma 1, it follows that

μn{x-z,J(yn-z))<0

for all x e C. In particular, we have

(16) μn(u-z,J(yn-z))<0.

Combining (15) with v — z and (16), we get

μn(yn- z,J(yn- z)) = μn\\yn- zf <0.

Therefore, there is a subsequence {yn } of {yn} which converges strongly to z.
Suppose that there is another subsequence {ynk} of {yn} which converges
strongly to (say) y. Then y is a fixed point of QT by (14) and also of T. Thus,
as in the proof of Theorem 1, we have z — y and hence yt -» z.

COROLLARY 3. Let E, C, T, Q be as in Theorem 3 {resp., Theorem 4).
Suppose in addition that C is bounded and that every weakly compact convex
subset of E has the FPP. Then for each u e C, the sequence {xt} (resp., {yt})
defined by (10) {resp., (11)) converges strongly as t —> 1 a fixed point of T.

COROLLARY 4 [27]. Let H be a Hubert space, C a nonempty closed convex
subset of H, T : C —• H a nonexpansive nonself-mapping satisfying the weak
inwardness condition, P : H —> C the nearest point projection, and {xt} the se-
quence (resp., {yt}) defined by (10) (resp., (11)) with P instead of Q. If T has a
fixed point, then {xt} (resp., {yt}) converges strongly as t —> 1 to a fixed point of T.

Proof. Note that the nearest point projection P of a Hubert space H onto a
closed convex subset C is a sunny and nonexpansive retraction. Thus the result
follows from Theorem 3 (resp., Theorem 4).
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Remark 3. Theorem 2, Theorem 3 and Theorem 4 apply to all uniformly
convex and uniformly smooth Banach spaces and in particular, to all Lp spaces,
1 < p < oo.

Note added in proof. 1. Since E is uniformly convex, the existence of the
minimum in proofs of Lemma 3 and Theorem 2 also follows from [7, Proposition
2.2].

2. Since {xt} is a bounded approximating sequence and E is uniformly
convex, the existence of a fixed point of T in proof of Theorem 2 also follows
from Browder's demiclosedness principle [3].

3. The authors noticed, in the process of referring, the fact that Theorem 3
and 4 were proved in [22] with no assumption of strict convexity of E, using the
stronger version of Theorem 1 for the self-mapping T : C —> C, where C is a
nonempty closed convex subset of E which has normal structure.
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