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JOINT DISTRIBUTION OF THE FIRST HITTING TIME AND
FIRST HITTING PLACE FOR A RANDOM WAILK

TADASHI NAKAJIMA

Abstract

A random walk on the real line starting from 0 1s considered. A representation of
the Lapalace-Fourter transform of the joint distribution of the first hitting time and the
first hitting place of the set (—oo0, —a) (a > 0) is obtained, which gives a relation with the
jomnt distribution of those of the set (—oc0,0). The leading i1dea 1s Wiener-Hopf’s
factorization theorem.

1. Introduction and the main theorem

Calculation of the distribution of the first hitting time or the first hitting
place is closely related to solving the ruin problem in probability theory and
boundary value problems for certain difference equations. F. Spitzer [4] studied
the distribution of maximum value of a random walk by a combinatorial
method. K. Nisioka [3] studied the distribution of the first hitting time and place
of a half-line of a biharmonic pseudo process.

In Chapter 18 of [2], W. Feller gave a general formula to calculate the
Laplace-Fourier transform of a joint distribution of the first hitting time and the
first hitting place of (—o0,0) for a general random walk on the real line starting
from 0. We state his result before stating our main theorem.

Let {X,} be independent random variables with a common distribution F
and {S,} the random walk generated by {X,}. That is, we set

So =0,
S i=X1+X+---+ X,
Let o be the first hitting time of (—o0,0), that is,
Jj<n-1

{n if min S;>0 and S,<0
g =

00 otherwise.
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All sets considered below are Borel sets. We set
P(oc=n,S,€ 4), A c (—,0)
0, A < [0,0).
For Ae R and u > 0, we set the Laplace transform of H,(A4)

Hu4) = e Hy(4),
n—1
and the Fourier transform of H(u, -)
x(u,A) = Je”"‘H(u, dx).
The convolution F) x F, of two finite measures F;, F>, on R is defined by
Fy x F>(A) = jFl(A — x)F,(dx).
The following is known (Feller [2]).

Lemma 1 (2], XVIIL3, Lemma 1).
(1) log— = if-_-ufr_ X F ()
l—xw,2) 4o n)o '

Here F*" is the n times convolution of F, that is,
n times

F(4) =Fx- - F(A).

In this paper we denote the Laplace-Fourier transform of a joint distribution
of the first hitting time and the first hitting place of (—oo0,—a) by x,(#,4). In
order to state our result, we prepare some notation.

For a fixed a > 0, let v be the first hitting time of (—o0,—a), that is,

{n if min(S;j+a)>0 and S,+a<0
T= J<n—1
00 otherwise.
For ne N (N is the set of positive integers), we set
N P(t=n,S; € A), Ac(—00,—a
fp - [ PE=mSed) (=0, ~a)
0, A < [—a,0).

We set the Laplace transform

H(u,A) = i e " H,(A)

n=1
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and the Fourier transform of H(u, -)

Xa(u, A) = Je“"‘ﬁ (u, dx).
Now we state our main theorem.

THEOREM 2. For u>0 and A€ R,
JN & — e—i(a+s)v 1 —X(u /".)
N v 1= x(u,A-v)

1
2) = so(,2) = 5 _lim lim

In what follows, we shall prove this theorem and apply the theorem to an
example.

2. Proof of the main theorem

We set
My =0
n if M;_y <n, M,_}E}gn—l(s} - SMI-l) >0
M; = and S, — Sp,_, <0
0 otherwise,
where [ =2,3,....
For ne N we set
07 Ac (—G),OO)\[-(I,O)
n
G G= S P, =nSyed), Ac<[-a0)
J=1

LemMA 3. For any A < [—a,0), we get

Gu(A) = H,(A) + > x H,(A)--

ri+r=nr>1r>1
(4)
+ Z Hy x-- % H,(4)+---

ri+etre=n,r; =1

Proof. Note that Sy, , € [—a,0) if j > 2 and Sy, € [-a,0). For j >2 and
A < [~a,0), we have
P(M, = n, Sy, € A)

n—1
> P(M;=n,Sy, € A, M_; =r,Sy,_, €[~a,0))

S 2
[
—_—

J Plo=n—-r,S,€ A—y)P(M,_1 =1,8y,_, €dy).
[-a,0)
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Therefore we get

Gn(A) = P(My =n,Sy, € A) + Y _ P(M, = n, Sy, € 4)
J=2

n—1
= H,(4) + Zl L—a,o) Hy, (A - y)G,(dy)

n—1

= Hy(4) +_ G, * Hy_,(A).

r=1
Then we get the conclusion by induction.

LemMa 4. For any A = (—o0,—a), we get

(5) f{n(A) = Hn(A) + Z G, x Hi(A).

r+t=nr>1,t>1

Proof. We know

n
H,(A) = Hy(A) + Y  P(M, =n,Sy, € A, M;_ <n,Spy,, > —a).
j=2

Let j > 2. Since Sy,_, <0,
P(M = n,SMj € A,M_l < n,SMH > —a)
n—1
=Y P(M,=nSy, e A, M,y =15y, 2 —a)
r=1
n—1

= J Plo=n—r,S, € A—y)P(M)_y =r,Sm;_, €dy).
[—a)o)

r=1

Then we obtain

n—1

F(A) = Hy(4) + Y j[ | Hier A= 9)Gi@),
r=1 714
which proves the lemma.

For fixed u > 0, we set

0

G(u, A) = _ €™ Gy(4A).

n=1
Multiplying both sides by e " in (4) or (5), and summing up in n, we can get the

following.
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LeMMA 5. For any A; c [—a,0), we get
0
G(uvAl) = ZH*n(uvAl)
n=1
and for any A < (—o0,—a),
H(u,Ay) = H(u, A3) + G x H(u, 4,).
Here Gx H(u,A) = (G+x H)(u,A) = (G(u, -) * H(u, -))(A) and H*"*(u, A) = (H*")
(u,4) = H(u, )" (4).
Now for any K < (—o00,00), we set
Ky =Kn[-a,0)
and
K, = Kn(—00,—a),
and we extend G(u,4) and H(u, A) in the following manner:
G(u,K) = G(u, K1)
and
H(u,K) = Hu,K).
LemMMmA 6. For any K, we get
(6) Hu,K)+ Gu,K) = Hu,K) + G x H(u,K).

Proof. Let K; and K, be as above. Since K;juUK; = Kn(—00,0) and
KinK, =0, we see that

Gu,K) = zoo: H*"(u,K;)

A(wK)=H uK2)+2j H™ (4, d) H(, K - 7).

[~a,0)
So we obtain
G(u, K) + H(u,K) = H(u, K) + Z J H™(u, dy) H(u, k — )
(~a,0)
=I-I(u,K)+G*H(u,K). O

Set

y(u,A) = Je”‘xG(u, dx) + 1.
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Taking Fourier transform of both sides in (6), we get

(™) Xa(u, ) +y(u, 2) =1+ x(u, A)y(u, 4).
LemMma 7.
n x _ N e — e—i(a+e)v
J[—ao H*(u,dx)e lg(r)l 13‘—{130“‘ N——iv—x"(u,l —v)dv.
Proof. We have
1. ) N e —t(a+e)v
Elslf(r)l A}I_I)I‘}o J_N———-——x"(u —v)dv

1 N e — —l(a+e) 00 ]
= —lim lim J ———dv J H*"(u, dx)e'*—)x
27 el0 N—ow J_p iv ™

N o—i(x—e)v _ p—i(x+ate)v

00
= -l—hm lim J H*"(u, dx)e™™ J - dv.
27 el0 N—oo J_ N iv

Applying Dirichlet’s integral to this, we get the result.
From Lemmas 5 and 7, we get

Lemma 8.
N e — e—i(a+e)v 1

y(u, A) = Lhm lim J

7 el0 N—oo |_p iv 1—x(u,A—v)

Now we show the main theorem in this paper.

Proof of Theorem 2. By (7) we get

1 —Xa(u$ )’) = (1 _X(u1 l))y(u’l)
Applying this to Lemma 8, we get the result.
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Remark 9. Our conclusion holds for the signed measure F(dx) with total

variation V if Ve™ < 1. We will study such a case in [5].

3. An example

Let {X,} be independent identically distributed random variables with

distribution having the density
o

p(x) =4 ° ;;’3

e,
a+p

x <0,

x>0,
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where 0 <a < f. Let {S,} be the random walk generated by {X;}. This
random walk is frequently appeared in the queuing theory. Customers arrive at
rate a and are served at rate f.

We know

xwd) = 22

where 2p(u) = a+ f — \/(a + B)? — 4afe* ([2], XVIIL3, Example c).
We denote

_ 1 _X(ual)
SO = T =)

and calculate

N v _ ,—i(ate)y 1-— 2
1~ 2a(t 4) = - lim limJ i 2 4)

27 ¢l0 N—w J_p iv 1—x(u,A—v) Y
1 . ) N el — e—i(a+e)v
=5l g [, ==S——roan

It is easy to see that p(u) < a. Therefore f(v) has a pole at A + i(p(u) — «) in the
lower half plane.
Let 0 <r < R and consider the closed curve C! = C] U C} U C}, where

Cl={veC:v=re® 0<0<n},
Cl={veR:R=|=r},
Cl={veC:v=Re? 0<0<n}.

C! is oriented counterclockwise.

By Cauchy’s integral theorem we have

¢ f(v)dv=0.

Jor vV

On the other hand, we have

|, Srma =

1V
G

7 gieRe’ ) )
J Ro® £ (Re')iRe" dﬂ‘
0

1 - X(u7 )“)
1— p(u)

o+i(A—Re'?)

7
< J e—eR siné do
0

—0 (as R— o0).
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And we have

e 0 elere"’ 0 "
— I :. u
L} —v—f(v) dv= L P f(re*)ire” do
_ i e 12 d)
= lEe R0 do
a+i(A—re?)

— —in (asr—0).
Thus for a fixed ¢ > 0 we have

N v
LlimJ ¢ vf(v)dv=%.

2niN—w J_5 Vv
Now we set C? = C? U C2u C2, where
C={veC:v=re¥ —n<0<0},
C:2={veR:R=|=r},
Ci={veC:v=Re® —n <0 <0}

C? is also oriented counterclockwise.
Since v = A — ix + ip(u) is a pole of order 1 of f(v), by the residue theorem
we have

e—i(a+e)v p(u) ; )
= i 2l p—ilate)(A+i(p(u)-a))
J ” f(v)dv 2nza+i2e .

On the other hand
e—i(a+e)v
U ) dv
e v

3

0 p—i(ate)Re” " "
————f(Re"™)iRe"” d
j_n e f(Re”)iRe 0‘

1 - X(uv A)
1-— Pﬁu)

o+i(A—Re?)

0
< J e(a+e)R sin 6@ do
-

—0 (asR— o).
And for a fixed ¢ >0

—i(a+e)v —n ,—i(a+e)re?
€ _ ¢ i0Y ;. ,i0
J — f(v)dv = Jo pr f (re”)ire” do

—n
— —i(ate)re® 1 _X(uv )“)
ljo e —————1 0] do

~ ati(A—rei?)

— —ix (asr—0).
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Then we have

1Y e L 20 e
1y ey __ 1 ) iarsatitpi—a)
2ni13‘l‘30J_N y SO dv=—5+ e

Thus we get

_ P _uati(pu)-a))

xa(u’l)_a-*‘ile .
This formula is the Laplace-Fourier transform of the distribution of v and
S:. In the queing theory, the 7-th customer is the first customer finding out the
server who has kept free for time interval of length —S; which is longer than a.
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