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VECTOR AND COMPUTING ITS COMASS
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I. Introduction

A smooth differential form Φ on a Riemannian manifold which is closed and
has comass one is called a calibration. Corresponding to a calibration is a
geometry of minimal surfaces (cf. [H], [HL]).

The constant coefficient calibrations have been studied deeply by R. Harvey,
B. Lawson, F. Morgan, J. Dadok ... Many beautiful constant coefficient cali-
brations and corresponding geometries were constructed in the nice paper of
R. Harvey and B. Lawson [HL], for example Special Lagrangian, Associative,
Coassociative, Cayley calibrations ... Computing the comass of a ^-differential
form is quite difficult, even in the simplest cases, the cases of k-covectors viewed as
paralell differential forms. The known calibrations are not much, especially the
calibrations of high degree. The such well-known calibrations are only Complex
Line, Special Lagrangian, power of Kahler forms (see [DHM], [HL]).

The Associative and Coassociative calibrations (see [HL]) on R7 have many
beautiful properties, and between them there is a relationship

*φ = \j/,

where φ is Associative calibration, and ψ is Coassociative calibration on R1.
Moreover,

φ(η)2 + $(η)2 = l for all η e G(3,tf7),
and hence

G(φ) = GoOA).

This paper gives a method to compute the comass of some classes of k-
covectors, describes the set of all 3-covectors have comass one on /?8, whose faces
contain a SLAG face (this set is denoted by F*(SLAG)), and constructs new
calibrations on R4n~l: General Associative and General Coassociative calibra-
tions. The method bases on the decomposition of a covector Φ with respect to a
vector e e span Φ*,

φ = e* Λ φ + ψ,

where φe Λ*~V); Ψ e Λ*(^)
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Theorem 2.4 shows that

HΦIΓ = max ^φ(η)2 + $(η)2 = A,
ηeG(k-\,e-L} v

and

G(Φ) = {(cosαe + sinα/) Λ 17/1; e G(fc - I,

where

ιι*o/)ir
iii)cosα = ̂ )sin« = MWJί.

By using this theorem and Theorems 6.11 and 6.16 in [HL], we prove that
ΦG.ASSOC and ΦG.COASSOC are calibrations and the relationship *ΦG.ASSOC =
ΦG.COASSOC holds.

Π. Decomposition of a covector with respect to a vector

Let Φ be a A>co vector on Rn (k < «), and suppose that {e\,βι, . . . ,en} is an
orthonormal basis of Rn. Denote

Φβi = βi^Φ, i= 1,2,..., /i,

(i.e. Φe/(ί7) = Φ(έ?,Λί/)),

and

(i.e.

Remark. Each Φe/ is a (k — l)-co vector on e^, where g/-1 denote the
subspace of Rn containing all vectors orthogonal to e, .

LEMMA 2.1. 1) Φ is a linear mapping from /\k~l(Rn) to Rn.
2) Φ(xAη) = <x,Φ(^)>5 for all x; e Λ"; ηe ~ n

3) Φ(^) e span(^)"i, /or all η e /\ (Rn), i.e. Φ(η) is orthogonal to span(^).

Proof. 1) Φ is linear since each Φe. is linear.
2) Suppose that x = Σ χίei> we
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3) For each x e span(τ ), we have

Thus Φ(ι/) 1 x.
The proof of the lemma is completed.

As usual, we define the norm of Φ (denote ||Φ||) is the maximum value of
IIΦH attain on G(k- 1,Λ"), G(Φ) is the set of all ηe G(k- !,#")> where ||Φ||
attains its maximum, and Go(Φ) is the set of all ηeG(k—l,Rn) such that
||Φ07)||=0.

= {ηeG(k-l,R")/\\Φ(η)\\=0}.

LEMMA 2.2. 1) ||Φ||* = ||Φ||.
2) If H Φ I I * = 1, ί/zen G(Φ) - {Φ(η) Aη/η e G(Φ)}.

Proof. 1) For each ξeG(k,R"), let e be a unit vector of span(^), thus
ξ = e Λ η, where // e G(k — l,R"). Then

Thus,

w nφir
Now suppose ηeG(Φ). Let e = Φ(η)/\\Φ(η)\\, and ξ = e/\η. Then

Thus,

(**) IIΦIΓ > I I Φ I I
(*) and (**) show that

IIΦIΓ = I|Φ|I
2) The proof of the second part is clear.
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Suppose Φ is a fc-covector on Rn with span(Φ)* = Rn, (span(Φ)* =
{t? e Rn/v J Φ = O}1). Let e be a unit vector on R", and

φ = e J Φ,

ψ = Φ - e* Λ φ.

We have the decomposition of Φ with respect to e

φ = e* Λ φ -f ,̂

where ^ and ^ are respectively (k— 1)-covector and fc-covector on eL.
The following lemma gives a relationship between ||Φ||*, ||^||* and

LEMMA 2.3.

Proof. Suppose Φ has the decomposition with respect to e

Φ = e* Λφ + ψ.

Let η e G(φ) and let ξ = e s\η. Then

Φ(£) = e* Λ Hί) + >K£) = (e* A p)(f ) - ?(*) = IMΓ

Thus,

(*) IIΦIΓ > \\φ\Γ
Let ξ e G(ψ), then (e* /\φ)(ξ) = 0, and hence

Φ(ί) = ψ(ξ)

Thus,

(**) nφir s:
(*) and (**) prove the first inequality.

To prove the second inequality, we use the canonical form of a simple vector
with respect to a subspace (see [HL], Lemma 7.5).

Let ξ e /\ (if1), then £ has the canonical form with respect to the subspace
span(e) = {r.e/r e R}

ξ = (cos αe + sin α/) Λ η,

where e, / are orthonormal vectors, η e G(k — l,^1); e e span(^)1; / e span(^)1.
Then

= cos a,φ(ή) + sin α

< Λ/cos2 α + sin2 α y φ(η)2 H- ^r(/ Λ /)2

The proof of the Lemma 2.3 is completed.
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More exactly, we have the following theorem.

THEOREM 2.4. 1) ||Φ||* = max (\lφ(η)2 + ψ(η)2} = A.
ηeG(k-l,e L ) ^ v J

2) G(Φ) = {(cos ue + sin α/) Λ 17/17 e G(fc - 1, e1)}, w/zere

i) φ(η)2

in) cos α = £ ,̂ sin α = .
^4 A

Proof. 1) By the virtue of the proof of Lemma 2.3, we imply that

HΦIΓ

Now suppose the equality y φ(η)2 + ιA(>/)2 = ̂  holds for some η e

||; cos x = φ(η) / A; sinα=||^)||M and

ξ = (cos oce 4- sin α/) Λ ;/,

then

Φ(ξ) = cosaφ(η) + sin

A2

The first part is proved.
2) The proof of the second part is clear.

Now we can give a criterion which can be used to check the comass one of
some classes of covectors, and construct new examples of calibrations.

COROLLARY 2.5. Suppose Φ has the decomposition with respect to e, \\e\\ = \

φ = e* Λ φ + ψ,

where I I 011* = | |tA|Γ = 1. Then we have

1) H φ l l * = 1 ,/ and only if J φ(η}2 + \l/(η)2 < 1 for all η e G(k - \,Rn}.
2) // HΦIΓ = 1, then

G(Φ) = {ξ=

where

iii) cosα = φ(η), sinα = \ψ(η)\.
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The proof of the corollary is implied directly from the proof of the Lemma
2.4.

m. Γ(SLAG) on R*

Denote F*(SLAG) be the set of all calibrations on R", whose faces contain a
Special Lagrangian face. The first cousin principle shows that such calibrations
must be in the form

Φ(λ, a) = ΦSLAG + λ(e*u + e*25 + e\β) Λ u* + a.v* Λ <?;8,

where M is a unit vector in span{eτ,e$} and υ is a unit vector in
span{ei,e2,...,ee}. Here we used the notation e*/k instead of e* /\e* /\e*k. By
using the action of SO(2) on span ̂ .eg}, we can assume that u = eη and by
using the action of SU(3) on span{eι,e2, -,£5}, we can assume that v — e\.

LEMMA 3.1. Let Φe Λ3(*8)* be in the form

Φ(λ, ά) = ΦSLAG + λ(e\4 + e*25 + e*36) Λ e*Ί + αe\ Λ efc,

then Φ(λ,α)eF*(SLAG) iff

Proof. We write Φ(λ,α) in the form

Φ(λ, ά) = e\ Λ (αe\Ί) + ΦSLAG + λ(e\4 + e*25 + e^) Λ £,.

Then by virtue of the Theorem 2.4

||Φ(λ,α)|Γ = l iff \\αe\η(η)\\2 + \\®SLAG + λ(e\4 + ̂  + «&) Λ e*Ί(η)\\2 <

for all ηeG(2,e£) c /\2(span{ei,e2,. . .,*,}) Sί /\\R7).
Let ψ = ΦSLAG + λ(e\4 + e\5 + e*36) *e*7e /\\RΊ), we have

= e2 - e45

(By simplicity we shall use the notation ey for e*Aη) and e^eu for
4θ7)«2/0;) ) We have
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2 2 2ae\Ί(η) + $(η) = \\ae\Ί(η}\\

= a2e\Ί + e\3 + e2

56 + λ2e2

4Ί -

+ 4 + e46 + ̂ 57 ~ ^13^46

4 e\2 4 £45 H- A2^7 - £12^45

+ e26

λ2e\Ί -

16 + ^34 + ^^27 ~ ^16^34 ~ ^^16^27 + ^34^27

i5 + 4* + λ

4 -f λ2e\5

+ (A2 - \)(e2

Ί + 4 + 4 + 47 +

+ (λ2 - I)(el4 + e25 + *36)2 + («2 + λ2 - \)e\Ί

4- (A -

If fl2+_/L2>l, let ηeG(2,RΊ) such that span(//) = span<eι,e7>, then
+ II^WII 2 = ̂ 2 + ̂  > 1, and hence ||Φ|| > 1.

If α2 + Λ2 < 1, since

(λ2 - 1)(4 -f 4 4- 4 + 4 + 4) ^ °>

for all ηeG(2,R7) we imply that ae\Ί(η)2 + ι/?(τ/)2 < α2 Λ- λ2 < 1, and hence

3.2. Classification of F*(SLAG) on /?8

Now suppose ||Φ(/l,α)||* = 1, we have the folowing cases:
1. If λ = ±1, then a = 0. Φ(λ,α) becomes to Associative-calibration and in

this case Φ is an exposed calibration.
2. If a = ±1, then λ = 0. Φ(A,α) is in the form

Φ = ΦSLAG ± e*m.

In this case Φ(λ) also an exposed calibration and G(Φ(λ,ά)) = G(ΦSLAG) U CP2.
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3. If λ2 + a2 < 1, then G(Φ) = G(ΦSLAG)- In this case Φ is not a maximal
calibration and hence not exposed calibration.

4. If λ2 4- a2 = 1 (λ 7^ 0 and a ̂  0), ?/ must be a solution of the following
system

[ e*l4 4- ̂ 5 + ̂ 36 = O (Special Lagrangian condition)

i) If spanfa) c (^) 1. Then ζ e G(Φ(SLAG)).
ii) If span(^)^(^)1. From the above system we imply that η must be in

the form

e\ Λ (02^2 + #3^3 + #5^5 + «6^6 +

In this case, each Φ(λ,α) is a maximal calibration.

λ,a) λ2+a2 = l

β&.Λ.t 1 Λ\ j2 _j_ Λ2 ^ Vβfii

*(-l,0)

ΓV. General associative calibrations, general coassociative calibrations

4.1. Strengthening of the Wirtinger inequality
First we iterate the result of the strengthening of Wirtinger inequality

(Theorem 6.11 in [HL]) and another analog result (Remark 6.16 in [HL]), which
are used to construct our new calibrations.

THEOREM 4.1.1 (Theorem 6.11 in [HL]). For each (real) simple 2p-υector ξ in
Cn

1/1=2*

If 2p < n the last term on the left-hand side is Σ|/|=2p l^7(£)|2 If 1p>n
the left-hand side is Σί/|=2(»-,) \dz* AΩp-*(£)|2.

THEOREM 4.1.2 (Remark 6.16 in [HL]). For each (real) simple 2p+ \-vector
ξ in Cn

|=2Jfe+l
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If 2/?+l < n the last term on the left-hand side is Σ'\ι\=2P+\ lrfz/(£)|2 V
2p>n the left-hand side is Σ\ι\=2P+ι \dZ* ΛΩ2p+l.n(ξ)\2.

4.2. Some notes on associative and coassociative calibrations
As the next step, we give some notes on Associative and Coassociative

calibrations on Im(0) ^ RΊ. Theorem 1.4 in [HL] shows that the trilinear form
®ASSOc(x,y,z) — C*).V*> on Im(O) is alternating and has comass one i.e a
calibration (Associative calibration). Lemma 1.12 and Theorem 1.16 in [HL]
show that the 4-form ΦcoAssoc(x,y,z,w) = l/2<x, [y,z, w]> on Im(O) is alter-
nating and has comass one i.e. a calibration (Coassociative calibration).

Let e\, e2 = i, £3 = j, £4 = k, e$ — e, eβ = ie, e-j = je, e% = ke denote the
standard basis for the Octonions O. Let e\, e\,...,e\ denote the dual basis for
O*. By simplicity we use the notation e* for e*/\e*q/\e*. Then the form
ΦASSOC can be expressed in terms of axis 3-planes as follows

ΦASSOC = e*234 - e*2ΊS - ^38 - έ?J74 - e*265 - e*3Ί5 - e^5

= e\/\ (£34 + e*56 - ^8) + (e*m - e\6Ί + e\5Ί + <58),

and the form ΦCOASSOC can be expressed in terms axis 4-planes as follows

ΦCOASSOC = ^5678 ~ ^5634 ~ ^5274 ~ ^5238 + ^3478 + ^2468 + ^2367

= e2 Λ (^457 ~~ ^358 + ̂ 468 + ^367) + (^5678 ~ ^3456 + ^3478 )•

Consider on O the complex structure / defined by

£3,e4 = /e3, es,eβ=Jes, eη,e% = -Jeη, eι,e2 = Je\.

On (e\,Je\)L, let Ω denotes the Kahler form, Ω2 = 1/2Ω2 and Re(rfZ) denotes
the Special Lagrangian form. Then ΦASSOC can be expressed as follows

and ΦCOASSOC can be expressed as follows

ΦCOASSOC = Je\ A (ImdZ) + Ω2.

4.3. General associative calibrations
These are calibrations of degree (2n— 1) on I?4""1, and Associative cali-

bration is the special case of them when n = 2. Let {e\ ,Je\,eι,Jeι,..., e2n, Je2n}
be an orthnormal basis on C2n correspond to the complex structure /. The
subspace (en,Jen)^ ~ C2n~l inherit the induced complex structure (we also denote
by /), and it is easy to see that {e\,Je\,e2,Je2,. . . ,^2«-ι,^2«-ι} is an ortho-
normal basis on it.

Let

Re(Λ?Z) = Re(eiθdzι Λ dz2 Λ Λ dz2n-ι)

denotes the Special Lagrangian calibration (of degree 2(n— 1)) on (en^Jen)
λ~

and
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Ω«-' = (^T)ΪΩ'"1'

where Ω is the Kahler form on (en,Jen)
L. It is very easy to show that

Re(ΛZ)β. = RQ(eiθdzι A dz2 Λ Λ dzt Λ - - - Λ dz2n-\),

Re(eiθdZ)Je. = lm(eiθdzι Λ dz2 Λ - Λ dzt Λ - - Λ ίfe2«-ι),

and hence for all η e G(2(n — 1), (en,Jen)~L)

\Re(eiθdZ)(η)\2 = ]Γ |Re(Λz! Λ ώ2 A Λ dzt Λ - Λ dz2n-ι)\2

+ V^ \Im(elθdz\ Λdz2Λ Λdzt/\ Λ

\I\=2(n-\]

By virtue of the Theorem 3.1.1, we have

(4.3.1) |Ωn_,(^)|2+ \dZ'(η)\2

the equality holds if and only if

More exactly ^ is a solution of the following system of equations

( \RQdZ1 AΩp.k(ξ)\=0 (I/I =2*;fc= 1,2,. . .,/>-!),

\|ImJZ 7ΛΩp_^)|=0 ( | / | = 2 Λ ; f c = l , 2 , . . . , J p - l ) .

Let <^eG(2(w- 1),/^Λ 0 C2""1). Suppose that { has the canonical form with
respect to the subspaces span(/en)

ξ = (cos aJen + sin α/) Λ ̂ .

DEFINITION 4.3.3. ί is called G.ASSOCIATIVE if η is a solution of (4.3.2.)
and

), sinα =
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Let ΦGASSOC be the (2n - l)-covector on sρan(/en) 0 C2n~l ^ R4n~l defined
by

ΦG.ASSOC(Θ) = Jen Λ Ωw_ι + Re(Λz).

We have an Sl -family of G.ASSOC Geometries compatible with the given
complex structure. Since these Geometries are equivalent under SU(2n — 1), it
will suffice to study the one associated to θ = 0.

THEOREM 4.3.4. The (2n - \)-covector on sρan(Jen) 0 C2n~l ^ Λ4""1

ΦG.ASSOC = Je*n Λ Ωn_ι + Re dZ

has comass one, i.e.

ΦG.ASSθc(ξ) < \ξ\ far all ξ e G(2n - I,*4"-1),

and the equality holds iff ξ is a G. ASSOCIATIVE, i.e.

G(ΦG.ASSOC) = {ξ/ξ is a G. ASSOCIATIVE}.

Proof. The proof is implied directly by (4.3.1), (4.3.2) and Theorem 2.4.

4.4. General coassociative calibrations
These are calibrations of degree 2n on jR4""1, and Coassociative calibration is

the special case of them when n = 2.
Consider the Power of Kahler form of degree 2n on (en,Jen)'L9 with the

induced complex structure.

α-iα ,
where Ω is the Kahler form on (en,Jen)

L. Direct computation shows that

(Ωπ)e; =/<ΛΩ n _!,

and hence for all η e G(2n - 1,/f4"-1)

Let dZ denote the Lagrangian form on (en,Jen)
±. Then by virtue of the

Theorem 4.3.2, we have

(4.4.1) \e

The equality holds if and only if

2) Σ^Γ0 Σ/=2*+ι \dZ' ΛΩ2fc+1(/?)|2 = 0.
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More exactly η is a solution of the following system of equations

(4.4.2) RerfZ7ΛΩ2fc+ι(ί/) = 0 (|/| = 2fc + l fc = 1,2, . . . ,2(n - 1)),

Urn dZIΛΩ2k+l(η) = 0 ( | / |=2*+l;λ:=l,2, . . . ,2(/ι- l)) .

Let ξ E G(2n,Jen 0 C2n~l). Suppose that ξ has the canonical form with respect
to the subspace span(/en)

ξ = (cos ocJen + sin α/) Λ ;/,

where / e C2""1, // 6 G(2/i - 1, Jen © C2"'1).

DEFINITION 4.4.3. ξ is called G.COASSOCIATIVE if η is a solution of
(4.4.2) and _

0/-J"
ii) cosα = RerfZ(τ ); sinα = |Ωπ_ι(ι/)|.

Let ΦG.CO^S SOC be the 2w-covectors on span(/^ι) φ C2""1 ^ I?4""1 defined by

ΦG.COASSOC = /< Λ Im(e^) rfZ - Ωrt,

we have an 51-family of G.COASSOC Geometries compatible with the given
complex structure. Since these Geometries are equivalent under SU(2n — 1), it
will suffice to study the one associated to θ = 0.

THEOREM 4.4.4. The 2n-covector on span(/e?n) 0 C2n~l ~ R4"'1

ΦG.COASSOC = (-1)V< Λ ImdZ - Ωn

has comass one, Le.

ΦG.coASSθc(ξ) < \ξ\ far all ξ e G(2n, Λ4"-1),

and the equality holds iff ξ is G.COASSOCIATIVE.

Proof. The proof is implied directly by Theorem 2.4 and (4.4.1).

4.5. Relationship between G.ASSOC and G.COASSOC calibrations
In this section we give the first relationship between G.ASSOC and

G.COASSOC calibrations. This relationship likes the first relationship between
ASSOC and COASSOC calibrations

*ΦG.ASSOC = ΦG.COASSOC-

And in [Hi2] the second relationship

3>G.ASsoc(ή) + ΦG.COASSOC(*I) ^ 1

holds, for all η e G(2n - \,R4n~l).
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If n = 2 we the following equality holds for all η e G(3,/?7)

LEMMA 3.5.1. On R4"-1

*ΦG.ASSOC = ΦG.COASSOC

Proof. It is easily to see that: on R4"'2

(4.5.2) *Re dZ = (-l)n~llmdZ

(4.5.3) *Ω2w - Ω2(rt_1)

The proof is implied directly by 4.5.2 and 4.5.3.
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