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VANISHING THEOREMS FOR CONSTRUCTIBLE SHEAVES II
HeLmutr A. HamMMm AND LE DONG TRANG

Introduction

In [H-L2], we have proved theorems on the vanishing of the higher co-
homology of direct images of complexes with constructible cohomology sheaves
(constructible complexes). As a particular case of these theorems, we have
obtained a theorem of Artin-Grothendieck which states that the direct image by
an affine map of a constructible sheaf satisfying the support condition ([B-B-D]
(4.0.1) or [G-M2] §4.1 Definition), also satisfies the support condition. P.
Deligne has obtained the Lefschetz Theorem for hyperplane sections for the Z,-
cohomology (cf [D2] (4.1.6)) by considering the theorem of Artin-Grothendieck in
the case the affine map has a point as target and by using the duality. In fact,
Lefschetz Theorem can be obtained directly by proving theorems on the vanishing
of the lower cohomology of direct images of constructible complexes. Following
Deligne’s idea, one would use duality theorems and apply them to the results of
[H-L2], as K. Fieseler and L. Kaup do in [F-K2] for the intersection homology
complex of a complex analytic space by applying their results of [F-K1].
However, when the base ring is not a field or a principal ideal domain, such
duality theorems are delicate. Furthermore, when the topology of the maps
is complicated, we cannot apply duality arguments. For instance, to obtain
Lefschetz Theorems of Zariski type, i.e. on open varieties, especially when one
does not have good transversality conditions on the hyperplane section, we
definitely have to get a direct approach. The advantage of this viewpoint is that
we can state and prove general Theorems of Lefschetz type for constructible
complexes and that we can also have such generalizations for relative situations.

In this paper we first “dualize” the proofs and concepts introduced in
[H-L2]. Some of these proofs are similar to those we have developped to prove
Lefschetz Theorems for homotopy groups ([H-L1] e.g. Theorem 3.4.1). We also
obtain results with respect to maps. An important case is when the maps are
inclusions, from which we obtain vanishing of global cohomologies from the
vanishing of local ones. Then, we obtain a natural statement which can be
understood as the ‘“dual” statement of the Artin-Grothendieck Theorem. In
fact, we prove a more general statement (Theorem 3.1.4) which applies to g-
complete maps in the sense of Andreotti and Grauert. In the last section, we
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show how to obtain all kinds of Lefschetz type theorems for the cohomology of
constructible sheaves.

Beware that the classical Lefschetz Theorem on hyperplane sections is true
for the usual cohomology, because it concerns non-singular varieties. When the
space has singularities, A. Grothendieck in [G] (Exposé XIII) has already noticed
that such a theorem holds when we have good topological depth conditions on
the singularities of the space, e.g. in the case of local complete intersections (see
[H-L1] Corollary 3.2.2). In order to have a nice formulation for a Theorem of
Lefschetz type for constructible complexes we have to impose local vanishing
conditions for these complexes which are analogous to good depth conditions.
Here the condition is the co-support condition (see §2 2.2.1). This is why there
are Lefschetz type theorems for perverse sheaves. By definition, perverse sheaves
(in particular the intersection cohomology complex) satisfy the co-support
condition and the dual condition, which is the support condition.

1. Vanishing bounds for lower cohomology groups
We shall essentially consider the same topological setting as in [H-L2].

1.1. Let X be a topological space endowed with a constant sheaf of rings 2
defined by a ring R. Let (Xi),.x be a locally finite partition of X into non-
empty locally closed connected subsets of X. The sets X, k € K, are called the
strata of the partition. We denote the inclusion map by i

i X — X.

We assume that the partition satisfies the frontier condition.
We replace the finiteness condition (*) of [H-L2] (1.1) by the following one:

(xx) For any k € K there is an integer d(Xy) which is the maximum of all
numbers 7 > 0 such that there is a chain

1\7 kg © " < Y k,
of closures of distinct strata of length r with X; = Xj,.

As in [H-L2], D(X,R) is the derived category of the abelian category
M(X,R) of sheaves on X which are left #-modules and D*(X, R) denotes the
full subcategory of D(X, R) whose objects are complexes of left Z-modules which
are bounded from below. We always use derived functors without explicit
indication, so we write f, instead of Rf,, etc. As usual, left #-modules are
considered as complexes in these categories where all terms are trivial except in
degree zero where the left £-module is placed.

In all this paper we shall only consider left #-modules. Therefore we shall
only say #-module instead of left £-module.

Let F be an object in D*(X, R).

Let Z=Z u{+w}u{—w}. By convention the supremum of the void set
is —oo and the infimum of the void set is +oo.

We define:
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DentTiON 1.1.1.  a) For any locally closed subset Y of X, let iy : ¥ — X be
the inclusion map, and define

Pry = inf{s| #* (i} F) # 0}.

b) In the case ¥ = {x} we write pp, instead of pp (.
c) If, for k € K, the cohomology sheaves of sz are locally constant, we put

Pr(k) = Pr x,-

LemMMmA 1.1.2. Suppose that for any ke K the space Xy is a topological
manifold and that the cohomology sheaves of i,F, k € K, are locally constant.
Then we have

Pr,x = Pr(k) + dim Xj
for any k€ K, x € Xy, where dim Xj, is the topological dimension of X.

Proof. Let ¢, :{x} — X} and i : {x} — X be the inclusion maps. Then
we have

iy = I o ty,

so iLF = f itF. Since i,F is locally constant on the topologlcal manifold X; we
have ¢! sz ¢tit F|—dim Xp] (see [G-M2] §1.10), so H'(i,F) = H"*¥mXc((i, F),).

Let f: X — Z be a continuous map. We introduce:
DenttioN 1.1.3. For any locally closed subset T of Z we define

dy (k) = ds 7(Xx) as the infimum in Z of the set of integers s such that there is a
locally constant #-module % on X; such that

B (7 fi(ik),(£)) # 0
where j is the inclusion of T in Z. If T = {z} we write ds (k) instead of
dp, 3 (k).
Remark 1.1.4. There is the following relation between dy r(k) and Pr.T:

dy,r(k) = inf by o7

where the infimum is taken on the class of all locally constant R-modules % on
X.

The following theorem gives the behaviour of pr under direct image with
proper supports:

THEOREM 1.1.5. Assume that for any k € K the cohomology sheaves i,F are
locally constant. Let T be a locally closed subset of Z. Then, we have

Prrr = it (p(K) + 7, 7(K)).

Proof. We formally dualize the proof of Theorem 1.1.3 in [H-L2].



VANISHING THEOREMS 211
We have to prove the vanishing of A4(;'fiF), for
a <inf(5r(K) + d,7(0)

where j is the inclusion of T into Z.
For any m> —1 let X™ denote the union of the strata Xj; such that
o(Xx) <m:
"= | X
I(Xk)<m

According to [H-L2] Lemma 1.1.4, the space X™ is closed in X, and X} is an
open subset of X — X"l if §(X;) = m.

For m= -1, X~ 1 =0.

Call 1 the inclusion map from X™ into X, u™ the inclusion of X™~! into X™
and v,, the inclusion of X” — X! into X™. We define:

fri=for”
F" .= (")'F

We prove by induction on m > — 1 that the cohomology sheaves A?(j'(f™),F™)
vanish, when

4 <inf(5¢(0) + d&7(0))

The theorem will follow from the fact that
lim #9(j'(f™)F™) = h(j'fiF).
m

Notice that, the partition (Xy), ., being locally finite, the hypothesis (xx) implies
im(f™),F™ = fiF.
m

For m = —1, there is nothing to be proved. To make the induction, we consider
the distinguished triangle, see [B-B-D] p. 43:

= ("), (W") F™ = F" = (o), (om) F" 5
We use the identity 1" o u™ = #""! to get the distinguished triangle
= (") F" = ™ = (o), (om) F" 5

to which we apply the (derived) functor j'(f™),. We obtain the long exact
sequence of cohomology sheaves

— WG FY) S B ™F™) =BG (0m). (0m) F™) —
because f” o u™ = ™! implies

(fm)I(um)'Fm—l - (fm_l).Fm_l.
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We have to show that A7(j'(f™),(vm),(vm) F™) = 0 for

g <inf (5 (k) + d,7(K)).
We have the other identity
(om) F™ = (vm) (")'F.
This implies
!

(/™)1 Om). (0m) F™ = fi(t™)i(m), (om) ™) F.

Since 1™ o vy, is the inclusion w,, of X — X™ 1 into X and since X™ is closed in
X (see above), we have (1"),(vm), = (1"),(Om), = (Wm),, SO

™ Om) (om) F™ = ) 0m). (0m) ) F = 7fi(Win)., (W) F.
Now we have to show that A7(j'(fi(Wm),(wm)'F)) =0, for

g < inf(Pp(k) +d7.7(6)).

To obtain this vanishing, we use a spectral sequence. In fact, by assumption, the
RN
cohomology sheaves of (i) F are locally constant, so that

H((ix)'F) = 0

for any g < pp(k) and, for any g, by definition of the function dyr, the
cohomology groups

1 (' fi(i) 1 (i) F)) = 0
when p < dy,r(k). The spectral sequence
1 (i) 19 (i) F)) = #4405 fi(ie) i)' F)

converges when F is in D" (X, R) (see [Go] Chap. II Théoréme 4.17.1) and this
gives the vanishing of the cohomology

(j'fi(ik). (i)' F)
for q < pp(k) +dy,r(k), for any k, and therefore for
g < inf(pp(x) + dy,(x)).

Now the space X” — X™~! endowed with the topology induced by X, is the
disjoint union of the strata Xj for which é(X;) = m, and these strata are open in
X™ — X™ 1, as mentioned above. This implies that

WG fi(wm),wm) F= > h(jfi(i), (i) F)

5(Xk)=m
which is 0 if
g < inf(pr () + dy,7(x).
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1.2. As in 1.1, we consider a topological space X endowed with the constant
sheaf of rings # defined by R and with a locally finite partition & = (Xi),.x by
non-empty locally closed connected subsets of X.

Now we fix a perversity of the partition &, i.e.amapp: ¥ — Z (see [B-B-D]
(2.1.1)), but notice that we admit Z instead of Z). As above, consider a
complex of #-modules F in D*(X,R), but we assume furthermore that the
cohomology sheaves of i}cF are locally constant on the locally closed connected
subsets Xj (k € K), where i is the inclusion of Xj into X. _

Associated to the complex F, we define a perversity pp: ¥ — Z of the
partition & by

Pr(Xi) = pp(k).

for any x € X.
Following the definition 2.1.2 of [B-B-D], for a given perversity p, we have:

DenttioN 1.2.1. The subcategory ?D=°(X,R) of D*(X,R) is the sub-
category of complexes K such that, for any S in the partition &, with is being
the inclusion of S into X, we have #"(is'K) = 0, for any n < p(S).

Therefore by definition F is an object of the category 7#D=%(X,R). In fact
we have:

LeMMA 1.2.2. The complex F belongs to the category ?PD=°(X, R) if and only
if
Pr2p
and we have

pr=sup{pe Z" |F e?D>(X,R)}
where Z° is the set of maps of & into Z.

Recall that when the elements S in the partition & are topological manifolds
of even dimension, there is a particular perversity called the middle perversity p;
defined by:

p12(8) = —(1/2)dim(S)

1.3. Let us use the notations of §1.1. In particular, let f: X — Z be a
continuous map, but here we suppose that Z consists only of one point 0. We
put d(k) = d(Xy) = dro(k), and obviously we have that d(Xy) € Z is the infimum
of all integers g for which there is a locally constant sheaf .# of R-modules on X
such that

HY(X, i, &) #0.

Here, H!(X,i,) is the g-th hypercohomology group of i, on X with
compact supports.
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Furthermore, for any complex F in D*(X,R) for which the cohomology
sheaves of the complexes i}F are locally constant we have

Byro = inf{g € Z| HI(X,F) # 0}.
Let I, be the inclusion of Xj into X%. Since Xj is closed in X we have
H‘CI(X, i) = HZ(A_,k, e &)
for any left #£-module L on X;. Therefore we obtain:

LEmMMA 1.3.1. The invariant d(X;) € Z is the infimum of all integers q for
which there is a locally constant sheaf & of R-modules on X such that

H‘CI(A_’k, lk*g) # 0.

2. g-completeness of spaces and related properties

2.1. Let us assume that X is a complex analytic space. Let A be a closed
complex analytic subset of X, g > 0.
Let us recall the definition of g-completeness.

(Cy) The space X is called g-complete if there is a proper g-convex function
¢:X — R,

Recall that a function ¢ : X — R* is called g-convex if for any point x € X
there is an open neighbourhood U, a complex manifold U and a ¢ function
@: U — R such that U is a closed complex analytic subspace of U, ¢ = ¢|U and
the Levi form of ¢ at x has at most g eigenvalues which are not positive. For a
discussion of this notion see [V].

Be aware of the fact that in [A-G] the actual definition of A. Andreotti and
H. Grauert of a g-complete space gives a (¢ — 1)-complete space in the sense of
(Cy).

There is a weaker topological notion introduced in [H-L2], Definition 2.2.1:

(TC,) The space X is topologically g-complete with respect to 4 if, for any
locally closed connected subspace Y of X not contained in 4, for which the
closure Y and Y — Y are complex analytic subspaces of X, there is a complex
analytic open dense subset Yy of Y — A4 such that, for any locally constant
#-module ¥ on Y,, the cohomology group H*(X,i.#) vanishes for any
k > dim¢ Y + g, where i is the inclusion of Y in X and dim¢ Y is the complex
dimension of Y.

In this paper, however, we need a slightly different condition:

(TC,) The space X is dually topologically g-complete with respect to 4 if,
for any locally closed connected subspace Y of X not contained in A, for which
the closure Y and Y — Y are complex analytic subspaces of X, there is a complex
analytic open dense subset Yy of Y — A such that, for any locally constant
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Z-module £ on Y, the hypercohomology group H’c‘(X ,ix#) vanishes for any
k <dim™ Y — g, where i is the inclusion of Y; in X.

Here, dim™ Y := inf{dim¢(Y,y) |y € Y}, whereas dim¢ Y = sup{dim¢(Y,y) |
yeY}

In fact we shall see lateQn that we could have taken Yy =Y — 4 in the
definition of the condition (7'C,), see Corollary 2.2.5.

As in the case of topological g-completeness, we have

Remark 2.1.1. If X is dually topologically g-complete with respect to A4, any
closed analytic subspace Y is dually topologically g-complete with respect to
ANnY.

In [H-L2] it has been proved that a space X which is g-complete is also
topologically g-complete with respect to any closed complex analytic subspace
A. Here we show that this holds also for the condition (7TC,):

THEOREM 2.1.2. If the space X is q-complete, it is dually topologically q-
complete with respect to any closed complex analytic subspace A.

Proof. Let Y be a locally closed connected subspace of X not contained in
A, for which the closure Y and Y — Y are complex analytic subspaces of X. Let
Yo be the smooth part of ¥ — A4 (with respect to the reduced structure). Call /
the inclusion of Y, into Y. Consider a locally constant #-module ¥ on Y.
Since X is g-complete, the closed complex analytic subspace Y is also g-complete.
We claim

HYY,.2)=0

for any k <dim~ ¥ —gq. Then, if i denotes the inclusion of Yj into X we have
HX(Y,1.%) = H*(X,i,#), which finishes the proof.

Our claim is a consequence of the following proposition:

PROPOSITION 2.1.3. Let X be a g-complete space, A a closed complex analytic
subspace, dim™ (X — A) =n, X — A smooth. Let & be a locally constant %-
module on X — A, and let i : X — A — X be the inclusion map. Then

HY(X,i, %) =0
for k<n-—aq.

This proposition follows from a statement in homotopy:

LEMMA 2.1.4. Let X and A be as in Proposition 2.1.3. Let us fix a complex
analytic Whitney stratification of (X,A) such that X — A is a stratum, and let
¢ : X — RY be proper and q-convex. Let r >0 be a regular value of ¢, ie. of
its restrictions to the strata, and let X, := {xe€ X |¢(x) >=r}. Then, the pair
(X —A4,X5,— A) is (n— q— 1)-connected.
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Proof. We are using stratified Morse theory. We may assume that ¢ is a
Morse function in the sense of Goresky-MacPherson ([G-M1] I §2.1). In fact,
we use —¢ instead of ¢. Let x be a critical point of —¢ with ¢(x) < r, and let S
be the stratum containing x. If S = X — 4 the index of the Hessian of —¢ at x
is > n — ¢, by the usual argument of Andreotti-Frankel type (see [A-F]). So let
us assume S < 4, s=dim S. Again, the index of the Hessian of the restriction
—p|S at x is > s — ¢, so the tangential Morse data is (s — g — 1)-connected. Let
N be a normal slice of S in X at x and L the corresponding complex link. Then
N — 4 is smooth, dim™ (N — 4) > n—s. By the Strong local Lefschetz theorem
[H-L1] (Theorem 2.12) we have that the pair (N —4,L—A4) is (n—s—1)-
connected, so the normal Morse data is also (n — s — 1)-connected (see [G-M1] I
§2.4). In total, by using Lemma 1.8 of [H-L1], we obtain that the local Morse
data at x is (n — ¢ — 1)-connected, which implies our lemma.

Proof of Proposition 2.1.3. Since X is g-complete, there is a proper g-convex
map ¢: X — R and we can apply Lemma 2.1.4.

First we prove that, under the assumptions of Lemma 2.1.4, the relative
cohomology

Hk(X_AaXZr—A)g)

is 0, for k <n—gq and any regular value r of ¢.
According to [Sw] §6.13, for a pair (Y,T) of CW-complexes which is s-
connected, there is a map

g:(B,C)— (Y,T)

from a pair (B, C) of CW-complexes, where B is obtained from C by adding cells
of dimension > s, to (Y, T), such that g is a homotopy equivalence. We apply
this result to the case when Y =X -4, T=X>,—AdAand s=n—qg—1. Now
Theorem 2.6 of [H2] shows that this homotopy equivalence implies an
isomorphism

H¥(X — 4,X5,— A, %) — H*(B,C,g" %)

of the corresponding relative cohomology groups. As the inverse image of a
locally constant sheaf by g is obviously locally constant, the cohomology group
H*(B,C,g*%#) vanishes for k <n—q—1 (apply 3.11 of [H2]).

Again, let r be a regular value of ¢, and let X, :={xe X |op(x) <r}.
Consider the diagram of inclusion mappings

Xep—d =2y X— 4

!

Jr
X<r - X.
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Observe that
HYX — A4, X5,— A, %) = H(X — 4,j,]' %)
and, by Leray spectral sequence,
HY(X — A,ju); %) = HY(X i, ]y J} )

Now we have the following base change isomorphism (see Appendix, Lemma
A.3) which is true here, since r is a regular value of ¢:

HY(X,ijyjr &) ~ HY (X, jninj; £).
On the other hand j, is an open map, so j* =j'!. Another base change gives
inj & =jli.Z.
So, we obtain
H*(X , jnin j; &) = H (X ,jnjli. Z).
Altogether this implies
H*(X,j1j'i.#) =0 foranyk <n—gq.

Since X, is relatively compact in X, we can replace here the usual hyper-
cohomology by hypercohomology with compact supports:

H*(X ,jpjlie®) = HS (X, jnj} i Z).
Now

lim /i & = i 2,

r

therefore

lim HY(X ,jnj i ¥) = HY(X,i.2),
r
which gives our proposition.

2.2. Now we want to apply the result of §1.1 to the case where X is dually
topologically g-complete with respect to 4 and where Z = {0}.

We shall prove a theorem analogous to a dual statement of Theorem 2.3.2 in
[H-L2] which implies the classical Weak Lefschetz Theorem.

We shall deal with weakly constructible complexes (see 2.3.1 of [H-L2]), i.e.
complexes in D*(X,R) whose cohomology sheaves are locally constant on a
complex analytic partition of X. In this paper for the sake of simplicity, we shall
assume that all the cohomology sheaves of a weakly constructible complex are
locally constant on the same complex analytic partition. All the proofs on the
vanishing of the cohomology in what follows can be extended to general weakly
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constructible complexes by using truncation (see e.g. [B-B-D] 1.3.2). Notice that
we have

Remark 2.2.1. Let (X),.x be a complex analytic Whitney stratification
of X such that the restrictions of the cohomology sheaves of the complex
F € D*(X, R) are locally constant along each X;. Then the cohomology sheaves
of i}cF are locally constant, where iy : Xz — X is the inclusion map.

Let Z be a complex analytic space. We define the category /2D>"(Z, R)
(compare to [B-B-D] 2.1.2) to be the full subcategory of weakly constructible
complexes F in the category D*(Z,R) such that, for any stratum Z; of some
complex analytic Whitney stratification of Z on which the cohomology sheaves of
F are locally constant, we have

Pr,z, = m—dimc Zj.

Such sheaves are said to satisfy the co-support condition, when the base ring is a
field (see [B-B-D] (4.0.2) or [G-M2] §4.1 Definition).

The following lemma shows that the definition of /2D does not depend
on the Whitney stratification (see [B-B-D] (2.1.14)).

LEMMA 2.2.2. Let X be a complex analytic space, me Z, and let F be a
weakly constructible complex in D*(X,R). Let us fix a complex analytic Whitney
stratification (Xi),.x of (X,A) such that the restrictions of the cohomology
sheaves of F to each stratum are locally constant. Let K' be the set of all k € K
such that Xy is not contained in A. For x € X call iy the inclusion of {x} into
X. The following conditions are equivalent:

a) pp(k) := pp y, = m—dimc Xy for any ke K';

b) dim{x e X — A| H(i.F) # 0} < q—m, for any integer q.

Proof. For any integer g, let Z, be the set
Z,:={xeX — A|HI(i'F) # 0}.

Then we observe that Z, is stratified by strata of the given Whitney stratification
(Xk)keK :

Let us suppose a). By Lemma 1.1.2 we have that, for any ke K’ and
x € X; ks

Prx = Pr(k) + 2dimc Xi = m + dimc X

because the topological dimension dim X; of Xj is twice the complex dimension
of X;. Let X, be a stratum in Z,. Of course, # belongs to K’. Pick a point
x € X;. By definition Hg(ij‘F) # 0}, therefore, as £ € K', we have

q = Prx > m+ dim¢ X,
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which yields
q —m > dim¢ Xy.
This implies b).
Now suppose b). Let ke K’ and xe X;. Observe that jp, # — oo be-
cause F belongs to D*(X,R). If pp, = +oo, for this k € K, the inequality a) is
trivially obtained. Otherwise, we have by definition that

xeZs, .
Therefore Xj < Z;,F'x. By b) this yields that
Prx—m = dimc Z;, > dimc X;.
Now py , = pr(k) + 2dimc Xk, so that
Prx —m=pp(k) + 2dimc Xy — m > dimc Xi
which means a).

Now we can state

THEOREM 2.2.3. Assume that X is dually topologically q-complete with re-
spect to A. Let i: X — A — X be the inclusion map. Let F be a complex in
12D2m(X — A4, R) such that iF is weakly constructible. Then

HY(X,i,F)=0
for any k <m—q.

Proof. 1t is sufficient to prove this theorem only for the case where X is
finite dimensional, because we can go over to the direct limit in general.

We first assert that we can find a complex analytic Whitney stratification
(Xk)kex of (X,A) adapted to the constructible complex F such that

d(k) := d(Xx) = dimc Xx — g

for any k € K’, where K’ denotes the set of all k such that X is not contained
in A and where d(X;) is defined as in 1.3. Since F is a complex in
12p2m(X — 4, R), we have

Pr(k) = m — dime Xj

for any ke K’. Furthermore, p; p(k) = 0 for any k€ K — K’. By Theorem
1.1.5, applied to the case where Z is a point, we obtain the desired result.

It remains to prove the above assertion. This is a consequence of

LEMMA 2.2.4. Let us assume that X is dually topologically gq-complete with
respect to A and that X is finite dimensional. Let (X]), ., be a complex analytic
partition by smooth connected strata of X. Then there is a finer complex analytic
Whitney stratification (Xi);.x of X as in 1.1 such that A is a union of strata which
has the following property:
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Let K' be the set of all k € K such that X}, is not contained in A, then, for any
ke K

d(k) = dime Xi — q.

Proof. By induction over n = dim¢c(X — 4). For X = A there has nothing
to be proved. Otherwise, let L, be the set of all / such that dim¢ X] = » and X]
is not contained in 4. Since X is dually topologically g-complete with respect to
A, for any I € L, there is a complex analytic open dense subset X; of X] — A4 such
that, for any locally constant #-module ¥ on X;, the cohomology group
H¥(X,i, %) vanishes for any k < n — g, where i is the inclusion of X; in X. Let
X* =X -, Xi. The partition (X]),., induces a partition (X; nX*),., of
X*, after refining this latter we may assume that this partition, together with
(X1)cy,> is @ Whitney stratification because, for / € L,, dimc X; is maximal. By
induction hypothesis we may refine further the partition of X* such that we
obtain in total the desired partition of X.

Theorem 2.2.3 has the following corollary

COROLLARY 2.2.5. Assume that X is dually topologically g-complete with
respect to A. Let Y be a locally closed connected subspace Y of X not contained
in A, for which the closure Y and Y — Y are complex analytic subspaces of
X. Let & be a locally constant &-module on Y — A. Then the hypercohomology
groups H*(X,i, %) vanish for any k < dimc Y — q, where i is the inclusion of
Y—-4in X

In fact this means that we could have taken Yp = Y — 4 in the definition of
the condition (TC,).

3. Dually topological g-complete maps

3.1. By analogy with the notion of g-completeness for spaces introduced by
A. Andreotti and H. Grauert, we can define g-complete complex analytic maps
(see [K-S], [H-L2]). In [H-L2], we have also extended the notion of topological
completeness to maps. Of course, in a dual way we can define

DeniTiON 3.1.1.  (TC,(f)) Let f : X — Z be a complex analytic morphism
and A be a closed complex analytic subspace of X.

a) Let z be a point of Z. We say that f is dually topologically g-complete
at z with respect to A4 if there is a fundamental system of open neighbourhoods
(Uy(2)) of z in Z such that, for any «, the space (f~!(U,(z)) is dually
topologically g-complete with respect to 4 N f~1(Uy(z))).

b) We say that the map f is dually topologically g-complete with respect to
A if it is so at every point z€ Z.
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Remark 3.1.2. Remark 2.1.1 yields that, if f is dually topologically g-
complete with respect to A4, for any closed subspace Y of Z, f induces a map fy
from f~!(Y) to Y which is dually topologically g-complete with respect to
AnfI(Y).

From Theorem 2.1.2 we obtain immediately

LemMA 3.1.3. Let f: X — Z be a complex analytic morphism. Let z be a
point of Z. If f is q-complete at z, then it is dually topologically q-complete at z
with respect to any closed complex analytic subspace A of X.

The main result of this section is the following dual to the generalization of
the theorem of Artin-Grothendieck stated in [H-L2] (Theorem 3.1.4).

THEOREM 3.1.4. Let f : X — Z be dually topologically q-complete at z with
respect to a closed complex analytic subspace A of X. Leti: X — A — X be the
inclusion. Let F be a complex in />2D=%(X — A,R). Assume that irF and fii,F
are weakly constructible. Then fii,F is in /2D>"9(Z R).

Proof. Because of Lemma 1.2.2, Theorem 3.1.4 follows directly from

PRrOPOSITION 3.1.5. Let f : X — Z be a complex analytic map and let A be a
closed complex analytic subspace of X. Leti:X — A — X be the inclusion. Let
F be a complex in 2D2%(X — A,R). Assume that iF and fii,F are weakly
constructible. Let us fix a Whitney stratification (Xi),.x of X adapted to A and
to iF. Furthermore, let us fix a Whitney stratification (Z), .y of Z adapted to
fii,F. Let Zy be a stratum of Z. Let us assume that there is a point z € Zj, such
that f is dually topologically q-complete at z with respect to A and such that for
each stratum Xy of X there is no critical point x of f|Xx with f(x)=2z. Then

Prirp(h) =2 —dimc Z;, — q.

In order to prove Proposition 3.1.5, we need to prove the following two
Lemmas 3.1.6 and 3.1.7.

LemMa 3.1.6. Let f: X — Z be a complex analytic morphism and A be a
closed complex analytic subspace of X. Let z be a point of Z. Assume that f is
dually topologically q-complete at z with respect to A. Let (Xi),.x be a complex
analytic Whitney stratification as in (1.1). Then we have

t—i-f,z(k) > dime X; — ¢q
for any ke K with Xy <« X — A.

Proof of Lemma 3.1.6. Since f is dually topologically g-complete at z with
respect to A, Corollary 2.2.5 shows that we can choose a fundamental system
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(Uy(z)) of open and relatively compact neighbourhoods of z in Z, such that, for
any locally constant #-module .# on a stratum Xj contained in X — A and for
s < dim¢ X — g, we have

H(f 7 (Un(2)), iteZ) =0,

where i, : Xz — X is the inclusion. Now, we notice that
Hi(f—l(Ua(Z))’ ik*g) >~ Hi(Ud(Z)’f'ik*g)
and we use the exact sequence
— H(Uy(2), fiin L) —» HY (Z, fiin L) — H(Z — U,(2), fiigs L)
— HSN (Uy(2), fiire &) — .
Therefore, for s < dime¢ X3 — g — 1, the natural map
H(Z, fiige &) — H*(Z — Uy(2), fiigse Z)

is an isomorphism. So, H*(Z, fiix.#) is isomorphic to the projective limit

lim H*(Z — Uy(2), fiigsF).

o

In particular the projective system (H*(Z — U,(2), fiix.£)), satisfies the Mittag-

Leffler condition for s < dim¢ Xz — ¢ — 1, which yields by Theorem 3.7 of [H2]
applied to complexes instead of sheaves

HY(Z — {2}, fiie @) =~ lim HY(Z — Uy(2), fiire?) ~ H*(Z, fiira &),

for s<dimcXy—qg—1. Let j:{z} > Z be the inclusion. From the exact
sequence

= B(jfinZ) = H(Z, fiign L) = H(Z — {2}, fiirn L)
N hs+l(j!ﬁik*$) e,
we obtain
hs(j'.f'lk*g)z = 07
for s < dim¢ Xy —q. Note that, for s = dim¢ Xy — ¢ — 1, the map
K (j i L) = H(Z, fiiga L)

is zero, since it factorizes through Hj(Uy(2), fiik«Z) which is zero.
By definition 1.1.3, this means that dy (k) > dim¢ Xz — g and proves 3.1.6.

_ Ifthe map f : X — Z can be compactified, we may obtain a better bound for
dy .(k), see Proposition 3.2.1 below.

LemMmA 3.1.7. Let p: T — S be a subanalytic map onto a homology manifold
S. Let F be a weakly constructible complex of R-modules on T and let s€ S.
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We suppose that, for every point t € Ts := p~!(s), there is a fundamental system of
good neighbourhoods (Uq(t)),c 4 relatively to F and Ty, such that the restrictions of
p to Uy(t) induce proper maps p, from U,(t) onto p(U,(t)), the images p(U,(t))
are a fundamental system of neighbourhoods of s = p(t) in S and the direct images
(Pa),(F|U4(2)) have locally constant cohomology sheaves on p(U,(t)). Let i
denote the inclusion of the fiber T, into T. Then,

i*F[-dim S] = i'F

where dim S is the topological dimension of S.

Proof of Lemma 3.1.7. Let ze T;. We have to prove that, at z, we have
i*F[—dim S], = i'F..
As F is weakly constructible, we have, for adequate «,
W (i*F,) = H*(U,(z) N T}, F)
and, p; denoting the constant map of T, N U,(z) onto the point {s}, we have
H(Uu(2) 0 Ty, F) = K (ps.i;(F|Ua(2)))

where i, denotes the inclusion of U,(z) n T in U,(z). As p, is proper, by base
change we have

(s iy (FIUa(2))) = H*(5; (pa).(F|Uu(2)))

where i, is the inclusion of {s} into p(U,(z)). Now by hypothesis we have that
the complex (p,),(F|U4(z)) has locally constant cohomology sheaves on p(U,(z))
which is supposed to be a homology manifold. The standard identity (15) of
§1.13 in [G-M2] gives that

i (Pa)(F|Ux(2))[~dim S] = i;(p), (F|Ua(2))-
Therefore
(15 (Pa), (F|U4(2))) = K9S (i3(pa). (F|Ua(2)))-
Now by base change we have

kk‘dims(i;(pa)*(Fl Uu(z))) _ hk—dilns(pS~i;(F| Uu(z)))
and by definition

R=AmS (p, i (F|U,(2))) = H=4™5(T,(2) 0 T, 5(F| Ua(2)))
= H4™S(U4(2), (i), (i) (F| Ua(2))
= H4mS(Uy(2), Uy(2) — T, F).
The weak constructibility of F implies, for the interior U,(z) of U,(z)
HSS(T(2), Ta(2) — Ty, F) = H*9™5(U,(2), Us(2) = T, F)
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and the weak constructibility of i'F yields, for adequate «
H*4mS(U,(2), Uy(z) — Te, F) = H* 905U, (2) A Ty, i'F) = K4 S(i'F,)
which shows that #*(i*F,) = h*~4mS(i'F,) and so i'F[dim S] = i*F.

Now, we can proceed to prove Proposition 3.1.5.

Proof of Proposition 3.1.5. Let ze Z, = Z be chosen as in the statement
of 3.1.5. Let j,: {z} — Z be the inclusion. Because of Lemma 1.1.2, we have
to show

Prir. = inf{s € Z|I’(j,fii,F.) # 0} > dim¢ Z; — q.

From the definition and general results about Whitney stratifications, there is an
open neighbourhood U of z in Z and a normal slice A" of Zj, at z such that A is
closed in U, the space f~!(U) is dually topologically g-complete with respect
to Anf~'(U), and the map f4 induced by f from f~!(A") to A is dually
topologically g-complete with respect to 4 nf~!(4"). Moreover, we have a
stratified product structure A" x ¥V of U, where V is a suitable neighbourhood of
z in Zh.

Now, let / be the inclusion of {z} into 4" and k the inclusion of 4" into Z:

(2>t z

Then we have j, =kol. For any weakly constructible complex G on Z for
which the Whitney stratification on Z is adapted to G, we have the quasi-
isomorphism

(%) k'G ~ k*G[-2 dimc Z)]

because of the stratified product structure 4" x V of U, as one can see e.g. from
[H2] (3) of Proposition 5.3 or Lemma 3.1.7. Namely, the normal slice .#" can be
defined as the fiber r~!(z) of a local retraction r: U — V of the open neigh-
bourhood U of z in Z onto an open neighbourhood V of z in Z;. In fact,
because of the properties of Whitney stratifications, Thom-Mather first isotopy
lemma (see [M]) shows that r can be assumed to be a locally trivial stratified
continuous fibration on ¥V and therefore one can show that, for any weakly
constructible complex G on Z, for which the Whitney stratification (Zj) is
adapted, the complex G|U and r satisfy the hypothesis of the Lemma 3.1.7.
Hence, we obtain the result quoted above from [H2] (3) of Proposition 5.3

(k)" (G|U)[-2dim¢ Zy] = (k1) (G|U)

if k; denotes the inclusion of the normal slice 4" into U. Since U is open in Z,
this yields the isomorphism () above.

Now, applying this result to the weakly constructible complex G := fii,F, we
get:

W(jLfi F;) = ('K fii,F;) = ('K fii F[-2dimc Zy)),)-
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Let £+ denote the map induced by f from f~!(A4") to A#". We call j the inclusion
of f~Y(4") into X, iy the inclusion of f~!(A#)— 4 into f~1(A), and j, the
inclusion of f~!(A4") — 4 into X — 4.

Now, by base change (see [B] (4) of 10.7, p. 159), we have

K*fi,F = (f4)j"i.F.

Because of the assumption about z, after shrinking .4 (or the neighbourhood U)
if necessary, we have an induced stratification of f~1(.#") and we have some
relation between j' and j*

(%) j*i.F =j'i.F2dim¢ Z).

since the restrictions of f to the strata X, are non-critical at every point of
7Y A"). In fact, let jy be the inclusion of f~!(A") into f~!(U) and q be the
map from f~!(U) into V defined by g(x) = r(f(x)), for any xef~!(U). The
hypothesis made on f above the point z € Z;, implies that for sufficiently small U,
we have that g is locally in f~!(U) a locally trivial stratified continuous fibration
on V by Thom-Mather first isotopy lemma again. This implies that, for any
weakly constructible complex K on X for which the Whitney stratification X is
adapted, g and K|f~!(U) satisfy the hypothesis of the Lemma 3.1.7 and therefore

(o) KIf(U)[-2dime Z4] = jy K|/~ (U).
However f~!(U) is open in X, so we have
J*K[-2dimc Z,] =j'K.

We apply this result to the complex i,F. This gives (xx).
By base change, we have

ji.F2dime Zy) = (ix),(ja) F]2 dimce Z3).
A similar reasoning as above gives
(ja) Fl2dimc Zy] = (ja)*F
and, with (), it yields
J'iF =i F2dime Zy) = (ix),(a)'F = (in),(FIf 71 (H) = 4).

Now, f4 is dually topologically g-complete at z with respect to f~!(4#") n 4 and
Lemma 3.1.6 implies that

diy (X 0 f N () = dime(Xi 0 f 71 (H)) — g = dime Xi — dime Z4 — ¢

for any stratum X; of X which is contained in X — 4 and intersects f~!(A").
Since F belongs /2D=%(X — A, R), we assert that

(¥xx) (in) (FIfH(N) ~ 4) € /2D>~ e (f71( ), R).

This fact is rather long to prove.
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The assertion means by definition that, for all the strata S of a Whitney
stratification of f~!(4"), we have

B (is(in),(FIf7(#) — 4)) =0

for all s < —dim¢ S — dimec Z;, and where 75 denotes the inclusion of S into
f~Y(). Because of the transversality assumption made on f~!(.#) in the
Proposition 3.1.5, we have a Whitney stratification induced by the one we have
on X. As the latter is adapted to A4, the stratification induced on f~!(A4") is
adapted to A nf~!(#). For a stratum S of this stratification of f~1(4), there
exists a stratum X; of the Whitney stratification of X such that

S = Xenf ().

First, we notice that for any stratum S of the induced stratification of
f~YA) — A, we have, for any integer s,

1 (@5(in ) (FIf 71 (A) = 4)) = B (i5(ja)"F),
where ig is the inclusion of S into f~!(.#") — A. This comes from the fact that,
iy being open, we have i', = i*% (see [B-B-D] 1.4.1). So

ig = igiy = igi%,.
As the stratum S is in f~1(A") — 4, the inclusion of S N (f~1(A") — A4) into S is
the identity. By base change we have

In fact the same proof shows that, if S is contained in 4,
B (is(in),(FI [T () - 4)) =0,
for any s.
Again, let S= X, nf"!(A) be contained in f~!(A4)—A. Call ji the

inclusion of S into X, nf~!(U) and # the inclusion of X; nf~!(U) into
X —A. Of course, we have

Bk o ik = ja o i.
Lemma 3.1.7 gives
(a)'F = (ja) F2dimc Z,),
as we have seen above. Therefore
i$(j4)"F = i§(ja) Fl2 dimc Z] = j{4 F[2 dimc Z3).
Applying again Lemma 3.1.7 to ¢|Xz nf~!1(U), we have

JiipFl2dime Zy) = {4, F.
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So, finally
A F = JiitF
which gives that
K (is(ja) F) = K (jiipF) = jih (i, F)
because, ji being closed, j; is exact (see [B-B-D] 1.4.1).

We have assumed that the complex F belongs to /2D=%(X — 4, R). This
implies that #°(§,F) =0, for s < —dimc Xk, which shows that

1 (@5(in) (FIf7H(N) = A)) = K (i5(ja)'F) = 0

for s < —dim¢ Xy = —dim¢ S — dim¢ Z),, as desired for any S in f~!(A4") — 4.
When S is contained in A, we saw above that the vanishing of

B (i5(in ) (FIf 1 (A) = 4))
is true of any s. This ends the proof of the assertion (xxx) above.
Moreover, by definition p;, (5r-1(4)—a)(Xe Of 7 (AH)) =400 for any
stratum X, contained in 4. Then, by 1.2.2,

Pliy).Flr-1 (-t (X 0 f TH(A)) 2 —dime Zy — dime(Xy 07! (A7)) = —dimc X;.
Theorem 1.1.5 and Lemma 3.1.6 imply
PrGin), (FIf (#)-a)z 2 —dime Zp — g
and, since (xx) yields
Tnliw)(FIfTHN) = A) = fa (i), () (F) = fo (i), (in) (F)[2 dimc Z))
= fj'i(F)2dime Zy)] = f4,j*i(F) = K*fiiiF,
this implies
inf{s e Z | K*(I'k*fii.F;) # 0} > —dim¢ Z), — g

or equivalently, by (%),

inf{s e Z| K (j. fi,F,) # 0} = inf{s € Z | *(I'k*fii, F|-2 dim¢ Z}),) # 0}

> dim¢ Z;, — g,

because #*(j.fii.F;) = *(I'k*fii,F[-2dimc Z;),) implies

inf{s e Z| K (j.fi.F.) # 0} = inf{s € Z | *(I'k*fi. F[-2dim¢ Z;),) # 0}.

This proves our proposition.

3.2. In particular, we may consider the case where the map f : X — Z can be
compactified.
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PrOPOSITION 3.2.1. Let f: X — Z be a complex analytic morphism which
has an analytic compactification f : X — Z. Let A be a closed complex analytic
subspace of X whose closure A in X is a closed complex analytic subspace of
X. We assume that f is dually topologically q-complete with respect to A. Let us
fix Whitney stratifications ¥ = (Xi).g of X and U = (Z;),., of Z adapted to A,
to X and to the map f. Let z be a point of some stratum Z; of Z, and let us
assume that the map f is dually topologically g-complete with respect to A at
2. Let dyz/(k) be defined as in (1.1.3). Then we have

Jf,zl(k) > dim¢ Xx —dimc Z; — ¢
for every ke K such that X; = X — A.
Proof. We shall apply Theorem 3.1.4 to the complex F on X — A4 defined in

the following way. Let X; be a stratum contained in X — 4. Let £ be a
locally constant sheaf on X;. Let i be the inclusion of X} into X — 4. Define

F=%).%.
We notice that
Fe 1/2D2dichk(X _ A,R)

since (z”,)!(fk)*i” is 0, if / #k, and &, when / =k. Since f is compactifiable,
fi,F is weakly constructible and iiF is obviously weakly constructible. So
Theorem 3.1.4 gives that

fii,F e 1/2pzdimc X=q(7 R)
This implies that (see 2.2)
PriFz = dimc Xy — g — dim¢ Z;.
Since we have i,.F = (i), %, this leads to
dy z,(k) = dimc Xy — g — dim¢ Z;
by Remark 1.1.4. This ends the proof of 3.2.1.

For any z € Z;, we can get a lower bound for dy,(k). By Lemma 1.1.2 we
have

Pri.F,z, = Prir,; — 2dimc Z
so that B
dr .(k) = dimc X — g + dimc¢ Z;

which improves the inequality of 3.1.6 in the case f is compactifiable.
Now we obtain

THEOREM 3.2.2. Let f: X — Z be a complex analytic morphism which has
a compactification f : X — Z. Let A be a closed complex analytic subspace of
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X whose closure A in X is a closed complex analytic subspace of X. Let
Fel?2D20(X — A/R). We assume that f is dually topologically q-complete with
respect to A. Call 1 the inclusion of X — A into X and i the inclusion of X — A
into X. Assume that \\F is weakly constructible. Then fii,F is in /2D=4(Z R).

Proof. This theorem can be obtained in two ways: either as a consequence
of Theorem 3.1.4, since itF = uF|X and fii.F = f\ijji,F are weakly constructible,
where i is the inclusion of X in X, or as a consequence of Proposition 3.2.1 and
Theorem 1.1.5.

An important example is the case of an algebraic morphism f, algebraic
varieties 4 and X and a complex F which is weakly constructible in the algebraic
sense, because this situation is naturally compactifiable.

Another important example is the inclusion of X — 4 into X:

COROLLARY 3.2.3. Let i: X — A — X be the inclusion and & = (Xi)pcx @
Whitney stratification of X adapted to A. Let x be a point of some stratum X; of
A and suppose that i is dually topologically g-complete with respect to the empty
set at x. Let d, x,(k) be defined as in (1.1). Then we have

d, x,(k) > dimc X; — dimc X; — ¢
for any stratum X in X — A.

This obvious corollary is useful in the case where X — 4 is locally g-complete
along A, as defined in the following (see [H-L2] Definition 3.2.3):

DEeNITION 3.2.4. We say that X — A is locally g-complete along A if the
inclusion i : X — 4 — X is g-complete, i.e. if for any point x € 4 there is an open
neighbourhood U of x in X such that U — 4 is g-complete. If the inclusion i
is g-complete at a point x € 4 ([H-L2] Definition 3.1.2), i.e. if there is an open
neighbourhood U of x in X such that U — 4 is g-complete, we shall say that
X — A is locally g-complete along 4 at x.

We have as a consequence Lemma 3.1.3:

Lemma 3.2.5. If X — A is locally g-complete along A at x, then the inclusion
i: X —A— X is dually topologically gq-complete at x with respect to any closed
complex analytic subspace of X — A.

Example 3.2.6. If A is locally defined by at most g+ 1 holomorphic
equations, X — 4 is locally g-complete along A4 [S-V].

As an application of this case, we have a vanishing theorem for the
cohomology on X — 4:
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CoROLLARY 3.2.7. Let X be dually topologically qi-complete with respect
to the empty set, let F be a weakly constructible complex in '/2D="(X — A, R).
Assume that the inclusion i: X — A — X is dually topologically g,-complete with
respect to the empty set at x and that iF is weakly constructible on X. Then, for
any extension Fy of F to X:

H(X,A,F,) = H)(X,iF)=0, foranys<m-—gqi—q.
Proof. We have that iiF € /2D2"~%(X,R). Then, we apply Theorem

2.2.3, when the set 4 considered in 2.2.3 is the empty set so that the inclusion i of
2.2.3 is the identity on X.

4. Theorems of Lefschetz type

In this paragraph we shall show that the main consequences of the Vanishing
Theorems of §2 and §3 are the classical Theorem of Lefschetz on hyperplane
sections for cohomology and several of its consequences. Our formulation
enables us to state all these consequences in great generality.

4.1. For the sake of simplicity, we first consider the cohomological version of
the classical Weak Lefschetz Theorem on hyperplane sections (see [D2] (4.1.6)):

THEOREM 4.1.1. Let V be a non-singular complex projective variety and W a
hyperplane section of V. Then we have that

H*(V,W;R) =0
Sfor any k < dimc(V — W).

Proof. The complement X := V — W is an affine variety and can be en-
dowed with a O-convex exhaustion function as it has been shown by Andreotti
and Frankel (see [A-F]), and therefore, it is 0-complete. Theorem 2.1.2 tells that
X is dually topologically 0-complete with respect to the empty set 0.

We choose m :=dim¢X. On X we consider the complex R given by the
constant sheaf generated by the ring R in degree 0. We may consider X as the
unique stratum of the trivial Whitney stratification of X. Obviously we have

Prx =0
so that R belongs to /2D>dimcX(x R). Theorem 2.2.3 implies that, for the
hypercohomology,
HY(X,R)=0
for any k < dim¢ X. Since the sheaf complex R is trivial, we have, in fact

H(X;R) =0



VANISHING THEOREMS 231
for any k < dim¢c X. In this case, it is well known that, for any k,
H{(X;R) = H*(V,W;R)
which proves our theorem.

If A is a closed analytic subspace of a complex analytic space X, for a
complex F in D*(X,R), we use the following notation

H*(X,A,F) .= H*(X, j,j*F)

where j is the inclusion of X — A4 into X, as we already did in [H-L2]
§2.2. When 4 is not closed in X, H*(X, A, F) is given by the hypercohomology
of the mapping cone of the natural morphism F — i,i*F.

Then, we have a general lemma to compare the hypercohomology with
compact supports with the relative hypercohomology:

LemMA 4.1.2. Let us assume that X is compact and A is a closed analytic
subspace of X. Let F be the restriction of Fy to X — A. Then
H*(X,A,F,) = H(X — A4, F).

Proof. Let p be the mapping of X to a point 0. Then p is proper, therefore
H(X, 4,F\) := H (X jiF) = K((p.jiF)o)
= H((p1jiF)) = H(((p 0)iF)o) = HE(X — 4, F).

Now a generalization of Theorem 4.1.1 to singular varieties and more
general complexes (compare to [L] 4.10) is

THEOREM 4.1.3. Let V be a complex projective variety and W a hyperplane
section of V. Let j be the inclusion of V — W into V. Let F be a complex in
12pzdimc(V=W)(y — W, R), and let F, be any extension to V. Then we have that

H*(V,W,F)) =0
for any k < dimc(V — W).

Proof. The proof is again a straightforward consequence of Theorem 2.2.3
by observing that j*F; = F and, by Lemma 4.1.2,

H*(V,W,F)) = H*(V — W,F).

Remark 4.1.4. We shall give below other statements which generalize the
Weak Lefschetz theorem on hyperplane sections. To avoid expressing bounds
involving the complex dimension of the ambient space, we shall shift the complex
by this dimension, so that the complex dimension does not appear in the
statements. Doing so, we follow the conventions introduced in [B-B-D].
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In fact, the preceding Theorems of Lefschetz type are consequences of a
general vanishing theorem of the relative hypercohomology:

THEOREM 4.1.5. Let V be a compact complex analytic space and W be a
complex analytic closed subspace of V. Suppose that V — W is dually topo-
logically q-complete with respect to the empty set and that F is a weakly con-
structible complex in Y?D=%(V — W ,R). Let F; be any extension of F to
V. Then we have

H(V,W,F)=0, foranys< —q.
Proof. By Lemma 4.1.2, we have
H*(V,W,F)) = H(V — W,F).
Therefore we may apply Theorem 2.2.3.

4.2. More generally, there is a general theorem of Zariski-Lefschetz type for
quasi-projective varieties. To get it, we shall apply the results of §2 and consider
the case where X is of the form V — 4, where 4 is closed in V.

We first need a topological statement

LemmA 4.2.1. Let V be a topological space, A and W closed subsets of
V. Let i and j be the inclusions of V.— AU W into V — W and into V — A, let
iy and j, be the inclusions of V — A and of V — W into V. Let F be a complex
on V—-—AuUW and F, an extension to V — A. Let us assume that we have the
following base change property

(J1)ieF = (ir), joF .
Then we have, for any k: HX(V — A, W — A,F)) = H*(V, (jy)i.F).

Proof. H*(V — A,W — A,F)) = H*(V — A4,j,F) = H*(V,(i1),jiF) and by
assumption H*(V, (i), jiF) = H*(V, (J1),isF).

In fact to apply this lemma we need a criterion to get the base change
property which will be stated and proved in the appendix (Lemma A.2).

Now we can prove a vanishing theorem for the relative hypercohomology
analogous to Theorem 4.1.5 which implies a generalized theorem of Zariski-
Lefschetz type:

THEOREM 4.2.2. Let V be a compact complex analytic space and A and W
be complex analytic closed subspaces of V. Suppose that V — W is dually
topologically q-complete with respect to A — W. Let i and j be the inclusions of
V—AUW into V- W and into V — A, let iy and j; be the inclusions of V — A
and of V. — W into V. Let F be a complex in /2D2%(V — 4 U W,R) and F; an
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extension to V — A. Assume that irF is weakly constructible. Let us assume that
we have the following base change property

(J1)hieF = (i), joF.
Then we have

H(V—-A,W —A,F)=0, foranys< —q.
Proof. This follows from Lemma 4.2.1, Lemma 4.1.2 and Theorem 2.2.3.

Since an affine complex variety is 0-complete, an obvious corollary of 4.2.2 is
another theorem of Zariski-Lefschetz type:

COROLLARY 4.2.3. Let V be a complex projective subvariety of PY and A be
a subvariety of V. Let F be a complex in 2D2°(V — A,R). Let i; be the
inclusion of V — A into V and assume iyF is weakly constructible. There is a
Zariski open dense set Q of projective hyperplanes in PN such that, for any H € Q,
we have

H(V—-A,VnH—-AF)=0, foranys<D0.

The Zariski open dense set Q is the set of projective hyperplanes transverse to a
Whitney stratification adapted to 4 and to the complex iiF (compare with [C]
Théoréme 1.1). According to the appendix, this transversality condition implies
the base change property of 4.2.2.

In fact, the base change condition in Theorem 4.2.2 can be weakened.

THEOREM 4.2.4. Let V be a compact complex analytic space and A and W
be complex analytic closed subspaces of V. Suppose that V — W is dually
topologically q-complete with respect to A— W. Let i and j be the inclusions of
V—AuWinto V— W and into V — A, let iy and j; be the inclusions of V — A
and of V. — W into V. Let F be a complex in /2D=%(V — AU W ,R) and F, an
extension to V — A. Assume that irF is weakly constructible. Let us assume that
we have

H'(W,(i1),jiF) =0, foranys< —q.
Then we have
H(V —A,W —A,F)=0, foranys< —q.

Proof. We have H*(V — A, W — A, F,) = H*(V — A,jiF) = H*(V, (i1) , jiF).
Because of our assumption it is therefore sufficient to prove that
H(V,W,(i1),jiF)=0, foranys< —q.

But H*(V, W, (i), jF) = H(V, (1) Jji (), /iF) = H'(V,(1)ijjiF) = H(V,
(1)i.F) = HL(V — W,i,F) = 0 for s < —q because of Theorem 2.2.3 and
Lemma 4.1.2.
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The assumption of Theorem 4.2.4 is fulfilled if #°((i1),/iF)|W =0 for any
s. In particular, it is fulfilled if the base change property of Theorem 4.2.2 holds.

In fact, it is obviously sufficient to suppose that A*((i;),/iF) =0 for any
s < —q. Such a hypothesis can be obtained using a local Lefschetz-Zariski
theorem which will be developed in section 4.4. Using the results of that section
we will be able to prove:

THEOREM 4.2.5. Let V be a compact complex analytic space and A and W be
complex analytic closed subspaces of V. Suppose that V — W is dually topo-
logically q-complete with respect to A— W. Let i and j be the inclusions of
V—AUW into V— W and into V — A, let iy and j; be the inclusions of V — A
and of V— W into V. Let F be a complex in ?D=%(V — 4 LU W,R) which
admits a weakly constructible extension F' to V, and let Fi be an extension to
V — A. Let us assume that there is a complex analytic subset S of AW such
that W — S is transverse to the subset A—S of V —S and F'|V —S. Then we
have

H(V—A,W —A,F)=0, foranys< —q—dimcS—1.

Here, by definition, dim@ = —1, so, in the case S = @, Theorem 4.2.5 follows
from Theorem 4.2.2 and Lemma A.2 of the appendix. Now, this theorem
implies the following corollary which is more general than Corollary 4.2.3.

COROLLARY 4.2.6. Let V be a complex projective subvariety of PY, S a
linear subspace of PV and A a subvariety of V. Let F be a complex in
12D2%(V — 4,R). Let iy be the inclusion of V — A into V and assume iyF is
weakly constructible. There is a Zariski open dense set € of projective hyper-
planes in PN containing S such that, for any H € Q, we have

H(V—-A,VnH—-A,F)=0, foranys< —dim¢cS—1.

The Zariski open dense set Q is the set of projective hyperplanes containing
S which are outside S transverse to a Whitney stratification adapted to 4 and S
and to the complex i F.

4.3. Now if the base change property (or the weaker assumption of Theorem
4.2.5) does not hold, it has been first observed by P. Deligne in [D1] that there
is a Lefschetz type theorem on a comparison with a neighbourhood of the
hyperplane section.

We need another topological lemma:

LemMa 4.3.1. Let V be a topological space, A and W closed subsets of
V. Let (Up),. be a fundamental system of neighbourhoods of Win V. Let i be
the inclusion of V- AU W into V — W and j, the inclusion of V — W into
V. Let F be a complex on V. — Au W and Fi an extension to V — A. Then we
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have, for any k

lim H*(V — 4,U, — 4,F1) = H*(V, (j1),i.F).
1

Proof. We may assume that the U; are open. Let /€ L, let k and i, be the
inclusions of U; — A4 into ¥V — A and into U}, and let i; and k; be the inclusions
of ¥ —A4 and of U; into V. Since k; is open, we have kj(i1),F1 = (i2) k*F1.
Therefore

H*(U; — 4, F\|(U, - 4)) = H(U,, (i2) k" F1) = H (U, ki (i), F1)

= Hk(Ula ((ll)*Fl)IUl)
which implies
lim H*(U; — 4,F\) = H*(W, (i) F1| W).
1

Furthermore, H*(V — A,F|(V — A)) = H*(V, (i) ,F1). By comparison of long
exact hypercohomology sequences we obtain

lim H*(V — A, U, — A, Fy) = H*(V, (1), j{ (i), F1) = H*(V, (j1).i.F)
l

because j[(i1) F1 = i,j*F1 = i.F, where j is the inclusion of V' — (4 U W) into

Now, Theorem 2.2.3, Lemma 4.1.2 and Lemma 4.3.1 give another vanishing
theorem for the hypercohomology:

PROPOSITION 4.3.2. Let V be a compact complex analytic space and A and W
be complex analytic closed subspaces of V. Suppose that V — W satisfies con-
dition (TC,) with respect to A— W. Let (Uy),., be a fundamental system of
neighbourhoods of W in V. Let i be the inclusion of V—AUW into
V —W. Let F be a complex in '>?D=%(V — AU W,R) and F| an extension to
V —A. Assume that inF is weakly constructible. Then we have

lim H*(V — A,U;— A,F1) =0, foranys< —q.
I

Of course, it would be interesting to have the vanishing for a particular
neighbourhood U. It is quite easy to specify such a U if ¥V — W is g-complete:

ProprosITION 4.3.3. Let V be a compact complex analytic space and A
and W be complex analytic closed subspaces of V. Suppose that V — W is
g-complete. Let 9:V — W — R be a proper g-convex function. For ¢ > 0 let
U :=Wu{xeV—-W]|p(x)>c}. Let i be the inclusion of V—-Au W into
V —W. Let F be a complex in 2D=%(V — AU W,R) and F; an extension to
V —A. Assume that iiF is weakly constructible. Then we have for any ¢ >0

H(V—-A,U.—A,F)=0, foranys< —q-—1.
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Proof. As the proof of Lemma 4.3.1 shows, we have
H(V-A,U.— A,F,) = H(V,U,, (i1),F1)
where i is the inclusion of V' — 4 into V. Let U, be the closure of U, in V. It
is sufficient to show that H’(V,U,,(i1),F1) =0, for any s<-g—1. But
H*(V,U,, (1) F1) = H,(V — U, (ih),F1|(V — U,)) and V — U, is g-complete, so
that we can conclude using Theorem 2.2.3.

In practice, it is useful to have the concept of good neighbourhoods (see [P]).
These neighbourhoods will be used to formulate Zariski-Lefschetz type theorems,
when the base change condition used above does not hold:

DENITION 4.3.4. Let V be a complex analytic space and W be a closed
complex analytic subspace of V. Let us fix some Whitney stratification (Vi) ¢
of V. Let T(W) be an open neighbourhood of Win V. T(W) is called a good
neighbourhood of W with respect to (Vi)i.x if T(W) is a member of a
fundamental system (7;(W)),., of open neighbourhoods of W in ¥, such that for
any I, me L such that T;(W) c T,,(W) there is a deformation retraction of
T,(W) and of T,(W) onto T;(W) which respects the strata Vj. In this case,
T(W) (the closure of T(W)) is called a good neighbourhood as well.

Remark 4.3.5. Suppose furthermore that W is compact. Then there is
always such a good neighbourhood which is relatively compact in V. There are
several ways of construction: using a triangulation of ¥ which refines the
stratification, using a non-negative subanalytic function on ¥ whose locus is W,
or using a suitable Riemannian metric on a real analytic manifold (e.g. RY) into
which 7 has been embedded.

Now, the following result will show that this concept is useful:

PROPOSITION 4.3.6. Let V be a complex analytic space and A and W be
complex analytic closed subspaces of V. Let F be a weakly constructible
complex on V—-AUW, Fi an extension to V—A. Let ji:V—-W >V,
I:V—AUW >V —-W and i,:V—-A—V be the inclusions. Assume that
(i1)\F1 is weakly constructible. Let (Vi)p.x be a Whitney stratification of V
adapted to A and to (i1),F1, and let T(W) be a good neighbourhood of W with
respect to (Vi)icx- Then we have

HV - A,T(W) - A4,F\) = H'(V - A, T(W) = 4,F) = H'(V, (1) i.F).

In particular, H*(V — A, T(W) — A, F) does not depend on the choice of the good
neighbourhood.

Proof. Let (Ti(W)),.; be chosen as in Definition 4.3.4. Let /, m € L such
that T/(W) < T,,(W). Because of Theorem [H2] 2.9, we have:

H (T (W) — A, Fy) = H*(Tp(W) — A, F;) = H*(T/(W) — 4, Fy)
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Therefore, H*(T;(W) — A, F;) and H*(V — A, T;(W) — A, F;) are independent of
I. The rest follows from Lemma 4.3.1.

Finally, when the base change property is not satisfied, using the notion
of good neighbourhoods, we can state another vanishing theorem of relative
hypercohomology:

THEOREM 4.3.7. Let V be a compact complex analytic space and A and W be
complex analytic closed subspaces of V. Suppose that V — W satisfies condition
(TC,) with respect to A— W. Leti:V—-AUW >V —-Wandiy:V—-A4—V
be the inclusions. Let F be a complex in '?D=%(V — AU W,R) and F; any
extension to V — A. Assume that (iy),F, is weakly constructible. Then we have:

H'(V —A,T(W)—A,F,)=0, foranys< —q

where T(W) is a good neighbourhood of W with respect to any Whitney
stratification of V which is compatible with A and (i),F;.

Proof. This theorem follows from the preceding proposition, Lemma 4.1.2
and Theorem 2.2.3.

Of course, Theorem 4.3.7 gives a Theorem of Lefschetz type in the case the
hyperplane section is not general, where, following the idea of Deligne (see [D1]),
we consider a good neighbourhood of the hyperplane section:

COROLLARY 4.3.8. Let V be a complex projective subvariety of PV and A be
a subvariety of V. Let F be a complex in 2D2°(V — A,R). Let i be the
inclusion of V — A into V and assume iyF is weakly constructible. For any
projective hyperplane H and any good neighbourhood T(H) of H with respect to
some Whitney stratification of V compatible to A and inF, we have

H(V —-A,VnT(H)—-A,F)=0, foranys<O0.

4.4. Now, of course, there are also the corresponding local versions of the
preceding theorems. As we have already observed in [H-L4], in this local case
the bound for the vanishing of the cohomology is one unit less. Since we are
working locally, we may look at locally closed complex analytic subsets of CV
instead of complex analytic spaces.

Let B, := {ze C¥||z|| < &}, S the boundary of B,. Let ¢ >0 and let X be
a closed complex analytic subset of B, which contains 0. First we need the
following lemma (where we omit to denote the restriction of complexes):

LemMmA 44.1. If F is a weakly constructible complex on X and if ¢ >0 is
sufficiently small, ¢ < &, we have
H*(B,~ X,F) = H*(B, n X,F) = H*(F,),
H*(S,n X,F) = H*((B, — {0}) n X, F).
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Proof. The first statement follows from [H2] Theorem 2.9 (for complexes
instead of sheaves). Let us choose a complex analytic Whitney stratification of
X. Then there is a compatible deformation retraction of (B — {0}) n X onto
S: N X provided that ¢ is small enough, see [B-V], so the second statement follows
from [H2], loc. cit.

Similarly to Theorem 4.1.5 we have

THEOREM 4.4.2. Let Y be complex analytic subset of X containing 0, and
suppose that the inclusion j: X — Y — X is dually topologically g-complete with
respect to the empty set. Let F be a complex in /2D2%(X — Y, R) such that jiF
is weakly constructible, and let F be any extension of F to a weakly constructible
complex on X (e.g. F1 =jF). If ¢ >0 is sufficiently small, ¢ < &, we have

H(B.nX —{0},B,nY —{0},F)=0, foranys< —q-1.
Proof. Because of Theorem 3.2.2, the direct image with compact supports

jiF is in /2D=7(X). Let k: {0} — X and /: X — {0} — X be the inclusions,
then

W ((k'jiF),) =0, foranys < —q.
Let ¢ > 0 be sufficiently small, ¢ < g, let U := B,nX. Because of Lemma 4.4.1,
0 =K ((jiF)y) = H*(U,jiF) and K’ ((LI"jiF),) = H*(U,LI'jy)F) = H*(U — {0}, /iF).
By [B-B-D], we have the distinguished triangle

= kk'jiF = jiF — LI\F 5
By taking the long exact cohomology sequence at 0, we obtain
B ((KjiF)o) = H=H(U — {0},jiF) = H*Y(U - {0},j1j* F1).
By definition, H*~}(U — {0},1j*F;) = H* (U - {0}, (U — {0}) n Y, F;), which

gives the desired result.

Theorem 4.4.2 gives a local Theorem of Lefschetz type (compare to [H3)):

COROLLARY 4.4.3. Let Y be a complex analytic subset of X containing 0 and
defined by one equation. Let j be the inclusion of X — Y into X. Let F be a
complex in 2D=%(X — Y, R) such that jiF is weakly constructible, and let Fy be
any extension of F to a weakly constructible complex on X (e.g. Fy =jF). If
&> 0 is sufficiently small, ¢ < &, we have

H(B.nX —{0},B.nY — {0}, F1) =0, foranys< —1.

There is also a local version of Theorem 4.2.2:

THEOREM 4.4.4. Let Y and A be closed complex analytic subsets of X which
contain 0. Let i and j be the inclusions of X — AU Y into X — Y and into X — A,
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and let iy and j; be the inclusions of X — A and of X — Y into X — {0}. Suppose
that the inclusion j, of X — Y into X is dually topologically g-complete with respect
to A—Y. Let F be a complex in ?D=%(X — AU Y,R) such that (j,),ilF is
weakly constructible, and let F, be any extension of F to X — A (e.g. F; = jiF).
Suppose that we have the base change condition

(j1)isF = (i) JiF-
If ¢ > 0 is sufficiently small, ¢ < &, we have
H’(B.nX —A,B.nY —A,F)=0, foranys<—q—1.
Proof. We begin as in the proof of Theorem 4.4.2. Let ¢> 0 be suffi-

ciently small, ¢ < &, let U := B,n X. By Theorem 3.2.2, the complex (j»)i.F is
in 2D2-9(X,R). Letk:{0} — X and /: X — {0} — X be the inclusions, then

(k' (j2)iis(F)y) =0, foranys< —gq— 1.
By [B-B-D], we have the distinguished triangle

s kK ()i F — ()i F — LI*(j2)inF 5 .

By taking the long exact cohomology sequence at 0, we obtain

1 (K (j2)icF)g) = B (LI (2)ii.F)o).
But we have

LI (o) F = LI h(h1) i F = L(ji)i F.
By hypothesis, we obtain

LI (j2)iinF = L(j1)iicF = L(ir), ) F = (i2) JiF = (i2),.j1J"F
where i, is the inclusion of X — 4 into X. Finally,
B (((2),j1J*F1)o) = H (U, (i2),.j1j*F1)
=H"YWU-A4,jij*F)) = H*"Y(U-4,UnY — A4, F).
Theorem 4.4.4 also gives a local Theorem of Zariski-Lefschetz type (compare

to [H-L3]):

COROLLARY 4.4.5. Let Y and A be closed complex analytic subsets of X
which contain 0 and suppose that Y is defined by one equation. Let i and j be the
inclusions of X — AV Y into X — Y and into X — A, let iy and j, be the inclusions
of X — A and of X — Y into X — {0}, and let j, be the inclusion of X — Y into
X. Let F be a complex in '>?D=°(X — AU Y,R) such that (j;),irF is weakly
constructible, and let Fy be any extension of F to X — A (e.g. F1 =jiF). Suppose
that we have the base change condition

(J1)isF = (ir), jiF.
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If ¢ > 0 is sufficiently small, ¢ < g, we have
H(B.nX —A,B.nY —A,F,)=0, foranys< —1.

The base change condition of Theorem 4.4.4 is fulfilled if Y — {0} is
transverse to 4 — {0}, see Appendix. We may weaken this condition:

THEOREM 4.4.6. Let Y and A be closed complex analytic subsets of X which
contain 0. Let i and j be the inclusions of X — AU Y into X — Y and into X — A,
and let iy and j, be the inclusions of X — A and of X — Y into X. Suppose that j,
is g-complete. Let F be a complex in /2D2°(X — AU Y, R) which has a weakly
constructible extension F' to X, and let Fy be any extension of F to X — A (e.g.
Fy =jiF). Suppose that there is a closed analytic subspace S of Y N A such that
Y — S is transverse to A— S and F'|X — S. 1If ¢ > 0 is sufficiently small, ¢ < &,
we have

H'B.:nX —-A4,B.nY —A,F)=0, foranys<—q—dimcS—1

where dim§ := —co.

Proof. The case S = @ follows from the appendix, while the case S = {0} is
covered by Theorem 4.4.4. So let 0 .S and dim¢S >0. Let L be a linear
subspace of CV of codimension dim¢S. We may choose L sufficiently general
such that L — {0} intersects X — {0}, 4— {0}, Y—{0} and 4AnY — {0}
transversally. The inclusion of X —L into X is (dimc¢.S — 1)-complete.

Furthermore, we may assume without loss of generality that F; =j;F. By
assumption, j, is g-complete, so j too. By Theorem 3.2.2 we have that jiF is in

12p=-4(x — 4, R).
By Theorem 4.4.4, we obtain that
H’(B.nX —A,B:nXNnL—-A,jjF)=0, foranys< —q—dimcS—2.

By base change, we have that (jiF)[(Xn"L—A)=(hW(FI(XNnL—-A40UY)),
where j;, is the inclusion of XnL—-AuY into XnL—A4. So

H’(B.nXNL—-A,jF)=HB:nXNnL—-A,ju(F|(XnL—-A4uUY))).

Since L intersects X — Y U A transversally, we can apply (xx*) in the proof of
3.1.5 and we have that the restriction F(XnL— AU Y) is in

2p2-dimeS(¥ NI — AU Y,R).
By Theorem 4.4.4 again, we obtain that
HB:NnXNL—-A,ju(F(XNnL—-—AuvY))=0, foranys<-g—dimcS-2.
Altogether this implies that
H’(B.nX — A,)F) =0, foranys< —q—dim¢cS—1,
which is our assertion.
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Proof of Theorem 4.2.5. Because of the constructibility of F the assertion of
Theorem 4.4.6 can be expressed in the following form:

h((i2),1F)y =0, foranys< —qg—dimcS—1.
This implies the hypothesis to be verified in Theorem 4.2.5.

Note that in the case that V is a subspace of some projective space PV we
could have directly argued similarly to the proof of Theorem 4.4.6, using a
general linear subspace of PV.

There is also a local version of Theorem 4.3.7:

THEOREM 4.4.7. Let Y and A be closed complex analytic subsets of X which
contain 0. Let i be the inclusion of X — AV Y into X — Y. Suppose that the
inclusion j, of X — Y into X is dually topologically q-complete with respect to
A—Y. LetF be acomplex in'?D=°(X — AU Y, R) such that (j»),i,F is weakly
constructible, and let F\ be any extension of F to X — A. Let us fix a Whitney
stratification of X adapted to A and to (j;),i,F. Let ¢ >0 be small enough; then
Se "X will have an induced Whitney stratification. Let T(Y) be a good
neighbourhood of S;NY in S, X with respect to this stratification. Then we
have

H(S;nX —-A,T(Y)—A,F)=0, foranys<—g-—1.

Proof. Let ¢ > 0 be sufficiently small, U := B,n X, 0U := S, n X. Accord-
ing to Theorem 3.2.2, the direct image jni,F is in /2DZ79(X,R). Let
k : {0} — X be the inclusion, then the cohomology sheaves #°(k'jxi.F) vanish, for
any s< —q— 1.

On the other hand we have that the stalk (h*(k'ji.F)), is isomorphic to

H*(U, U — {0}, j2i,F).
Moreover
H(U,jinF) = (b (juisF))y =0

therefore (h*(k'jni.F)), is isomorphic to H*~!(U — {0},jxi.F) which is iso-
morphic to

H*™\(3U, p} jisF)

where p, is the inclusion of dU into X, see Lemma 4.4.1. Let j. and p be the
inclusions of 0U — Y into U and into X — Y. Then pjjni.F = jap*i,F.

Let i and p be the inclusions of dU—-AuY into dU—Y and into
X—-AuY. Since S, intersects the stratification of X transversally, we have
p*i.F = (i) p*F (see Appendix Lemma A.3).

Let j be the inclusion of U — AU Y into dU — A, j the inclusion of U — A into
X — A, and j the inclusion of X — 40U Y into X — A. Then jop=poj, so
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p*F = j*j*F, = j*p*F;. Altogether we have

P jaieF = jap*inF = jo(ic) 5*F = ju(ic),J*p*F1 = ju(ic) ,(F1|(0U — AL Y)).
Therefore, using a proposition for subanalytic spaces similar to Proposition 4.3.6
with V = 0U, where & < ¢ < ¢, we have

HY(0U, p} jni,F) = H1(0U — A, T(Y) — A, F1|oU — A)
which gives the desired result.

Finally Theorem 4.4.7 gives a local Lefschetz theorem relatively to a
neighbourhood of a hyperplane section, as proposed by P. Deligne in [D1]:

COROLLARY 4.4.8. Let Y and A be closed complex analytic subsets of X
which contain 0 and suppose that Y is defined by one equation. Let i be the
inclusion of X —AVY into X—Y. Let jo be the inclusion of X — Y into
X. Let F be a complex in

2D2%(X — AU Y,R)

such that (j»)i.F is weakly constructible, and let F; be any extension of F to
X — A. Let us fix a Whitney stratification of X adapted to A and to (j)i.F.
Let ¢ >0 be small enough; then S; "X will have an induced Whitney stratifi-
cation. Let T(Y) be a good neighbourhood of S, Y in S; "X with respect to
this stratification. Then we have

H(S;nX —-A,T(Y)—-A,F)=0, foranys< —1.

Appendix

In this appendix we prove the base change theorem that we needed in this
paper.

DeniTioN A.1. Let V be a closed subanalytic subset of a real analytic
manifold M. Let 4 and W, be closed subanalytic subsets of V. Let F be a
weakly constructible complex on V. Then, W, is called transverse to 4 and F, if
there is a closed subanalytic subset W of M, a weakly constructible extension F;
of F to M and Whitney stratifications & of V and  of M adapted to F; such that

a) Wo=WnV,

b) A is a union of strata of &,

c¢) W is a union of strata of 7,

d) S and T intersect transversally within M, where S and T are arbitrary
strata of & resp. J contained in 4 and W, respectively.

Note that the condition is not symmetric in 4 and Wj.

LeMMA A.2. Let V be a closed subanalytic subset of a real analytic manifold
M, and let A and W, be closed subanalytic subsets of V. Let F be a complex on
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V—-Au W, and let G be a weakly constructible complex on V — A which have
weakly constructible extensions Fy and Gy to V. Assume that W is transverse to
A and the weakly constructible complexes F, and G,. Let i and j be the inclusions
of V—AuUW,yinto V—Wyandinto V—A. Leti, j, and ky be the inclusions
of V—A, V — Wy and Wy into V. Let k and i, be the inclusions of Wy — A into
V—A and W.

Wo—Ad —— Vd L V_duWw,

T
W, 2. v L v-w,
Then we have the following base change properties:
(j1)isF = (i) JF,
(k1)*(11),G = () k"G.

Proof. Let W, & and J be chosen as in Definition A.1. To prove the first
equality in the lemma, we first show that there is a morphism of jji, to ij.jr.

We may identify i*i,F with F, so that

i jiF = iy ju*i F.
By usual base change jii* ~ i jii, so

il*jli*i*F ~ il*ifj”i*F.

We have an adjunction morphism

JuisF — ] juicF
which yields

juisF > iy, jiF.

To prove that « is an isomorphism, we prove that, for any x € V| it induces an
isomorphism of the cohomology of the stalks.

For xe V — W, it is enough to prove that the image ja of « by j; is an
isomorphism. In fact, jfa is the composition of jjni,F ~ i, F ~i,j*jiF ~
jtitejiF.

For xe V — A4, it is enough to prove that the image ifa of a by if is an
isomorphism. Now, ifa is the composition of if jui,F ~ jii*i,F ~ jiF ~ili, jiF.

It remains to prove that, for x€e AN W, o gives an isomorphism. In fact,
we will show that the cohomology sheaves of jji,F and of i, jiF vanish at x.

However #*(jji.F), =0, because W, is closed in V.

We have an induced stratification &’ of ¥V whose strata are the connected
components of SN T, where S and T are strata of & and J, respectively. We

prove our assertion by induction on —dim S’, where S’ is the stratum of &’ which
contains x.
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Consider x € A n W and an adequate neighbourhood U of x in ¥ such that

He(iy, joF), ~ H*(U, i1, jiF).
So, we have to prove that (A*(ij.jiF), or) H*(U,i,,jiF) is 0. Leray spectral
sequence applied to i; gives
H*(U,iy.jiF) = H*(U — 4, F).
Let S, 8, and T be the strata of &, &' and J which contain x. Then we may
suppose that ' U =SnTnU. We may writte U= UnV, U being an open
subset of M. We may identify U with an open subset of R” in such a way that
U n S’ corresponds to the intersection by some linear subspace L. Therefore we
have a projection
n:U—->8nU

which corresponds to the orthogonal projection onto L.

Now, let ¢ and ¥ denote the distance functions to S and 7, defined on
U, and d the distance function to x, defined on ' U. Let & o and B be
positive real numbers which are sufficiently small. With a suitable choice of U,
the map (7, ¢,y) defines a proper stratified submersion of U —- SuT onto
(8" Un{d<e})x]0,a[x]0,B]. Also, we have a stratified submersion

(,4) : U—=8S - (S'nUn{d < e})x]0,qf

Since (S'NUN{d <e}) x {«} is a deformation retract of (S'NU N {d < &}) x
10,af, 0 < of < &, we obtain that U n {¢ = &'} is a deformation retract of U — S
in the stratified sense for the given stratifications.

Since S = A we obtain from [H2] (Theorem 2.9)

H*(U — 4,jiF) = H*(U — 4) n {¢ = &/},jiF).

Furthermore, we have that, for 0 <8 < B, the space (S'nUn {d<e})x
{o'} x {B'} is a deformation retract of (' U {d < e&}) x {o'} x [, B[, which
implies that

Un{¢=d}n{y=p}
is a deformation retract of U {¢ = o’} n { > B’} in the stratified sense for the
given stratifications. So

0=H*((U-A)n{g=d}n{y 28}, (U-4)n{g=c}n{y=pF}jF)
=H(U-4)n{p=0d},(U-4)n{p=o}n{y <f},jiF)
which means that
H*((U - 4) n {$ = L}, jiF) = HX(U n {¢ = «'} 0 {y < B}, irujiF).
Now we can pass to the direct limit:

lim H*(Un{¢ =} n {y <B},irjiF) = H(U AT o {$ = o'}, ircjiF).
ﬂ/
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By induction, we have
H¥(UNTn~{¢p=0d},it,jiF) = HUNT{p=d},j1i,F) =0.

for any k, because the cohomology sheaves of jji,F vanish along VN T <
V n W. This implies

0 =lim H¥(U n{¢ =} n {¥ < B}, i1 jiF) = H*((U — 4) 0 {$ = «'},jiF)
5
= H¥(U - A,jiF) = H*(U, i1, jiF)

which finishes the proof of the first equality. It remains to prove the second one.
We prove that there is a natural morphism
(k1)"().6 5 (0).6°G
which is defined from the adjunction morphism
(k1) (11),G — (i2),(22)* (k1)" (2), G
and the equalities
(B2)"(k1)" = k*(in)",
(i)*(i1),G = G.
We shall prove that f is an isomorphism. To do so, we make use of the
distinguished triangle
—jij*G = G = kk*G .
Then, it is enough to check that B induces isomorphisms for j;j*G and
k.k*G. For k.k*G, B induces
(k)" (i1), k"G L (i) Kk k* G
which is the identity, since (i1),k« = (k1),(i2), and k*k. = (k1)*(k1), = Id.
For ;i j*G, p induces
(k1) (1), 1/ G % (1) K11/ G

which is the trivial isomorphism, since k*ji = (k1)*(j1), =0 and (ji1)ix = (i1),)r
by the first equality of the lemma proved above. This ends the proof of Lemma
A2

In particular, we have the following consequence:

LemMa A.3. Let M be a real analytic manifold, A and V closed subanalytic
subsets of M, AcV. Let & be a Whitney stratification of (V,A). Let
¢: M — R be a real analytic function, and let R be a regular value for the
restrictions of ¢ to the strata of V, W = {¢ = R} (or: W ={¢ = R}). Letiandj
be the inclusions of V.— AU W into V — W and into V — A, let iy, j, and k| be
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the inclusions of V. — A, V — W and W into V. Let k and i, be the inclusions of
W —Ainto V—A and W.

W-d 5, veu L v_auw

Lk

w A, v 2L v_w

Let F be a complex on V — AU W and let G be a weakly constructible complex on
V — A which have weakly constructible extensions to V to which the Whitney
stratification & is adapted. Then we have the following base change properties:

(j1)isF = (1), jF,
(k1)*(i1),G = (i),k*G.

Proof. This follows from Lemma A.2: first, we may assume the R is a
regular value of ¢, then, the stratification J consists of the strata {¢ < R},

{¢ =R} and {¢ > R}.
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