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ON SECTIONAL GENUS OF fc-VERY AMPLE LINE BUNDLES ON

SMOOTH SURFACES WITH NON-NEGATIVE KODAIRA DIMENSION

YosfflAKi FUKUMA*

Abstract

Let (X, L) be a polarized surface over the complex number field. Assume that L is
fc-very ample. In this paper, we study the relation between the sectional genus g(L) and
the irregularity q(X). In particular we prove g(L) > (k + 2)q(X) if X has the Kodaira
dimension κ(X) = 0, 1, or (X,L) is some special cases with κ(X) = 2. Moreover we
classify (X,L) with g(L) = (k + 2)q(X) when κ(X) = 0 or 1.

§ 0. Introduction

Let X be a smooth protective manifold over the complex number field with
dim X = n > 2 and let L be an ample line bundle on X. Then we call (JΓ, L) a
polarized manifold. The sectional genus of (X,L) is defined by the following
formula:

where KX is the canonical divisor of X.
In [Fkl] and [Fk2]5 we studied the relation between the sectional genus and

the irregularity of X. In particular, we considered the following Conjecture in
the case of dim X = 2.

CONJECTURE 1. Let (X,L) be a polarized manifold. Then g(L)>q(X),
where q(X) is the irregularity of X.

It is not known whether this Conjecture is true or not even if dim X = 2.
But if L is ample and spanned, this Conjecture is true.

In this paper, we consider the case in which A" is a smooth projective surface
with κ(X) >0 and L is &-very ample (see Definition 1.1). In this case, we
propose the following Conjecture about sectional genus:
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CONJECTURE 2. Let (X, L) be a polarized surface. Assume that L is k-very
ample and κ(X) > 0. Then g(L) >(k + 2)q(X).

If L is ample but not spanned, then we put k := — 1. Then Conjecture 2 is
considered as a generalization of Conjecture 1 when X is a surface with κ(X] > 0.
In this paper, we consider the case in which k > 0 and we will prove Conjecture 2
if (X,L) is one of the following cases:

(1) The case in which κ(X) = 0 and k > 0 (see Section 2),
(2) The case in which κ(X) — 1 and k > 0 (see Section 3),
(3) The case in which (X, L) is one of the special cases with κ(X) = 2 (see

Section 4).
Furthermore if κ(X) = 0 or 1, then we will classify (X,L) with g(L) =
(k + 2)q(X).

In general, the inequality g(L) > (k + 2)q(X) is not true if κ(X) = -co and
L is k-very ample. In Appendix, we consider a lower bound for sectional genus
of λ -very ample line bundle with κ(X] = — oo.

In this paper we work over the complex number field and we use the
customary notation in algebraic geometry.

The author would like to express his gratitude to the referee for giving him
many valuable comments and suggestions.

§ 1. Preliminaries

DENITION 1.1 (See [BeSol] or [BeSo2]). Let (X,L) be a polarized sur-
face. Then L is called k-very ample for a nonnegative integer k if for any
0-dimensional subscheme (Z,Φz) with length &z<k+\, the map

Γ(L)->Γ(L®0Z)
is surjective.

THEOREM 1.2 (Fujita). Let (X,L) be a polarized manifold with ά\mX =
n>2 and let Δ(L) := n + Ln - A°(L) be the delta genus of (X,L).

(1) Δ(L) > 0. If Δ(L) = 0, then κ(X) = -oo and q(X) = 0.
(2) // Bs|L| - 0, g(L) > Δ(L), and Ln > 2Δ(L) + 1, then g(L) = Δ(L),

κ(X) = — oo, L is very ample, and q(X] = 0.
(3) If X is a smooth surface with κ(X) > 1, Bs|L| = 0, g(L) > Δ(L), and

L2 = 2Δ(L), then q(X) = 0.

Proof (1) See (1.4.2) and (1.5.10) in [Fj2].
(2) See (1.3.5) in [Fj2].
(3) By assumption and Theorem 1.4 in [Fjl], (X,L) is a hyperelliptic

polarized manifold. So by (6.1) in [Fjl] we get q(X) = 0. Π

PROPOSITION 1.3. (1) Let X be a smooth projectίve variety with dimX =
n>2 and let π : X -> Pn be a double covering. Then q(X) = 0.
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(2) Let X be a smooth projective surface and let L be an ample and spanned
line bundle on X. If L2 < 2, then q(X) = 0.

Proof (1) See Theorem 1 in [La].
(2) Since L is ample and spanned, we get h°(L) > 3. Hence we get

Δ(L) < 1. If Δ(L) = 1, then L2 = 2 and A°(L) = 3. Therefore there exists a
double covering π : X —> P2 defined by \L\. By (1), we get q(X) = 0.
If Δ(L) = 0, then by Theorem 1.2 we have q(X) = 0. Π

PROPOSITION 1.4. Let X be a smooth projective surface and let π : X —> P2 be
a triple covering defined by an ample and spanned line bundle L. Let $ be a
vector bundle of rank two on P2 such that π*(Φ}χ) = (9P2 0 $ and let
c2 := CΊ($}. Then the following hold:

(1) X(0χ) = (\/2)g(L)(g(L) + 1) + 2 - c2,
(2) K2

X = 2g(L)2 - 4g(L) + 11 - 3c2.

Proof See Lemma 3.2 in [Bes]. Π

LEMMA 1.5. Let (X,L) be a polarized surface with κ(X) > 0. Assume that
L is spanned and g(L) < 2. Then q(X) = 0.

Proof Since κ(X) > 0, we get L2 < 2. By Proposition 1.3 (2), we get
q(X] = 0. Π

PROPOSITION 1.6. Let X be a smooth projective surface which is embedded by
a very ample line bundle L in P4. Then

L2(L2 - 5) - lO(g(L) - 1) + \2χ(Gχ) = 2K2

X.

Proof See p. 434 in [Ha]. Π

THEOREM 1.7 (Di Rocco). Let (X,L) be a polarized surface with κ(X] > 0.
If L is a k-very ample line bundle with L2 < 4k + 4 and k > 2, then X is a minimal
K3-surface or a minimal Enriques surface.

Proof. By using the same argument as in Section 6 in [Di], it is sufficient to
prove the following Claim.

CLAIM 1.7.1. Let L be a k-very ample line bundle on X with k>2,
L2 <4k + 4, and g(L) < 3k + 1. If κ(X) 7^-00, then X is either a minimal K3
surface or a minimal Enriques surface.

Proof. Since g(L) < 3λ;+ 1, we get hl(Lc) < 1 by Proposition 2.5 in [Di],
where C e |L| is a smooth irreducible curve. Assume that κ(X) > 1. Then we
remark that KXL > 0.
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If hl(Lc) = 1, then by Theorem 2.5 in [BaSo] and the assumption we get
L2 > 2k + g(L) because Kc Φ Lc. Since

we get KXL < 2. By Theorem 4.4 in [BaSo], we get KXL >(k + 2)/2. Hence
k = 2 and KXL = 2. On the other hand by Corollary 2.6 in [Di] we get
KxL < k — I and this is a contradiction.
If hl(Lc] = 0, then L2>2k + g(L) + 1 or L2 > k + 2g(L) by Lemma 2.10 in
[BaSo]. If L2>2k + g(L) + 1, then

and so we get KXL < 0. This is a contradiction. If L2 > k + 2g(L), then
— 2 — k > KXL and this is a contradiction.
Therefore /t(Jr) = 0. By Corollary 2.6 in [Di], we get KxL<k-\. So by
Theorem 4.4 in [BaSo], X is minimal. Assume that q(X) > 1. Then χ(&χ] = 0
by the classification theory of surfaces and we get hQ(L) = L2/2. On the other
hand, by Lemma 2.8 in [BaSo], we get that A°(L) >2fc + 3 and L2 >4k + 6.
This is a contradiction by assumption. Therefore q(X) = 0 and X is a minimal
K3 surface or a minimal Enriques surface. Π

LEMMA 1.8. Let (X,L) be a polarized surface such that κ(X) = 0 and X is
not minimal. Let μ : X — » S be the minimalization of X and let A := μ*(L) in the
sense of cycle theory.

(1) Assume that (S,A) = (E\ x Eι,p\D\ -\-p\D-i), where El is a smooth
elliptic curve, pi is the i-th projection, and Di e Pic(£'z) for i = 1 and 2 with
degZ>ι = 1 and deg£>2 > 1. Then Bs|L| ^ 0.

(2) If Bs|L| = 0 and A2 > 6, then BsJΛJ = 0.

Proof. (1) Lety2 —pιQ^ and let FΊ be a general fiber of^ Then FΊ is a
smooth elliptic curve. Since LFi = μ*(A)F2 = 1, we get Bs \L\ φ 0.

(2) By assumption and (1), (S,A) £ (E\ x E^p\D\ \ p\D^). Since A2 > 6,
we get that Bs \A\ = 0 by Theorem 2.1 in [Fk5] (see also Chapter 10, § 1 in [LB]).

D

LEMMA 1.9. Let (X,L) be a polarized surface. Assume that L is k-very
ample with k >Q. Then

(1) LC > max{fc, 1} for any irreducible curve C.
(2) LC > k + 2 for any irreducible curve C with C £ Pl.
(3) LC > k + 3 for any irreducible curve C with g(C)>2 and k>\.

Proof. (1) Since L is ample, we get LC > 1. Hence we obtain (1) by
Corollary 1.3 in [BeSol].
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(2) If C £ Pl and k = 0 (resp. 1), then LC>2 (resp. >3) since L is ample.
If k>2, then (2) is obtained by Proposition 1.4 in [BeSol].

(3) This can be easily obtained by (2) and Proposition 1.4 in [BeSol]. Π

LEMMA 1.10. Let (X,L) be a polarized surface with κ(X)>0 and let
f : X — > C be a fiber space with g(F) > 1 for a general fiber F off, where C is a
smooth projectiυe curve. (For the definition of a fiber space, see Definition 1.14
below.} Assume that f is not relatively minimal and any fiber of the relatively
minimal model of f is smooth. If L is k-very ample with k > 0, then LF >

Proof. By assumption there exists a fiber F of /such that F = Fs + X
where Fs is a smooth irreducible curve with g(Fs) > 1 and El is a smooth rational
curve. Since L is ample and fc-very ample, we get LFS >k + 2 and LEl >
max{λ;, 1} by Lemma 1.9. Hence LF > max{2A: + 2, k + 3}. Π

LEMMA 1.11. Let (X,L) be a polarized surface with κ(X) = \ and let
f : X — » C be an elliptic fibration, where C is a smooth projective curve. Assume
that q(X) = g(C) + 1 and the relatively minimal model off has a multiple fiber.
If L is a k-very ample line bundle with k > 0, then LF > 2(k -f- 2), where F is a
general fiber of f.

Proof. Let f : Xf —> C be the relatively minimal model of / and let
μ : X — » X1 be its birational morphism. Let F\ = mFr be a multiple fiber of
/'. Since q(X') = q(X) =g(C) + l9 Fr is a smooth elliptic curve. Let (Fr)s be
the strict transform of Fr via μ. Then L(Fr)s >k + 2 by Lemma 1.9. Hence
LF = Lμ*(Fl)>2(k + 2). Π

LEMMA 1.12. Let (X,L) be a polarized surface with κ(X) = 1 and let
f : X — > C be an elliptic fibration, where C is a smooth curve. Let f : X' — > C be
the relatively minimal model off and let μ : X — » X1 be its birational morphism.
Assume that q(X) — g(C) + 1, L is k-very ample with k > 0, and f has a multiple
fiber. Then KXL > 2(k + 2)(2q(X) - 4) -f 2(k + 2).

Proof. By assumption/' has at least 2 multiple fibers (see Proposition 1.3
in [Se]). Let miFi be a multiple fiber of f . Then Fi is a smooth elliptic
curve because q(X') = g(C) + 1. Then Z/(w/ - l)Ft = Lμ*((mi - \)Ft) >k + 2
by Lemma 1.9, where L' = μ*(L) in the sense of cycle theory. Hence by the
canonical bundle formula and Lemma 1.11 we get KχL>Kχ<L'>

4) + 2(fc + 2). Π

PROPOSITION 1.13. Let X be a smooth projective surface of general type.
Assume that X is minimal and q(X) > 1. Then K\ > 2pg > 2q(X).
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Proof. See Theorem 6.1 in [De]. Π

DENITION 1.14. Let A" be a smooth projective surface, let C be a smooth
projective curve, and let / : X — » C be a surjective morphism with connected
fibers. Then (/, X, C) is called a fiber space with dim X = 2. If L is an ample
line bundle, then we call (f,X,C,L) a polarized fiber space.

LEMMA 1.15. Let (/, X, C, L) be a polarized fiber space with dimX = 2 and
g(F) > 2 for a general fiber F off. Then

(1) Iffis relatively minimal, then Kx/c is nef, where Kx/c := K.χ —f*(Kc) is
the relative canonical divisor. Furthermore if K^,c — 0 then (/, X, C) is locally
trivial.

(2) KXfCL > 0.
(3) Kχ/c + L is nef if κ(X) > 0.

Proof. (1) See [Bea].
(2) See Claim 5.6 in [Fkl].
(3) See Lemma 2.5 in [Fk3]. Π

LEMMA 1.16. Let ( f , X , C ) be a fiber space with dim X = 2. Then
q(X) < g(F) + 0(C), where F is a general fiber of f. If g(F] > 2 and q(X) =
g(F) + g(C)9 then X ~bίΐF x C.

Proof. See Lemme in [Bea]. Π

LEMMA 1.17. Let ( f , X , C,L) be a polarized fiber space with dimX = 2 and
κ(X) = 2. Assume that f is locally trivial and L is k-very ample with
k>0. Then g(L) > (k + 2)q(X).

Proof. By assumption there exist a smooth projective surface 5, a smooth
projective curve B, etale coverings π : S — > X and ε : B — > C, and a fiber space
p : S — > B such that S ^ B x F, p is the first projective, and ε op =f o π. By
Lemma 1.12 in [Fkl], we get

for a fiber F of/. Since κ(X) = 2, we remark that g(F) > 2 and g(C) > 2. We
calculate KχfcL\

= (KBxF/Bπ*(L)) x
degπ

1
= (2g(F)-2)(π*(L)B)x

degπ*
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(I) The case in which k = 0.
Since π*(L)B = Lπ*(B) > 2 by Lemma 1.9, we get

g(L) = g(C) + l-(Kx/c + L)L + (LF - \)(g(C) -

g(C) + 2(g(F) - 1) x -±- + l-L2 + (LF - l)(g(C) - 1).

If LF > 3, then

g(L) > g(C) + 2(g(F) - 1) x - + l-L2 + 2(g(C) -

1 / / T-I\ 1 \ . 4 \ .

Then g(L) > 2q(X) if L2 > 3 because gf(C) > 2.
If L2 = 2, then by Proposition 1.3 we get q(X) = 0 and g(L) > 2q(X).
If LF = 2, then

g(L) > g(C) + 2(g(F) - 1) x - + L2 + (g(Q - 1)

Hence g(L) > 2q(X) if L2 > 5. So we may assume that L2 < 4. Since
Bs|Lp| = 0 for any fiber of F, the natural map

/* of.O(L) - 0(L)

is surjective. We put £:=f*Θ(L). Then since Bs|L/τ|=0, g(F)>2, and
LF = 2, we obtain that ^ is a locally free sheaf of rank two on C and there exists
a double covering p : X — > P(<?) such that / — /? o /?, where P(<ί ) is the projective
bundle of ^ on C and p : P(g) -»• C is the bundle map. Let B be the branch
locus of/?. Then there exists ZePic(P(<f)) such that Be\2Z\. Then Jζy =
P*(Kp($] +Z). (See e.g. [Pe].) By construction L = p*(H(S))9 where /f(rf) is
the tautological line bundle of P(S). Then H(δ) is ample and /ί(<f)2 < 2
because L2 < 4. On the other hand, A°(L) = h°(H(Λ)) + h*(H(8) - Z). Since
ΛΓy-F > 0, we get that ZF^ > 2 for a fiber Fp of /?. Hence hQ(H(£) - Z) = 0
because (/f (rf) - Z)^ < 0. So we get A°(L) = h°(H(£)) and ff (ί) is spanned.
But by Proposition 1.3 (2), we get that g(C) = q(P(8)) = 0. This is a con-
tradiction.

(II) The case in which k>\.
Since LF > k + 3 and π*(L)B = Lπ*(B) > k + 3 by Lemma 1.9, we get
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g(L) = g(C) + - (Kx,c + L)L + (LF - l)(βf(C) - 1)

> g(C) + (* + 3)(flf(F) - 1) x ~ + ±L2 + (k + 2)(g(C) -

If k>2, then L2 > 4k + 5 by Theorem 1.7. Hence 0(L) > (A; +
If k = 1 and L2 > 6, then #(L) > 3q(X) is obtained.
If k = 1, L2 < 5, and A°(L) > 5, then L2 > 2Δ(L) + 1. Since κ(X) = 2 and L
is very ample, we get L2 > 2 and g(L) > 3. Hence g(L) > 3 > Δ(L). By
Theorem 1.2, this is impossible.

If k = 1, L2 < 5, and A°(L) = 4, then Γ is a hypersurface in P3. So we get
that q(X) = 0 and g(L) > lq(X}. D

LEMMA 1.18. Let (X,L) be a polarized surface with κ(X] = 2. Assume that
L is k-υery ample with k > 0 and X ~bίτFx C, where ^bir denotes birational
equivalence, and F and C are smooth projectiυe curves with g(F) > 2 and g(C) > 2.
Then g(L)>(k + 2)q(X).

Proof. Let μ : X — » F x C be the minimalization of X and p : F x C — » C the
second projection. Let/ :=poμ. Then Kx = μ*((2g(F) - 2)C + (2g(C) - 2)F)
+ Eμ, where Eμ is a //-exceptional effective divisor. So we get

KXL > (2g(F) - 2}Lμ*(C) + (2g(C) -

by Lemma 1.9.
(I) The case in which k > 2.

By Theorem 1.7, we get L2 >4λ; + 5. Hence

g(L) > 1 + (k + 2)(g(F) + g(C) -

So we obtain g(L) > (k-\-2)q(X).
(II) The case in which k = 1.

If L2 > 9, then by the same argument as in the case (I) we get g(L) > 3q(X).
So we may assume that L2 < 8. We remark that L2 > 2 since κ(X) = 2. Hence
g(L) > 3.
If A°(L) > 6 and L2 < 7, then L2 > 2Δ(L) + 1 and g(L) k 3 > Δ(L). Hence by
Theorem 1.2 this is impossible.
If A°(L) > 6 and L2 = 8, then Δ(L) < 4. Since L2 = 8 we get #(£,) >
6>Δ(L). If Δ(L)=4, then by Theorem 1.2 we get ήr(AΓ) = 0. But this is
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a contradiction because q(X) = g(F) + g(C) > 4. If Δ(L) < 3, then L2 >
2Δ(L) + 1 and this is impossible by Theorem 1.2.
If A°(L) = 5 and L2 < 5, then g(L) > 2 > Δ(L) and L2 > 2Δ(L) + 1. But by
Theorem 1.2, this is impossible.
If A°(L) = 5 and L2 = 6, then 0(L) > 5 > 3 = Δ(L) and L2 = 2Δ(L). Hence by
Theorem 1.2 we get q(X)=Q. But this is impossible because q(X) =
g(C) + g(F)>4.
If h°(L) = 5 and L2 = 7, then by Proposition 1.6 we get

\0(g(L) - 1) = 14 - 4(g(F) - 1)(0(C) - 1) + 2a,

where a := S(g(F) - \)(g(C) - 1) - K\.
We remark that a is nonnegative integer and K.χL > 3(2g(F) + 2g(C) — 4) + a.
Since g(F) > 2 and g(C)>2, we get that 14-%(F) - l)(g(C) - 1) < 10.
So we get a > 15 because g(L) > 5. Hence KXL > ϊ(2q(X) - 4) + 15 and we
get g(L) > 3q(X).
If h°(L) = 5 and L2 = 8, then by Proposition 1.6 we get

10(flr(L) -I) = 24- 4(g(f) - l)(g(C) - 1) + 2α.

(We use the same notation as above.) Since g(F) > 2 and g(C) > 2, we get that
24 - 4(g(F) - l)(g(C) - 1) < 20. So we get a > 15 because g(L) > 6. Hence
J^^ > 3(2q(X) ~ 4) + 15 and we get g(L) > 3q(X).

(Ill) The case in which k = 0.
If L2 > 5, then by the same argument as in the case (I) we get g(L) > 2q(X). So
we may assume L2 < 4.

(IΠ-1) The case in which L2 = 4.
If X is not minimal, then

= 4q(X}-Ί.

Hence we get g(L) > 2q(X). So we may assume that X is minimal. But then
by Lemma 1.17 we get g(L) > 2q(X).

(111-2) The case in which L2 = 3.
By the same argument as in the case (I) we get g(L) > 2q(X) — 1. Assume that
g(L) = 2q(X) - 1. Then KXL = 4q(X) - 7. In particular, μ is a simple
blowing up of F x C, and LF = 2 for a general fiber F off. Let Fe := FI + E be
a fiber of/, where FI is a smooth curve of genus g(F\) >2 and E is the (— 1)-
curve of μ. Since L is ample and LF = 2, we get LF\ = LE = 1. But this is
impossible because Bs|L| = 0 and g(F\) φ 0.

(IΠ-3) The case in which L2 < 2.
Then by Proposition 1.3 (2), we get q(X) = 0 and this is a contradiction because

= g(F)+g(C)>4.
This completes the proof of Lemma 1.18. Π
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PROPOSITION 1.19 (Castelnuovo's bound). Let (X,L) be a polarized surface.
Assume that L is very ample with N — A°(L) — 2 and d = L2. Then

Proof. See [ACGH]. Π

§2. The case in which κ(X) = 0

THEOREM 2.1. Let (X,L) be a polarized surface with κ(X) = 0. Assume
that L is k-very ample with k>0. Then g(L) > (k + 2)q(X}. Furthermore if
g(L) = (k + 2)q(X), then (X,L) is one of the following',

(1) (X,L) is a polarized abelian surface with L2 = 4& + 6,
(2) k = 0, X is a one point blowing up of S, and L = μ*(A) — 2E, where S is

an abelian surface, A is an ample line bundle with A2 = 8, μ : X — > S is its blowing
up, and E is a (-l)-curve of μ.

Proof. (I) The case in which k = 0.
(I-A) The proof of g(L) > 2q(X).

By the classification theory of surfaces, we get q(X) < 2.
If q(X) < 1, then g(L) >2> 2q(X).
If q(X) = 2 and g(L) > 4, then g(L) > 2q(X).

If q(X) = 2 and g(L) < 3, then L2 < 4. If g(L) < 2, then L2 < 2 and by
Proposition 1.3 (2) we get q(X) = 0 and this is impossible. If g(L) = 3 and
L2 = 4, then X is an abelian surface. But then A°(L) = 2 and this is impossible.
If g(L) = 3 and L2 < 2, then by Proposition 1.3 (2) we get q(X) = 0 and this is a
contradiction. If g(L) = 3, L2 = 3, and A°(L) > 4, then L2 > 2Δ(L) + 1 and
g(L) > Δ(L). But by Theorem 1.2 this is impossible. If g(L) = 3, L2 = 3, and
A°(L) = 3, then there exists a triple covering φ\L\ : X — » P2 defined by \L\. Since
KχL=l, we get that Kχ = —l. But by Proposition 1.4, this is impossible
because χ(@χ) = 0.
Therefore we get g(L) > 2q(X).

(I-B) The classification of (X,L) with g(L) =2q(X).
First we assume that q(X) < 1. Since κ(X) = 0, we get q(X) = 1 and g(L) = 2.
But by Lemma 1.5 this is impossible. So we assume that q(X) = 2. Then
g(L) = 2q(X) = 4 and L2 < 6.

(I-B-1) The case in which L2 < 2.
Then by Proposition 1.3 (2) this is impossible.

(I-B-2) The case in which L2 = 3.
If A°(L) > 4, then Δ(L) < 1. By Theorem 1.2 (1), we get that Δ(L) = 1

because κ(X) = 0. Then L2 > 2Δ(L) and g(L) > Δ(L). Hence this is impos-
sible by Theorem 1.2. So we may assume that A°(L) = 3. Then there exists a
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triple covering π : X —> P2 defined by \L\. Here we use Proposition 1.4. Since
%(®x) — 0 and g(L) = 4, we get CΊ — 12. On the other hand,

K2

X = 2g(L)2 - 4g(L) + 11 - 3c2

= -9.

But since KxL — 3, this is a contradiction.
(I-B-3) The case in which L2 = 4.

In this case KxL = 2. In particular X is not minimal. Let μ : X —» S be the
minimalization of X. Then S is an abelian surface. Let A:=μ*(L). Then
^2 = 8 or 6.

(I-B-3-1) The case in which A2 = 6.
Then μ is a composition of two blowing ups. By Lemma 1.8 (2) we get
Es\A\ = 0. But since Λ°(Λ) = 3 and Λ°(L) < λ°(Λ), this is impossible.

(I-B-3-2) The case in which A2 = 8.
Then μ is one point blowing up and L = μ*(A) — 2E, where E is a (—1)-

curve of μ. This is the type (2) is Theorem 2.1.
(I-B-4) The case in which L2 = 5.

In this case, KXL = 1. Then L = μ*(A) - E and A2 = 6 and λ°(Λ) = 3 BY
Lemma 1.8 (2) we get Bs |Λ |=0. But then A°(L) < Λ°(4) = 3 and this is
impossible.

(I-B-5) The case in which L2 = 6.
Then this is the type (1) in Theorem 2.1.

(II) The case in which k=l.
(II-A) The proof of g(L) > 3q(X).

If q(X) < 1 and g(L) > 3, then g(L) > 3q(X).
If q(X) < 1 and g(L) < 2, then L2 < 2. Since L is very ample with
κ(X) = 0, we get that A°(L) > 4. But then Δ(L) < 0 and κ(X) = -oo, a
contradiction.
If q(X) = 2 and g(L) > 6, then #(L) > 3q(X).
If #(JT) = 2 and 0(L) < 5, then L2 < 8. We remark that A°(L) > 5 in this case.
(By the above we get A°(L) > 4. If A°(L) = 4, then Z is a hypersurface of P3.
But then q(X) = 0 and this is a contradiction.) Hence Δ(L) < L2 — 3.

(II-A-1) The case in which L2 < 5.
Then L2>2Δ(L) + 1 and g(L) > 2 > Δ(L). But by Theorem 1.2 this is
impossible because Λ:(Ar) = 0.

(II-A-2) The case in which L2 = 8.
Then X is an abelian surface and A°(L) = 4. But this is impossible because
A°(L) > 5.

(II-A-3) The case in which L2 = 7.
Then X is not minimal. Let μ : X —> S be the minimalization of X. Then S
is an abelian surface. Let A:=μ^(L). Then L = μ*(A)—E, A2 = 8, and
A°(^)=4 since g(L) < 5. By Lemma 1.8 (2) we get Bs|4| = 0. But then
A°(L) < A°(Λ) = 4 and this is impossible.

(II-A-4) The case in which L2 = 6.
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Then X is not minimal. Let μ : X —» S be the minimalization of X. Then
S is an abelian surface. Let A := μ*(L). Then A2 = 10 or 8 because KxL < 2.

(II-A-4-1) The case in which A2 = 8.
Then μ is a composition of two simple blowing ups. By Lemma 1.8 (2) we get
Bs \A\ = 0. But ff(A) = 4 and Λ°(L) < h°(A), this is impossible.

(II-A-4-2) The case in which A2 = 10.
Then μ is one point blowing up and L = μ*(A) - 2E, where E is a (-l)-curve
of μ. By Lemma 1.8 (2) we get Bs \A\ = 0. But h*(A) = 5 and A°(L) < Λ°(Λ),
so this is impossible.
Therefore g(L) > 3q(X).

(II-B) The classification of (X,L) with g(L) = 3q(X).
Since ^(JΓ) < 2, we get two possibilities; (g(L),q(X)) = (3,1), (6,2).

(II-B-1) The case in which (g(L),q(X}) = (3,1).
Then L2 < 4. Since q(X] = 1, we get that A°(L) > 5 by the same argument as
above. Hence Δ(L) < 1. By Theorem 1.2 we get that Δ(L) = 1 and L2 = 4.
Hence X is minimal and h°(L) = L2/2 = 2. This is impossible.

(II-B-2) The case in which (g(L),q(X)) = (6,2).
Assume that L2 < 9. Then X is not minimal. Let μ : X —> S be the mini-
malization of X. Then S is an abelian surface. Let A := μ*(L). We remark
that A°(L) > 5.

(Π-B-2-1) The case in which L2 < 5.
Then L2 > 2Δ(L) + 1 and g(L) > Δ(L). But this is impossible by Theorem 1.2.

(II-B-2-2) The case in which L2 > 6.
Then KXL < 4. If A°(L) = 5, then by Proposition 1.6 this is impossible. (We
remark that the value of Kχ is —1, —2, —3, or —4.) So we may assume that
A°(L) > 6.

(Π-B-2-2-a) The case in which 6 < L2 < 7.
Then L2 > 2Δ(L) + 1 and g(L) > Δ(L). But this is impossible by Theorem 1.2.

(H-B-2-2-b) The case in which L2 = 8.
Then A2 = 12 or 10.

(b-1) The case in which A2 = 10.
Then μ is a composition of two simple blowing ups. By Lemma 1.8 (2) we get
Bs|4| = 0. But h°(A) = 5 and A°(L) < h°(A), this is impossible.

(b-2) The case in which A2 = 12.
Then μ is one point blowing up and L = μ*(A) — IE, where E is a (—1)-curve
of μ. By Lemma 1.8 (2) we get Bs \A\ = 0. But h°(A) = 6 and A°(L) < h\A),
this is impossible.

(Π-B-2-2-C) The case in which L2 = 9.
Then L = μ*(A)-E and A2 = 10 and h°(A) = 5. By Lemma 1.8 (2) we get
Es\A\ = 0. But then A°(L) < h°(A) = 5 and this is impossible.
Therefore L2 = 10. In this case X is an abelian surface. This is the type (1) in
Theorem 2.1.

(Ill) The case in which k > 2.
(III-A) The proof of g(L) > (k + 2)q(X).

If q(X) = 0, then g(L) >(k + 2)q(X).
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If q(X) = 1 or 2, then by Theorem 1.7 we get that L2 > 4k + 5. Hence

(III-B) The classification of (X,L) with g(L) = (k + 2)q(X).
By the above argument, we get q(X) φ 0 and so we get L2 > 4k + 5 by
Theorem 1.7. Therefore there exist two possibilities; (L2,KχL) = (4k + 6, 0),
(4k + 5, 1). If (L2,KXL) = (4k + 5, 1), then X is one point blowing up of an
abelian surface and L = μ*(A) — E, where μ : X — > S is the minimalization of X
and A := μ*(L). But this is impossible because 1 = KxL = EL >k>2 by
Lemma 1.9.
If (L2,KXL) = (4k + 6,0), then X is an abelian surface and this is the type (1) in
Theorem 2.1.

This completes the proof of Theorem 2.1. Π

§3. The case in which κ(X) = 1

THEOREM 3.1. Let (X,L) be a polarized surface such that κ(X) = 1. As-
sume that L is k-very ample with k > 0. Then g(L) > (k + 2)q(X). Furthermore
if g(L) = (k + 2)q(X)9 then (X,L) is one of the following:

(1) k = 0, L2 = 4, q(X) = 3, X has a locally trivial elliptic fibration
f : X —* C, and LF = 3 for a fiber F of f , where C is a smooth projectίve curve
with g(C) = 2.

(2) k > 1, L2 = 4A: + 6, q(X) > 3, X has a locally trivial elliptic fibration
f : X — > C, and LF = k -f 2 for a fiber F of f^ where C is a smooth projective curve
with g(C) = q(X)-l.

Proof. Since κ(X) = 1, there exists an elliptic fibration / : X — » C, where
C is a smooth projective curve. Then we remark that q(X) = g(C) or

(I) The case in which k = 0.

CLAIM 3.2. L2 > 2. If L2 = 2, then q(X) = 0 and g(L) > 2q(X).

Proof. If L2 = 1, then Δ(L) = 0 and by Theorem 1.2 this is impossible.
If L2 = 2, then by Proposition 1.3 we get q(X] = 0. In particular g(L}>
2q(X). Π
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(1-1) The case in which q(X) = g(C).
Then KXL > (2q(X) - 2)LF by the canonical bundle formula, where F is a fiber
of/
If q(X) = 0, then g(L) > 2q(X).
If q(X) > 1, then KXL > (2q(X) - 2)LF > 4(q(X) - 1) by Lemma 1.9. So we
obtain g(L) > 2q(X) - 1 + (l/2)Zλ Since g(L) e Z, we get that g(L) > 2q(X]
by Claim 3.2.

(1-2) The case in which q(X) = g(C) + 1.
(I-2-A) The proof of g(L) > 2q(X).

Assume that q(X) < 1. By Claim 3.2, we get g(L) > 3 > 2q(X).
Next we assume that q(X) > 2. By the canonical bundle formula and
Lemma 1.9, we get KXL > (2q(X) - 4)LF > 4(q(X) - 2). Hence g(L) >
2q(X) - 3 + (1/2)L2. If L2 > 5, then g(L) > 2q(X). So we may assume that
L2 = 3 or 4 by Claim 3.2.

(I-2-A-1) The case in which L2 = 4.
Assume that g(L) < 2q(X). Then if X is not minimal or minimal such that
/has a multiple fiber, then by Lemma 1.9 we get KXL > (2q(X) — 4)LF +
1 > 4q(X) — 7 and we obtain that g(L) > 2q(X). So we may assume that X is
minimal and / has no multiple fiber. In particular any fiber of / is smooth
because q(X) = g(C) + 1. Then Kx = (2q(X) - 4)F. Since κ(X) = 1, we get
that q(X)>3. By assumption and Lemma 1.9, we get that LF = 2. Since
LF = 2 and any fiber of / is smooth, the natural map

is surjective. We put $ :=f*&(L). Then $ is a locally free sheaf of rank two
on C and there exists a double covering π : X — » P($) such that / = p o π, where
P($) is the projective bundle of & on C and p : P($) — > C is the bundle
map. Let B be the branch locus of π. Then there exists Z e Pic(P(<f )) such
that B e \2Z\. Then ̂  = π*(KP(f) + Z). (See e.g. [Pe].) By construction L =
π*(#(<f)), where H(S) is the tautological line bundle of P(δ). Then H(δ) is
ample and H(£)2 = 2 because L2 = 4. On the other hand, A°(L) = hQ(H(£)) +

- Z). Since ^F = 0, we get that ZFP = 2 for a fiber /> of p. Hence
- Z) = 0 because (H(t) - Z)FP < 0. So we get A°(L) = h*(H(g}) and

is spanned. But by Proposition 1.3, we get that g(C) = q(P(f)) = 0.
Hence q(X) = g(C) + l = l and this is a contradiction.

(I-2-A-2) The case in which L2 = 3.
Assume that g(L) < 2q(X). If the relatively minimal model of /has a multiple
fiber, then by Lemma 1.12 we get KXL > 4(2^(^Γ) -4) + 4 and we can prove
g(L) > 2q(X) since q(X) > 2. So we may assume that the relatively minimal
model of /has no multiple fiber. Then q(X) > 3 since κ(X) = 1. Since L2 = 3,
we get KXL is odd. Hence X is not minimal. By Lemma 1.10, we get
LF > 3. But then KXL > 6(q(X) - 2) + 1. So we get g(L) > 2q(X) and this is
a contradiction.

(I-B) The classification of (X,L) with g(L) =2q(X).
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By the above proof, we get q(X) — g(C) + 1. First we study the upper bound of
L2. Since KXL > 2(q(X) - 2)LF > 4(q(X) - 2), we get g(L) > 2q(X) - 3 +
(1/2)L2. Hence L2 < 6.

(I-B-1) The case in which L2 = 6.
Then X is minimal, LF = 2, and Kx = (2q(X) - 4)F. In particular any fiber of
/ is smooth and q(X) > 3. Since LF = 2 and any fiber of / is smooth, the
natural map

Γ of.β(L) - Θ(L)

is surjective. We put & :=f*(9(L). Then $ is a locally free sheaf of rank two
on C and there exists a double covering π : X — * P($] such that / = p o π, where
P($) is the projective bundle of $ on C and p : P(S) — > C is the bundle
map. By construction L = π* (#(<?)), where H($) is the tautological line bundle
of P(δ). Then H(β) is ample and H(g)2 = 3 because L2 = 6. By the same
argument as above, we get hQ(L) = h®(H($)) and H(β} is spanned.
If λ°(/f (<f )) > 4, then Δ(#(<f)) < 1. If g(H(f)) = Q9 then q(P(*))=Q and
this is a contradiction. If g(H(f)) > 1, then g(H(δ}) > Δ(H(Λ)) and H(<$)2 >
2Δ(#((f)) 4-1. But by Theorem 1.2 q(P(£)) = 0 and this is impossible.
If h°(H(£)) = 3, then there exists a triple cover φ\H(#}\ : P(&) -> P2 defined by
H(g). Since g(H(t)) = g(C\ &m = 8(1 - g(C)) and χ(βp(g)) = 1 - g(C), we
get that g(C) .= 0 or 1 by Proposition 1.4. But this is a contradiction because

(I-B-2) The case in which L2 = 5.
Since L2 = 5, we obtain g(L) > 4. Hence ^(JT) > 2 because gf(L) = 2q(X).
Assume that the relatively minimal model of / has a multiple fiber. Then by
Lemma 1.12, we get that g(L) > 2q(X) and this is a contradiction. Hence the
relatively minimal model of /has no multiple fiber. This fact induces q(X) > 3.
Since L2 is odd, we get that X is not relatively minimal by the canonical bundle
formula. By Lemma 1.10, we get LF > 3 for a fiber F of / Hence KxL >
3(2q(X)-4) + l and we get g(L) > 2q(X) + q(X) - 2 > 2q(X). This is a
contradiction.

(I-B-3) The case in which L2 = 4.
By the same argument as in the case (I-B-2), the relatively minimal model
of / has no multiple fiber. In particular q(X) > 3. By Lemma 1.9 (2), we get
LF > 2 for a general fiber F. If LF = 2, then / is relatively minimal by Lemma
1.10. Because Kx = (2q(X) - 4)F, we get KXL = 4q(X) - 8. Since L2 = 4, we
get g(L) = 2q(X) - 1. But this is a contradiction because g(L) = 2q(X). So we
get LF > 3. Hence KXL > 3(2q(X) - 4) and we get g(L) > 2q(X) -h q(X) - 3.
Since g(L) = 2q(X), we get that / is relatively minimal and q(X) = 3. In
particular / is a locally trivial fibration. This is the type (1) in Theorem 3.1.

(I-B-4) The case in which L2 = 3.
By the same argument as in the case (I-B-2), the relatively minimal model of/
has no multiple fiber. In particular q(X) > 3. Furthermore X is not minimal
because L2 is odd.
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If A°(L) > 4, then Δ(L) < 1. Since L2 = 3, we obtain g(L) > 3. Hence
g(L) > Δ(L) and L2 > 2Δ(L) + 1. But by Theorem 1.2 this is impossible.
So we assume that h°(L) = 3. Then there exists a triple covering φ\L\ : X — > P2

which is defined by \L\. We remark that χ(0χ) = 0 and K\ < 0. By Prop-
osition 1.4, we have the following equalities:

By these equalities we have 2K\ = (g(L) - l)(g(L) - 10). Since K\ < 0, we get
that 1 < g(L) < 10. By assumption g(L) is even. Hence g(L) = 2,4,6,8. By
the above, we get K2

X = -4 (resp. -9, -10, -7) if g(L) = 2 (resp. 4, 6, 8). In
particular, X is at least four times blowing up of the relatively minimal model of
/. By using Lemma 1.10 and the canonical bundle formula, we get KXL>
3(2q(X] - 4) + 4 and we obtain g(L) > 2q(X) + q(X] - (3/2) > 2q(X) because
q(X] > 3. This is impossible.

(II) The case in which k = 1.

CLAIM 3.3. A°(L) > 5, L2 > 5, and g(L) > 4.

Proof. Since L is very ample and κ(X] = 1, we get that λ°(L) > 4. If
= 4, then there exists an embedding X — > P3. But since ^(A") = 1, this is

impossible. Therefore A°(L) > 5.
If L2 < 3, then Δ(L) = 0 and this is impossible by Theorem 1.2. Hence
L2 > 4. Since KXL > 0, we get g(L) > 4.
If L2 = 4, then Δ(L) < 1. We get g(L) > Δ(L) and L2 > 2Δ(L) + 1. But this is
a contradiction by Theorem 1.2. Π

(II-A) The proof of g(L) > 3q(X).
(II-A-1) The case in which L2 > 9.

If q(X) < 1, then g(L) > 4 > 3 > 3q(X) by Claim 3.3. So we assume that
q(X) > 2. Then by Lemma 1.9 and the canonical bundle formula, we get
KxL>3(2q(X)-4) since q(X) = g(C) or q(X)=g(C) + l. Hence g(L) >
3q(X) - 5 + (l/2)L2 and we get g(L) > 3q(X).

(II-A-2) The case in which L2 = 7 or 8.
If A°(L) > 6, then Δ(L) < 4.
If Δ(L) = 4, then L2 = 8 and A°(L) = 6. In particular, L2 = 2Δ(L). On the
other hand g(L) > 6 > Δ(L). By Theorem 1.2 we get g(L) > 3q(X).
If Δ(L) < 3, then L2>7> 2Δ(L) + 1 and g(L) > 5 > Δ(L). Hence by Theorem
1.2 this is a contradiction.
Assume that A°(L) = 5. If q(X) = g(C), then KXL > 3(2q(X) - 2) and
g(L) > 3q(X). So we may assume q(X) = g(C) 4- 1. Then χ(Gx) = 0.
Assume that L2 = 8. Then by Proposition 1.6 we get that £^<-13 since
g(L) > 6. Hence KXL > 3(2q(X) -4) 4- 13 by the canonical bundle formula.
So we get g(L) > 3q(X).
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Assume that L2 = l. By Proposition 1.6, we get that K%< — 13 since
g(L) > 5. Therefore KxL > 3(2q(X) — 4) + 13 by the canonical bundle formula.
So we get g(L) > 3q(X).

(II-A-3) The case in which L2 = 6.
Then Δ(L) < 3. Since L2 = 6, we get that L2 > 2Δ(L) and g(L) >
5 > Δ(L).
If L2 = 2Δ(L), then by Theorem 1.2 we get g(L) > 3q(X).
If L2 > 2Δ(L) + 1, then this is a contradiction because g(L) > Δ(L).

(II-A-4) The case in which L2 = 5.
Then Δ(L) < 2 < 4 < g(L). Since L2 > 2Δ(L) + 1, we get g(L) = Δ(L) by
Theorem 1.2. But this is a contradiction.

(II-B) The classification of (X,L) with g(L) = 3q(X).
By the proof of the above, we get g(L) > 3q(X) if L2 < 8. So we get that
L2 > 9. By Claim 3.3 and the assumption, we get q(X) > 2. Since KxL >
3(2q(X) - 4), we get that g(L) > 3q(X) - 5 + (L2)/2. Hence L2 < 10.

(II-B-1) The case in which L2 = 10.
Then / is the relatively minimal elliptic fibration, / has no multiple fiber, and
q(X) — g(C) -f 1. In particular, /is a locally trivial fibration. Since κ(X) = 1,
we get that q(X) > 3 by the canonical bundle formula. This is the type (2) in
Theorem 3.1.

(II-B-2) The case in which L2 = 9.
If q(X) = g(C), then KXL > 3(2q(X) - 2) by Lemma 1.9 and the canonical
bundle formula. Hence g(L) > 3q(X) + (5/2) > 3q(X). So we get that q(X) =
g(C) + \. If the relatively minimal model of /has a multiple fiber, then by
Lemma 1.12 we get KXL > 6(2q(X) - 4) + 6. So we have g(L)>3q(X) +
3q(X) - (7/2). Since q(X) > 2, we get that g(L) > 3q(X). Hence the relatively
minimal model of / has no multiple fiber. In particular q(X) > 3 because
κ(X) = 1. Since L2 is odd, / is not relatively minimal. By Lemma 1.10, we
have LF>4. Hence KXL > 4(2q(X) - 4) + 1 and we get g(L)>3q(X) +
q(X) — 2. Since q(X) > 3, g(L) > 3q(X) is obtained and this is a contradiction.

(Ill) The case in which k > 2.
By Theorem 1.7, we obtain L2 > 4k + 5. By Lemma 1.9, we get LF > k + 2 for
a general fiber F of /.

(III-A) The proof of g(L) > (k + 2)q(X).
If q(X) < 1, then

> 1+1(4* + 5)

2)q(X).
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If q(X) > 2, then KXL > (fc + 2)(2q(X) - 4) by the canonical bundle formula.
Hence g(L) >(k + 2)q(X) - (1/2). Since g(L) e Z, we get g(L) >(k + 2)q(X).

(III-B) The classification of (X,L) with g(L) = (k + 2)q(X).
By the above proof we get that q(X) = g(C) +1 and q(X) > 2 in this
case. If the relatively minimal model of/has a multiple fiber, then by Lemma
1.12 we get KxLϊ:2(k + 2)(2q(X)-4)+2(k + 2). So we have g(L) >
(k + 2)q(X) + (k + 2)q(X)-k-(5/2). Since q(X)>2, we get that g(L) >
(k + 2)q(X). Hence the relatively minimal model of/has no multiple fiber. In
particular q(X) > 3 because κ(X) = 1. On the other hand since

(k + 2)q(X) = g(L) > 1 +1 (k + 2)(2q(X) - 4) + l-L\

We get L2 < 4k + 6. Therefore L2 = 4k + 5 or 4k + 6.
(III-B-1) The case in which L2 = 4k + 6.
Then/is the relatively minimal elliptic fibration, /has no multiple fiber, and

q(X) = 0(C) + 1. In particular, /is a locally trivial fibration. Since κ(X) = 1,
we get that q(X) > 3 by the canonical bundle formula. This is the type (2) in
Theorem 3.1.

(III-B-2) The case in which L2 = 4k + 5.
Since L2 is odd, / is not relatively minimal. By Lemma 1.10, we have
LF>2k + 2. Hence KXL > (2k + 2)(2q(X) - 4) + 1 and we get g(L) >
(k + 2)q(X) + kq(X) - 2k. Since q(X) > 3, g(L) >(k + 2)q(X) is obtained and
this is a contradiction.

This completes the proof of Theorem 3.1. Π

§ 4. The case in which κ(X) = 2

THEOREM 4.1. Let (X,L) be a polarized surface with κ(X) = 2. Assume
that Bs \L\ = 0 and h°(L) > 5. Then g(L) > 2q(X).

Proof. First we prove the following Claim;

CLAIM 4.2. Let x\e X be a point and let ψ : X' —>• X be blowing up at x\.
We put LI := ψ*L - E and L2 := LI - E, where E is the (-l)-curve of ψ. Then
h°(L2) > 2.

Proof of Claim 4.2. By the following exact sequence

0

we get that Λ°(L) - h°(Lι) < h°(&E) = 1.
By the following exact sequence

we get that h°(Lλ) - h°(L2) < h°(ΘE(l)) = 2.
Hence A°(L2) > 2. Π
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Let Λ2 c \L2\ be a linear pencil and let Λ := \I/*Λ2. Then Λ c |L® m^J,
where mxι is the ideal sheaf of jci. Let AM be the movable part of Λ and let Z
be the fixed part of Λ.

(I) The case in which Z = 0.
In this case, dim BsΛ < 0. Since x\ e BsΛ, we get multxι D > 2 for any D e Λ.
Here we use the same argument as in the proof of Theorem 3.1 in [Fk3].
Let φ be a rational map X —> Pl associated with ΛM, let μ : X' —> X be an
elimination of indeterminacy of φ, and let φ' be the morphism X' —» P1.
Let φf = δ of : X -» C -> P1 be its Stein factorization, where δ : C -> P1 is a
finite morphism and / is a fiber space X —> C.
We put a := deg<5, L' := μ*L, and Ff is a general fiber of/.

Let Z? be the number of times of blowing up μ.
We put μ = μ{o μ2o •• o μb : X' = Xb -+ Xb_ι —> - - —> A"ι —> AΌ = X, where μz

is the blowing down of (—1)-curve El and /^ : ̂ i —> AQ is the blowing up at
ci e A'. Let LQ = L and Lz = μ*Lt-\ for / = 1,2,.. ., b. Then Z/ = Z^. We

take an element M of ΛM We put MO = M and ΛM = ΛQ. Let Λ, be the
movable part of μ*Λ,_ι. Then we write Λ, =//*Λ z_ι — w/j?,, where w/ > 0 for
i = 1, . . . , A. Let M, = μ*M,_ι - w/E, and M' = Mb. Then Mz 6 Λ,. We remark
that M' = aFf, where = is numerical equivalence.
Then

(Kx> + L')(L' - M') = (Kx + L)(L-M)- ^/ι, .
ί=l

Since M7 = α/y, then

z=l

We remark that Kx + L is nef. By construction, L — M is an effective divisor.
Hence (Kx + L)(L - M) > 0. Because /ι, > 0 and n\ > 2, we have

Therefore by the above

b
(KXi + L')L' = (Kx, 4- ̂ O^7 H- (Kx + L}(L-M)-'

ι=l

/=!

+ L')M' - M2
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On the other hand, LM - M2 = (L - M)M. Since M e Λ.M, M is a nef divisor
on X. So we have LM - M2 > 0.
Hence

(Kx,+L'}L'>Kx,M' + 2

= 2 a ( g ( F f } - \ } + 2

by 0> 1.
Therefore

by Theorem 1 in [X]. Since 0(L) = #(Z/) and 0(JT) = ίC '̂), we obtain g(L) >
2q(X).

(II) The case in which Z Φ 0.
Let M e Λ A f We remark that MZ > 0 because M + Ze|L| is 1- connected.

(II-l) M2 > 0 case.
Then M is nef-big and dimBs|M| < 0. So we get

since MZ > 0. On the other hand g(M) > 2q(X) - 1 by Corollary 3.2 in [Fk3].
Since g(L) e Z, we get g(L) > 2q(X).

(II-2) M2 = 0 case.
Then BsΛM = 0. Let φ : X — > Pl be a surjective morphism defined by ΛM
By taking Stein factorization, if necessary, there exists a smooth curve C, a finite
morphism π r C - ^ P 1 , and a surjective morphism with connected fibers
/ : X — > C such that 0> = π o/.

(Π-2-1) The case in which g(C) = 0.
Then we can prove that g(L) > g(M) -f (1/2) by the same argument as
above. On the other hand by construction we have M = aF, where a is a
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natural number. Hence g(L) > g(F) + (1/2) > 2q(X) - (1/2) by Theorem 1 in
[X]. So we get g(L) > 2q(X).

(Π-2-2) The case in which g(C) > 1.
Then a > 2 by construction. We remark that LF > 2 for a fiber F of /because
Bs \L\ = 0 and κ(X) = 2. Since Kx/c + L is nef by Lemma 1.15 (3),

g(L) = g(C) + (Kx,c

> 2flf(C) - 1 + ^ (^/c + L)(αF) + \ (Kx/c + L)Z

-2 + 2

On the other hand by Lemma 1.16 we get q(X) < g(C) + g(F).
If g(C) +g(F) > q(X) + 1, then g(L) > 2q(X). So it is sufficient to consider
the case in which q(X) = g(C) + g(F). Then by Lemma 1.16, we get
X ~bιτF x C. By Lemma 1.18, we get g(L) > 2q(X). This completes the proof
of Theorem 4.1. Π

COROLLARY 4.3. Let (X,L) be a polarized surface with κ(X) = 2. If L is
very ample, then g(L) > 2q(X).

Proof. Since L is very ample and κ(X) = 2, we get hQ(L) > 4.
If h°(L) > 5, then g(L) > 2q(X) by Theorem 4.1.
If hQ(L) = 4, then X is a hypersurface in P3. Hence we get that q(X) = 0 and so
we have g(L) > 2q(X). Π

THEOREM 4.4. Let (f,X,C,L) be a polarized fiber space with dimX = 2
and κ(X] = 2. If L is k-very ample with k > 0 and q(X) < g(C) + 1, then

Proof. (I) The case in which k = 0.
(1-1) The case in which g(C) = 0.

Then q(X) < 1. So we get g(L) >2> 2q(X).
(1-2) The case in which g(C) > 1.

Then

since LF > 2 by Lemma 1.9, where F is a general fiber of/.
(1-2-1) The case in which L2 < 3.
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If L2 < 2, then by Proposition 1.3 we get q(X) = 0 and so we have
g(L) > 2q(X). If L2 = 3 and KX/CL > 2, then g(L) > 2g(C) + (3/2) and we get
g(L)>2g(C) + 2>2q(X).
If L2 = 3 and ̂ /c^ < 1, then 0 < Jζr//cί/ < ̂ /c^ < 1, where /' : X' -> C is
the relatively minimal model of /, μ: X —> Xf is its birational morphism, and
L' = μ^(L) in the sense of cycle theory. Since (L')2 > 3, we get (KΓ/C)

2 = 0 by
Hodge index Theorem and Lemma 1.15. In particular/' is a locally trivial
fibration.
If KX>ICL' = 0, then (Kx>/c)

2 = 0 and KXι/c = 0. But this is impossible because
κ(X) = 2. If KXΊCL' = 1, then KX/CL = KX,/CL' and so we get X s X1. In
particular, / is a locally trivial fibration. By Lemma 1.17 we get g(L) > 2q(X).

(1-2-2) The case in which L2 > 4.
By Lemma 1.15, we get KX/CL > 0.
If KX/CL = 0, then X is minimal, (Kx/c)

2 = 0, and Kx/c = 0. But this is
impossible because κ(X) = 2. Hence KX/CL > 1. So we get g(L) > 2g(C) +
(3/2). Therefore g(L) > 2g(C) + 2 > 2q(X).

(II) The case in which k = 1.
(II-l) g(C) = Q case.

Then tfpf) < 1. Since L is very ample and κ(X) = 2, we get L2 > 2. Hence
g(L) > 3. So we get that g(L) > 3q(X).

(11-2) g(C) > 1 case.
By Lemma 1.9, we get that LF > 4 because g(F) > 2.

(Π-2-1) The case in which L2 < 8.
We remark that L2 > 2 since κ(X) = 2. Hence g(L) > 3.
If λ°(L) = 4, then A" is a hypersurface in P3. Hence q(X) = 0 and we get
g(L) > 3q(X).
If A°(L) > 6 and L2 < 7, then L2 > 2Δ(L) + 1 and g(L) > 3 > Δ(L). Hence by
Theorem 1.2 this is impossible.
If A°(L) > 6 and L2 = 8, then Δ(L) < 4. Since L2 = 8, we get g(L) > 6 >
Δ(L). If Δ(L) = 4, then by Theorem 1.2 we get g(L) > 3q(X). If Δ(L) < 3,
then L2 > 2Δ(L) -f 1 and this is impossible by Theorem 1.2.
If A°(L) = 5 and L2 < 5, then g(L) >2> Δ(L) and L2 > 2Δ(L) + 1. But by
Theorem 1.2, this is impossible.
If A°(L) = 5 and L2 = 6, then g(L) >5>3 = Δ(L) and L2 - 2Δ(L). Hence by
Theorem 1.2 we get 0(L) > 3q(X).
If A°(L) = 5 and L2 = 7, then by Proposition 1.19 we get g(L) < 6. Hence
KXL < 3. Let μ : X -+ X' be the minimal of X and L' := μ*(L). Then 3 >
KXL > KX>L' and (L7)2 >L2 = 1. Hence A£, < 1 by Hodge index Theorem.
By Proposition 1.13, we get q(X) = 0 and g(L) > 3q(X).
If A°(L) = 5 and L2 = 8, then by Proposition 1.19 we get g(L) < 9. Hence
KXL < 8. Let μ : X -» X' be the minimal of X and Z/ := ̂ (L). Then we
remark that KXL > Kx>Lf and (L')2 > L2. Since Kχl > 0 and L2 is even, we get
KXL > 4 by Hodge index Theorem.
If KXL = 4, then K\, < 2 and q(X)^l by Proposition 1.13. Hence
g(L) = 1 > 3q(X).
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If KXL = 6, then K\ , < 4 and q(X) < 2 by Proposition 1.13. Hence
g(L) = 8 > 3q(X).
If KXL = 8, then K\, < 8 and q(X) < 4 by Proposition 1.13. If q(X) < 3, then
g(L) = 9 > 3q(X). So we may assume q(X) = 4. In this case we get K%, — 8
and so we obtain X = X' and Kx = L by Hodge index Theorem. By Prop-
osition 1.6 we get χ(Θx) = 6. Therefore pg = 9. But by Proposition 1.13 this is
a contradiction because K\ — 8.

(Π-2-2) The case in which L2 > 9.
Then

g(L) =

Hence g(L) > 3g(C) 4 3 > 3q(X).
(Ill) The case in which k>2.

Then by Theorem 1.7, we get L2 >
If 0(C) > 1, then we get

g(L) = flf(C) 4- (Λ^/c 4- L)L 4 (LF - 1)(0(C) - 1)

since LF>k + 3 and Kχ/cL>0 by Lemma 1.9 and Lemma 1.15.
Hence g(L) >(k + 2)(g(C) + 1) + g(C) - 1 > (A: +
If gι(C) = 0, then q(X) < 1. So we get

This completes the proof of Theorem 4.4. Π

COROLLARY 4.5. Let ( f , X , C,L) be a polarized fiber space with AimX = 2
and κ(X) = 2. Assume that g(F) = 2 for a general fiber F off and L is k-very
ample with k>0. Then g(L) >(k + 2)q(X).

Proof By Lemma 1.16, we get q(X) <g(C)+2.
If q(X) = g(C) 4 2, then by Lemma 1.16 and Lemma 1.18 we get the assertion.
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If q(X) < g(C) + 1, then by Theorem 4.4 we get the assertion. Π

Appendix. Let (X,L) be a polarized surface with κ(X) = — oo. Assume
that L is λ>very ample. In this appendix, we consider a lower bound for
sectional genus with κ(X) = — oo.
If q(X) = 0, then g(L) > (k + 2)q(X). So we assume that q(X) > 1.
If (X,L) is not a scroll over a smooth curve C, then we can prove that
g(L) > 2q(X) for any polarized surface with κ(X) = -oo.
Here we consider the case in which k > 2.

LEMMA A.I. Let (X,L) be a polarized surface. Assume that κ(X] = — oo, L
is k-very ample with k>2, and L2 <4k + 4. Then g(L) >(k + 2)q(X) unless

(*) k = 2, X is a Pl-bundle over a smooth curve C of genus two, and
L = 2C$ + 2F with CQ = 2, where CQ is a minimal section of the projection map
X —> C and F is its fiber.

Proof. By the classification of (X, L) with L2 < 4k + 4 by Di Rocco [Di],
we obtain the assertion. Π

We remark that if (X,L) is (*), then g(L) = 7.

THEOREM A.2. Let (X,L) be a polarized surface with κ(X] = — oo and
q(X] > 1. Assume that X is relatively minimal, and L is k-very ample with
k>2. Then g(L) > kq(X).

Proof. Let / : X —» C be the Pl-bundle. Let $ be a normalized vector
bundle of rank two on C such that X — P($), and let Co be a minimal section of
/. We can write L = αC0 + bF, where F is a fiber of/ Let e := -Cg. Then

If e > 0, then by Proposition 2.20 in [Ha], we get b — ae > 0. Hence
b- (\/2)ae- 1 > (l/2)ae- 1 >-l. On the other hand, a > k by Lemma
1.9. Therefore we get g(L) > kg(C) = kq(X).
If e < 0, then by Proposition 2.21 in [Ha], we get b - (\/2)ae > 0. If
b — (\/2)ae > 1, then g(L) > kq(X) by the same argument as above. If
b — (\/2)ae = 1/2, then L2 = a(2b — ae) = a. By Lemma A.I we may assume
that a = L2 > 4k + 5. Hence

a — \ a — 1

^ --- —
>(2k + 3)q(X).

This completes the proof of Theorem A.2. Π
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THEOREM A. 3. Let (X,L) be a polarized surface with κ(X) = — oo and
q(X) > 1. Assume that X is not relatively minimal, and L is k-very ample with
k>2. Then g(L) >(k + 2)q(X).

Proof. Let / : X — » C be the Albanese fibration, where C is a smooth curve
of genus g(C) = q(X) > 1. We remark that

= g(C) + -(Kx/c + L)L + (LF- \)(g(O - 1),

where F is a general fiber of /
By assumption LF>2k by Lemma 1.9. So we can prove that
κ(KF + (l/2)LF) > 0 for a general fiber F of/ By Lemma 0.1 in [Fk4], we get
(Kχ/c + ( 1 /2)£)£ ̂  0. Therefore

4

= (* + 2)<7(C) + (A: - 2)0(C) +\L2 - (2k - 1).

By Lemma A.I, we may assume that L2 >4k + 5. Hence

So we obtain the assertion. Π
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Note added in proof. After the acceptance of this paper for publication,
Dr. Kazuyoshi Takahashi pointed out to the author that the type (*) in Lemma
A.I is excluded because L2 = 16 > 4fc + 5 and this contradicts the assumption of
Lemma A.I. But we need not to change the assertion of Theorem A.2 and
Theorem A.3. The author would like to thank Dr. K. Takahashi for pointing
out these.




