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DECOMPOSITION OF A k-COVECTOR WITH RESPECT TO A
VECTOR AND COMPUTING ITS COMASS

DoaN TeHe Hieu

I. Introduction

A smooth differential form ® on a Riemannian manifold which is closed and
has comass one is called a calibration. Corresponding to a calibration is a
geometry of minimal surfaces (cf. [H], [HL]).

The constant coefficient calibrations have been studied deeply by R. Harvey,
B. Lawson, F. Morgan, J. Dadok ... Many beautiful constant coefficient cali-
brations and corresponding geometries were constructed in the nice paper of
R. Harvey and B. Lawson [HL], for example Special Lagrangian, Associative,
Coassociative, Cayley calibrations ... Computing the comass of a k-differential
form is quite difficult, even in the simplest cases, the cases of k-covectors viewed as
paralell differential forms. The known calibrations are not much, especially the
calibrations of high degree. The such well-known calibrations are only Complex
Line, Special Lagrangian, power of Kéhler forms (see [DHM], [HL]).

The Associative and Coassociative calibrations (see [HL]) on R’ have many
beautiful properties, and between them there is a relationship

*Q =y,
where ¢ is Associative calibration, and y is Coassociative calibration on R’.
Moreover,
o) +¥(n)* =1 forallye G(3,R"),
and hence

G(p) = Go(¥).

This paper gives a method to compute the comass of some classes of k-
covectors, describes the set of all 3-covectors have comass one on R®, whose faces
contain a SLAG face (this set is denoted by F*(SLAG)), and constructs new
calibrations on R*~!: General Associative and General Coassociative calibra-
tions. The method bases on the decomposition of a covector @ with respect to a
vector e € span ®*,

O=c"rp+ Y,

where ¢ € /\k_l(e-'-); Ye /\k(el).
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Theorem 2.4 shows that

@ * _ 2 T \2 — A,
oI = max /o) +v(n)

and
G(®) = {(cosae +sinaf) An/ne Gk — 1,e*)},
where
i) o(n)’ +9(n)’ = 4,
. v(n)
DT =g
(1)

[ @)l
4

iii) cosoc=—A—, sina =

By using this theorem and Theorems 6.11 and 6.16 in [HL], we prove that
®g.assoc and Dg.coassoc are calibrations and the relationship *®g 4s50c =
®G.coassoc holds.

II. Decomposition of a covector with respect to a vector

Let ® be a k-covector on R" (k < n), and suppose that {e;,e,...,e,} is an
orthonormal basis of R*. Denote

DO, =e; 10, i=1,2,...,n
(ie. @ (n) = @(einn)),
and
® = (®,,, Doy, . - -, Do,),
(ie. B(n) =Y @ (n)e)-

Remark. Each @, is a (k — 1)-covector on e/}, where e;* denote the
subspace of R" containing all vectors orthogonal to e;.

LemMA 2.1. 1) @ is a linear mapping from /yl"l(R”) to R".
2) ®(xAn) =<x,D(n)), for all xe R"; ne \° (R").
3) ®(n) e span(y)™", for all n e /\k_l(R"), ie. ®(n) is orthogonal to span(n).

Proof. 1) @ is linear since each ®,, is linear.
2) Suppose that x = > x;e;, we have

O (3 xieinn) =D x®(einn) = 3 x: (1)

= <{x,D(n)).
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3) For each x € span(sn), we have
{x,®(n)) = ®(x An) = B(0) =0.

Thus ®(n) L x.
The proof of the lemma is completed.

_ As usual, we define the norm of ® (denote ||®@||) is the maximum value of
|®|| attain on G(k —1,R"), G(®) is the set of all n € G(k —1,R"), where ||P||
attains its maximum, and Go(®) is the set of all ne G(k —1,R") such that
()| = 0.

Q| = @
Il ”e(ggg{m)ll mll,

G(®) = {ne G(k - 1,R")/||®(n)]| = [|®[},
Go(®) = {n € G(k — 1,R")/||®(n)|| = 0}.

Lemma 2.2, 1) ||O] = [|®]. i
2) If |@|" =1, then G(®@) = {®(n) An/ne G(®)}.

Proof. 1) For each &e G(k,R"), let e be a unit vector of span(&), thus
£ =enmn, where ne G(k— 1,R"). Then

D(&) = D(enn) = <e,D(n)>
< llell - 1@ @)l = ll@@)]l.
Thus,
(*) @] < [Pl
Now suppose 7€ G(®). Let e = ®(5)/||®(n)|, and & =eAn. Then

1 _ _
D) =D(enn) = W<®(ﬂ),<b(ﬂ)>
= |®()]| = |ID]l.
Thus,
(%) @[ = [|®].
(%) and (*x) show that
o|* = |||

2) The proof of the second part is clear.
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Suppose ® is a k-covector on R" with span(®)" = R", (span(®)* =
{veR"/v 1 ®=0}"). Let e be a unit vector on R”, and

p=e 1O,
y=>®—-¢"nop.

We have the decomposition of @ with respect to e
D=e"Ap+V,

where ¢ and  are respectively (k — 1)-covector and k-covector on e.

The following lemma gives a relationship between ||®@|*, ||¢||* and ||y||*.

max{||g|l, [¥I"} < @] < 1/ lloll”* + Ilv ).

Proof. Suppose @ has the decomposition with respect to e
D=c"rp+V.
Let 7€ G(p) and let £ =eAn. Then
(&) =€ np() + (&) = (" A ) (&) = o(m) = llol"-

LEmMmA 2.3.

Thus,

(*) I@" > lloll".

Let £ e G(y), then (e* Ag)(&) =0, and hence
Q) =y(&) =yl

Thus,

(%) lel* > llyl".

(¥) and (xx) prove the first inequality.
To prove the second inequality, we use the canonical form of a simple vector
with respect to a subspace (see [HL], Lemma 7.5).
Let £ e /\k(R"), then ¢ has the canonical form with respect to the subspace
span(e) = {r.e/r e R}
& = (cosae + sinaf) An,

where e, f are orthonormal vectors, 7 € G(k — 1,et); e e span(y)*; f e span(y)*.
Then

®(n) = cosag(n) + sinoy(f Am)

< Vcos?a + sin® o - Mﬂ)z +¥(f An)?

<\/lloll” + vl

The proof of the Lemma 2.3 is completed.
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More exactly, we have the following theorem.
T 24. 1) ||®|" = 20 0m* L = 4.
morem 24. 1) [0 = max | {1/o(n)® +§(n)’} = 4
2) G(®) = {(cosae + sinaf) An/ne Gk — 1,et)}, where
D) o(n)* + ¥ (n)* = 4%,

o e W)
=g ]
iii) cosa = ?L(Al)’ sino = M&J

Proof. 1) By the virtue of the proof of Lemma 2.3, we imply that

" < max{\/o(n)* +¥(n)° } = 4.

Now suppose the equality \/(p(ry)2 +¥(n)* = 4 holds for some 7 e G(k — 1,et).
Let f = y(n)/IW(n)ll; cosa = g(n)/4; sina = |[Y(n)||/4, and
¢ = (cosae +sinaf) A7,
then

®(&) = cosap(y) + sinal | ()|

_om)’+9m)’ _ 42

Y A=A.

The first part is proved.
2) The proof of the second part is clear.

Now we can give a criterion which can be used to check the comass one of
some classes of covectors, and construct new examples of calibrations.
COROLLARY 2.5. Suppose © has the decomposition with respect to e, |e|| = 1
d=c"rp+V,
where |lp||* = ||¥||" =1. Then we have

1) |®|* =1 if and only if \/o(n)* +¥(n)* <1 for all ne Gk —1,R").
2) If |@|" =1, then

G(®) = {¢ = (cosae +sinaf) An/ne Gk — 1,e)},

where N
i) o(n)” + ¥ ()" = 1.
o . Y(n)
AT

iii) cosa = p(z), sina = |Y(n)|.
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The proof of the corollary is implied directly from the proof of the Lemma
2.4,

. F*(SLAG) on R®

Denote F*(SLAG) be the set of all calibrations on R”, whose faces contain a
Special Lagrangian face. The first cousin principle shows that such calibrations
must be in the form

D(4,a) = Ospac + Ale]y + €35 + €3) Au™ +a.v* Aelg,

where u is a unit vector in span{e;,es} and v is a unit vector in

span{ey,e;,...,e6}. Here we used the notation ej; instead of ef Aej Aef. By
using the action of SO(2) on span{e;,es}, we can assume that u =e; and by
using the action of SU(3) on span{ej,e,...,es}, we can assume that v =e;.

LemMa 3.1. Let ® e N\*(R®)* be in the form
D(4,a) = Dsrac + Ale]y + €55 + €36) A€ + ae] A e,
then ®(A,a) € F*(SLAG) iff
A+ <1
Proof. We write ®(4,4) in the form
D(4,a) = e5 A (ae};) + Psrac + Ale]4 + €5 + €5) A €.

Then by virtue of the Theorem 2.4

IO, a)l* =1 iff [laei; ()| + [Bsrac + A€l + €55 + €36) A €s(m)]|> < 1

for all 7€ G(2,ef) = N\ (spanfer,es,...,er}) = N (R).
Let = ®srac + A€}, + €55+ eg) neb € /\3(R7), we have

ok * *
Ve, = €3 — €56 + Aeyy,

_ * * *
Ve, = —ei3 + €45 + Aesy,

¥ * *
Ve, = €1, — €35 + Aegg,

_ * * *
Ve, = =€ + €35 — Aeiy,

% * *
Ve, = €] — €34 — A7,

_ * * *
Yoy = —€15 + €34 — A3y,

¢e7 = /1(6?4 + e;S + e§6)'

(By simplicity we shall use the notation e; for ej(n) and eyeq for
ej(n)ey(n).) We have
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ael; () + ¥ (n)* = llaet; () I* + D e, ()|
= P&, + €2y + €2 + Aek, — eness + Aenseqs — Aesgen
+ &5 4 €2 + A2ek, — erzeqs — Aerzesy + Aeqges
+ €, + eis + Aegy — enzeas + Aernesr — Aeusesy
+ g + €35 + lze% — exess + Aexserr — Aesserr
+ 6%6 + e§4 + 12e§7 — e16€34 — Ae1gear + leserr
+ &2 + ek, + A2ek, — ersens + Aersesy — Aenes
+ lze%4 + /lze%5 + 12e§6 + Aepgers + Aersess + Aersess
= (el +els +ely +els + el +ely + 3y + €y + s + el
+ 6+ &y + s + B + €3 + els + el + ey + S+ e
+ (X = 1)(ey + €5 + ¢ + 5+ ey)
+ (A2 = 1)(era + e2s + e36)” + (& + 2 — 1)el,
=14+ (A2 - 1)(&; + &G + ey + €5 + &)
+ (A2 = 1)(e1q + 25 + €36)* + (& + 12 — 1)él,.
—- If a? +_12 >1, let ne€ G(2,R’) such that span(y) = span{e;,e;), then
llaet; (2 + |¥(m)]? = a® + 2 > 1, and hence ||®|| > 1.
- If a*+ 22 < 1, since
(A2 = 1)(efy + €& + €7 + ey + €5;) <0,
(A2 — 1)(e14 + €25 + e35)” < 0,
(@ + 2 —1)e}; <0,
ﬂcgnfll ;7 € G(2,R") we imply that ae};(n)> +¥(n)* <a*+4* <1, and hence

3.2. Classification of F*(SLAG) on R®
Now suppose || @(4,a)||* =1, we have the folowing cases:
1. If A= =1, thena=0. ®(4,a) becomes to Associative-calibration and in

this case @ is an exposed calibration.
2. If a= %1, then A=0. ®(4,a) is in the form

D = Dsr46 + e]35.

In this case ®(4) also an exposed calibration and G(®(4,a)) = G(®sz4c) | J CP2.
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3. If 2+ a® < 1, then G(®) = G(Psz46). In this case ® is not a maximal
calibration and hence not exposed calibration.
4. If 2>+a*>=1 (A#0 and a #0), y must be a solution of the following

system
{‘—’37 = ey =€y =€y = e =0,
€]y + €55 + €35 = 0. (Special Lagrangian condition)
i) If span(y) < (e7) Then ¢ € G(®(SLAG)).

ii) If span(n)¢(e7) From the above system we imply that # must be in
the form

el A (azez + azes; + ases + ageg + a7e7).

In this case, each ®(4,a) is a maximal calibration.

IV. General associative calibrations, general coassociative calibrations

4.1. Strengthening of the Wirtinger inequality

First we iterate the result of the strengthening of Wirtinger inequality
(Theorem 6.11 in [HL]) and another analog result (Remark 6.16 in [HL]), which
are used to construct our new calibrations.

THEOREM 4.1.1 (Theorem 6.11 in [HL]). For each (real) simple 2p-vector & in
Cn
Q)P + -+ Y A2 AQp k() +--- = &P
(T|=2k

If 2p < n the last term on the left-hand szde is lel 2 [dZI(&)*. If2p>n
the left-hand side is ZIII —2(n—p) |dZT A Q, (&)

THEOREM 4.1.2 (Remark 6.16 in [HL]). For each (real) simple 2p + 1-vector
Ein C"

S ldg AQ@P -+ Y dZ A (@)F + - = €

[I[=2k+1



DECOMPOSITION OF A k-COVECTOR 133

If 2p+1 <n the last term on the left-hand side ts Z|I|—2p 1 14zt ©OF 1
2p > n the left-hand side is lel —2p+1 |dz* /\sz+1_,,(f)|

4.2. Some notes on associative and coassociative calibrations

As the next step, we give some notes on Associative and Coassociative
calibrations on Im(O) =~ R’. Theorem 1.4 in [HL] shows that the trilinear form
D ss0c(x,y,z) = <{x,yx) on Im(O) is alternating and has comass one i.e a
calibration (Associative calibration). Lemma 1.12 and Theorem 1.16 in [HL]
show that the 4-form ®coqssoc(x,y,z,w) = 1/2{x,[y,z,w]> on Im(O) is alter-
nating and has comass one i.e. a calibration (Coassociative calibration).

Let e, e =1, e3s=j, ea=k, es=e, eg =ie, e; =je, eg =ke denote the
standard basis for the Octonions O. Let e, €3,...,e; denote the dual basis for
O*. By simplicity we use the notation e,, for e;Ae;Ae;. Then the form
®ss50c can be expressed in terms of axis 3-planes as follows

D 4550C = €334 — €378 — €638 — €674 — €365 — €375 — Eags
= &) A (€34 + €56 — €7g) + (€363 — €47 + €357 + €s),
and the form ®co4s50c can be expressed in terms axis 4-planes as follows
Dcoassoc = €5g75 — €5634 — €5274 — €5238 T €3478 T En463 + 36
= €3 A (€457 — €355 + €465 + €367) + (5675 — €456 + Eaa78)-
Consider on O the complex structure J defined by
e3,e4 = Je3, eés,66 = Je5, e7,eg = —Je7, ey, ey = Jel.

On (e, Je;)*, let Q denotes the Kihler form, Q, = 1/2Q% and Re(dZ) denotes
the Special Lagrangian form. Then ®4550c can be expressed as follows

D 4550c = Je‘{ A (Q) +RedZ,
and ®cogssoc can be expressed as follows

Dcoassoc = Je’i< A (Ide) + Q.

4.3. General associative calibrations

These are calibrations of degree (2z—1) on R*~!, and Associative cali-
bration is the special case of them when n=2. Let {e,Je1,ez,Jea,..., e, €2}
be an orthnormal basis on C?" correspond to the complex structure J. The
subspace (e,,,Je,,) ~ C*! inherit the induced complex structure (we also denote
by J), and it is easy to see that {e;,Je;, ez, Jes,...,e1,J€20-1} is an ortho-
normal basis on it.

Let

Re(e%dZ) = Re(edzy Adza A -+ Adzan_1)

denotes the Special Lagrangian calibration (of degree 2(n—1)) on (e,,Je,)*
and
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1 n—1
(n— 1)!Q ’

where Q is the Kihler form on (e,,Je,)™. It is very easy to show that

Q1=

Re(e%dZ), = Re(edzy ndzy A - - AdZ A -+ Adzgn_t),
Re(e%dZ),, = Im(e%dzy ndzy A - AdZ, A -+ Adzaasy),
and hence for all 7€ G(2(n— 1), (e,, Je)")
[Re(e®dZ)(n)|* = Z|Re(ei0dzl AdzyA - AAZ A Adzon_1)|?
+Z|Im(ei9dzl Adza A - AdZ A - Adzz,,_1)|2
= Zldzz/\ /\é\z,/\ /\dzz,,l2
= 3 aZmk

=2(n-1)

By virtue of the Theorem 3.1.1, we have

4.3.1) QP+ D 1z ()
12-1)

= Qu-1(m)I* + [Re(@Z)(m)* < Inl* = 1,
the equality holds if and only if
p-1 ,
Y. > ZI A () =0.
k=1 |I1|=2k
More exactly 7 is a solution of the following system of equations
RedZ' AnQ, (&) =0 (I| =2k;k=1,2,...,p—1),
ImdZ  AQ, ()| =0 (I|=2k;k=1,2,...,p—1).

Let £ e G(2(n—1),Je, ® C*"~!). Suppose that ¢ has the canonical form with
respect to the subspaces span(Je,)

(4.3.2)

¢ = (cosale, +sinaf) An.

DEerFINITION 4.3.3. ¢ is called G.ASSOCIATIVE if # is a solution of (4.3.2.)
and

. RedZ

D f= (m)

L0 ——
ii) cosa = Q,_1(n), sina = |RedZ(n)|.
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Let @ 4ssoc be the (2n — 1)-covector on span(Je,) @ C**~! ~ R*~! defined
by

D¢ assoce) = Jen A Q-1 + Re(e?dZ).
We have an S!-family of G.ASSOC Geometries compatible with the given
complex structure. Since these Geometries are equivalent under SU(2n — 1), it
will suffice to study the one associated to 6 = 0.
THEOREM 4.3.4. The (2n — 1)-covector on span(Je,) @ C*~! ~ R*!
D¢ assoc = Je, AQu_1 + RedZ

has comass one, lie.

®g.ssoc(&) < |€| forall £ e G2n — 1, R*" 1),
and the equality holds iff & is a G.ASSOCIATIVE, i.e.

G(®g.assoc) = {&/& isa G.ASSOCIATIVE}.

Proof. The proof is implied directly by (4.3.1), (4.3.2) and Theorem 2.4.

4.4. General coassociative calibrations

These are calibrations of degree 2n on R**~!, and Coassociative calibration is
the special case of them when n=2.

Consider the Power of Kihler form of degree 2n on (e,,,Je,,)L, with the
induced complex structure.

Q, = Lan,
n!

where Q is the Kihler form on (e,,Je,)*. Direct computation shows that
(Qn)e,» = Je; AQy_1,
(Qn) e, = € AQp-1,
and hence for all 7€ G(2n — 1,R*1)
Q) = lef AQuoa(m)P + D e AQua ()

=Y ldz, AQu ().

Let dZ denote the Lagrangian form on (e, Je,)". Then by virtue of the
Theorem 4.3.2, we have

(4.4.1) le? Im dZ (n)|* + |Qu(n)]* < 1.

The equality holds if and only if
1) [RedZ(n)|* =0,

2) 1221_1) Zz=2k+1 |dZ’ /\QZk+1(’7)|2 =0.



136 DOAN THE HIEU

More exactly # is a solution of the following system of equations

RedZ(n) =0,

(4.4.2) RedZ  AQuii(n) =0 (I| =2k+L;k=1,2,...,2(n— 1)),
ImdZ  AQuii(n) =0 (1| =2k+1;k=1,2,...,2(n—1)).

Let & € G(2n,Je, ® C*"~1). Suppose that & has the canonical form with respect

to the subspace span(Je,)

¢ = (cosale, +sinaf) Ay,
where f e C*"! e G2n—1,Je, ® C* 7).

DerNiTioN 4.4.3. £ is called G.COASSOCIATIVE if # is a solution of
(4.4.2) and

. Q

i) =20

. 1)l _ _

i) cosa = RedZ(n); sino = |Qn—1(n)|-

Let ®g.cosssoc be the 2n-covectors on span(Je;) @ C*~! ~ R*~! defined by
®¢.coassoc = Je, Alm(e?)dZ — Q,,

we have an S!'-family of G.COASSOC Geometries compatible with the given
complex structure. Since these Geometries are equivalent under SU(2n — 1), it
will suffice to study the one associated to 6 = 0.

THEOREM 4.4.4. The 2n-covector on span(Je,) ® C**~! ~ R*~!
CDG.COASSOC = (—1)”Je:; AlmdZ — Qn
has comass one, ie.

D.coassoc(€) < || for all & e G(2n, R"1),
and the equality holds iff ¢ is G.COASSOCIATIVE.

Proof. The proof is implied directly by Theorem 2.4 and (4.4.1).

4.5. Relationship between G.ASSOC and G.COASSOC calibrations

In this section we give the first relationship between G.ASSOC and
G.COASSOC calibrations. This relationship likes the first relationship between
ASSOC and COASSOC calibrations

*®g 4s50c = P6.coassoc.
And in [Hi2] the second relationship
@ assoc(n)’ + Pg.coassoc(n)® < 1
holds, for all 7€ G(2n— 1,R*1).
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If n=2 we the following equality holds for all # € G(3,R")

@ 4550¢()* + Pcoassoc(n)* = 1.

LemMMA 3.5.1. On R*!

*®g 4550c = P6.cosssoc-

Proof. Tt is easily to see that: on R*2

(4.5.2)
(4.5.3)

«RedZ = (-1)" ' ImdZz
*Qon = Qon-1)

The proof is implied directly by 4.5.2 and 4.5.3.
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