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1. Introduction

Let Y be an analytic space endowed with an fs log structure .#y in the sense
of Fontaine-Illusie. The pair (Y,.#y) is called an fs log analytic space (cf.
[KN]). For an fs log analytic space (Y,.#y), K. Kato and C. Nakayama
construct in [KN] a ringed space (Y'°g,@1{,’g) endowed with a continuous sur-
jective map 7: Y'°8 — Y. In this paper, we mainly treat an object on Y called a
log Hodge structure which is defined by K. Kato in [Ka2]. It consists of the
following triplet that satisfies certain conditions (See 5.3):

e A sheaf of Q-modules #p on Y'°g.

e A sheaf of Oy-modules #p on Y endowed with a descending filtration.

e An isomorphism of Oy%-modules 1: #p ® ¢ 0% = v Hp.

Let f: (X, #x) — (Y, #y) be a morphism of fs log analytic spaces satisfying
the following condition:

(¥) Locally on X and on 7Y,

(i) There exists a chart P:= N — #y, and a morphism of monoids

P—-QO:=N; 1-(1,...,1),

for some r > 1, and

(ii) X is isomorphic to an open subspace of Y Xspccip), Spec C[Q),,, where
Spec C[P] and Spec C[Q] are endowed with the log structures associated to
P — C[P] and Q — C|Q], respectively.
First, we prove two basic properties.

THEOREM A. We have a quasi-isomorphism

log\—1 ~ 1
(f Og) (0)9g I CO:‘,;)%',

llog _ 1 log elog . . .
where Oy )y =Dy )y ®o, Ox° and Wy y is its exterior algebra.

THEOREM B.  Assume moreover f is proper. Let t: Y'°8 — Y be the canonical
map. Then we have an isomorphism of (le,’g-modules
1: R"fEQ ® OV = " R"f, 1y

for each m.

Received May 26, 1997; revised May 15, 1998.
81



82 TOSHIHARU MATSUBARA

(**) For example, let Y := {z € C| |z| < 1} be the unit disk, and f: X — ¥
a projective surjective morphism of complex manifolds. We assume that f is
smooth over the punctured disk Y* = ¥ — {0} and that X, = f~1(0) is a reduced
divisor with normal crossings. Let Pe X;. We assume that there exists a
coordinate neighborhood U of P with coordinates (z,...,z,) and an integer r
with 1 <r <n such that P=(0,...,0) and f|U(z1,...,2) =21---2, =z. Let
My (resp. My) be a sheaf of holomorphic functions on Y (resp. X) which
are invertible outside the origin (resp. Xo). Then we have a morphism
f: (X, #x) — (Y, Hy) of fs log analytic spaces, which satisfies the condition ().

If f: X — Y is a proper smooth morphism of complex manifolds, it is well
known, as relative Poincaré lemma that Qf%,, is a resolution of the sheaf
f~10y. Using this, it is easy to construct an isomorphism of @y-modules
R",Q® Oy — R"f.Qy,y. Theorem A and Theorem B correspond to these
facts. As for a log Hodge structure, we have

THEOREM C. Let f: X — Y be as in (xx). Let %Q=R'”ﬂ°gQ, Ho =
R™, 0%,y endowed with a filtration R™f,w53, and 1 the isomorphism as in
Theorem B. Then the triplet (#p, #p,1) is a log Hodge structure on Y.

Here is some backgrounds. Let Y := {ze C||z| < 1} be the unit disk, and
f: X — Y a projective surjective morphism of complex manifolds. We assume
that f is smooth over the punctured disk Y* = ¥ — {0} and that X, = f~!(0) is a
divisor with normal crossings. We can consider a family of the polarized Hodge
structures over Y*. We can consider it as a holomorphic map from Y* to the
classifying space of polarized Hodge structures modulo monodromy. This map
is called the period map. W. Schmid has proved in [Sch] that the period map
can be approximated by the associated nilpotent orbit. It is a holomorphic
map from Y to the compact dual of the classifying space of polarized Hodge
structures, for which the origin of Y is mapped to a polarized mixed Hodge
structure. On the other hand, log geometry works well with varieties with
normal crossings. The aim of Theorem C is to treat the above fact from a
viewpoint of log geometry. In the proof of Theorem C, we see that this log
Hodge structure amounts to W. Schmid’s nilpotent orbit theorem. We expect
that log Hodge structures give a construction of compactification of some moduli
space.

Remark 1.1. Related topics are studied by some people. S. Usui obtains a
theorem corresponding to our Theorem B in [Usu] independently. His method is
quite different from ours and he obtains a more general result. F. Kato also
obtains Theorem A and Theorem B in [FKa]. His method is similar to ours.

In Section 2, we recall basic notions of a log geometry. In Section 3, we
prove Theorem A, a “log version” of relative Poincaré lemma. In Section 4, we
prove Theorem B using the log Poincaré lemma and some inductions. In Section
5, we define the log Hodge structure and prove Theorem C.
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The author is grateful to Professor K. Kato for giving him the problem
of this paper as well as the idea of log Hodge structures. The author is also
grateful to Professors C. Nakayama and M. Somekawa for many discussions and
suggestions to many improvements in this paper. He is also grateful to Professor
T. Kajiwara for giving him some advice on the presentation.

2. The ringed space (X '°g,(91“3g) associated to a log scheme X

In this section, we recall some notions in log geometry, which will be used in
the later sections. For more systematic descriptions, see [Kal], [KN].

DEeFINITION 2.1.  Let X be an analytic spacg and O the sheaf of holo-
morphic functions on X. A pre-log structure on X is a sheaf of monoids .# on
X endowed with a homomorphism of sheaves of monoids « : # — Oy with respect
to the multiplication on O;. It is denoted by (.#,a), or simply .#. A pre-log

structure is said to be a log structure if a“‘((O},) — 0% is an isomorphism via a.

2.2. A log analytic space X is a pair of an analytic space X and a log
structure .#x on X. It is denoted by X := (X, .#x), or simply by (X, .#x). A
morphism (X, #x) — (Y, .#y) of log analytic spaces is defined to be a pair of a
morphism of analytic spaces f: X — Y and a homomorphism 4 : f~1(My) —
My such that the diagram

N y) 2y

L

oy L oy
is commutative. It is denoted by (f,4), or simply by f.

2.3. For a pre-log structure (.#,a) on X, its associated log structure .#“ is
defined to be the push out of

«loy —— M

|

Ox
in the category of sheaves of monoids, endowed with the homomorphism
M — Ox; (a,b)—>a(a)b (ae M,beO).
2.4. A monoid P is said to be an fs monoid if it satisfies the following three
conditions:

(i) P is finitely generated.
(ii) If @, b, ce P and ab = ac, then b = c.
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(iii) If a € P8 and a" € P for some n # 1, then ae P. Here P#P is the group
associated to P.

2.5. A log analytic space (X, #x) is said to be an fs log analytic space if
locally there exists a constant sheaf P of fs monoids and a homomorphism
P — Ox such that the log structure .#yx is isomorphic to the log structure
associated to the pre-log structure defined by P. A pair of P and the canonical
map P — Ay is called a chart. By definition, a chart exists locally.

DEFINITION 2.6. Let X := (X M x) be an fs log analytic space. We define
the associated topological space X'°% in the followmg way. Let T be the analytic
space Spec C endowed with log structure .#7 given by

I(T,.#1) = Rs x S',
where
Rso={xeR;x>0} and S!'={xeC;|x|=1}

are considered as the multiplicative semi-groups and the morphism 41 — 07 is
given by

RsoxS'— C; (x,y) > xp.

Let T be the log analytic space ( 70’ MT). As a set, we define X2 to be the
set of all morphisms T — X of log analytic spaces over C. We have the
canonical surjective map 7: X'°® — X. We define the topology of X8 as
follows. Working on locally on X, let « : P — My be a chart of .#x. Then, by
using the homomorphism P& — ./”gp X'°¢ js identified with a closed subset of
X x Hom(P# S!). The topology of X'°¢ is given by this identification.

Lemma 2.7 (KN, (1.3)). (i) The map 7: X'°8 — X is continuous. Further-
more it is proper, that is, for any compact subset C of X the subspace t™'(C) of
X2 is compact.

(ii) For x € X ©7Y(x) is homeomorphic to the product of r copies of S' where
r is the rank of MY /0%, X x

(iii) Let X := (X,//lx) and Y .= (f,//ly) be fs log analytic spaces, re-
spectively. Let f:X — Y be a morphism of log analytic spaces. Assume
f Y My S My. Then the diagram of topological spaces

Xlog Ylog
X — Y

is cartesian.
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2.8. Let (X,.#x) be an fs log analytic space and 7 : X' — X the canonical
map. For a topological space 4, we denote by Cont(,A) the sheaf of con-
tinuous functions on X'°¢ with values n A. Let r"(//l”") — Cont(,S') be the
natural map. Let Cont(,:R) — Cont(,S') be the map given by composition
with exp. We define a sheaf .# of abelian groups on X'°& to be the fibre prod-
uct of Cont(,iR) and t~'.#% over Cont(,S"). Let h:7 'Oy — £ be the map
induced by the map t7'0y — Cont(,tR); f+>f — Re(f). Then we have the
following commutative diagram with exact rows.

00— Z(1) — 'y 2 o, —— 0
J | l
0 Z(1) ¢ — a® 0

(
| : |
0 —— Z(1) —— Cont(,iR) —— Cont(,S') —— 0

DEFINITION 2.9. Let Sym,(%) be the symmetric algebras of .¥ over Z.
We define a sheaf 0'% of t~'Oy-algebras on X'°¢ as follows:

0‘°g (7' Ox ®zSymy(Z))/a

where a is the ideal of 17 'Oy ® ; Sym,(.#) generated by local sections of the
form

f®1-1®h(f) for fer'oy.

For re Z, we define a ﬂltratlon fil,(O%) of O* to be the image of
0y @7 ®'_; Symy.Z in o' ¥, where Sym$,.% denotes the i-th symmetric power
over Z.

Lemma 2.10 (KN, (3.3)). Let x be a point of X, y a pont of 7' (x) < X'°8
and (i), .,., a family of elements of the stalk £\, whose image under exp is a

Z-basis of (MY )0%),. Then the Oy -algebra homomorphism
Ox T, ..., T > 035 T
is an isomorphism.
LemMa 2.11 (KN, 3.4)). (i) filp(0'%%) = 7' 0y.

(ii) The canonical homomorphism -\ M% =~ £/Z(1) — fil,(0'%) /'Oy
induces an isomorphism

v O0x @ 777! (Symy (MF/O%)) = fil,(03%)/fil,-1 (O%*)
for any r>0.
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3. Logarithmic relative Poincaré lemma

The aim of this section is to prove Theorem A.

ProposiTioN 3.1 (Relative Poincaré lemma). Let f: X — Y be a smooth
holomorphic map of complex manifolds. Then

[0y - Qy)y

is a quasi-isomorphism.

32. Let f: (X, #x)— (Y, My) be a morphism of fs log analytic spaces
satisfying the following conditions:

Locally on X and on 7Y,

(i) there exists a chart P:= N — .#y, and a morphism of monoids

P->Q:=N; 1—(1,...,1),

for some r > 1, and

(i) X is 1somorphlc to an open subspace of Y Xspec cip],, SPec C[Q],,, Where
Spec C[P] and Spec C[Q] are endowed with log structures associated to P — C[P]
and Q — C[Q)], respectively.

ProrosiTiON 3.3. Let Q be the monoid N and P the monoid N for
reN. We denote i-th basis of P as e;. Let X be the analytic space C" and Y the
analytic space C. Let (t1,...,t,) (resp. z) be a coordinate of X (resp. Y). Let
f X — Y be a morphism defined by (t,...,t,) > t1---t,. Let o (resp. ) be the
morphism of monoids P — I'(X,0x) (resp. Q — I'(Y,0y)) defined by n-e; >t
(resp. nv—> z"). Let (X, #x) and (Y, Hy) be the associated log analytic spaces,
respectively. Then we have an isomorphism of f~10y-modules

(AT 0%)

q ~
(B4  &:fl0r®g /\W Hi(wy)y)  forall ¢ =0.

Proof. If 9 c cof‘, /Y is a sheaf of sections of cocycles, we have a morphism

q
1oy @ N(ME /B — 29, a® Abi> andlog(by).

Let z be a point of X. 1If b; € O , for some i, then a branch of logb; is in Oy ,
and hence the image of a @ A, b; is a coboundary Hence we have a well-defined
morphism of sheaves

MOy
./lgp /0%)
It is enough to prove that &; is an isomorphism at each stalks.

Case 1: Let x=(t,...,t) be a point of X such that #;---¢, # 0. Since its
log structure is trivial on a neighborhood of x, the stalk at x of the right hand

q
&:f 0y ® /\ - H(wy)y)-
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side of (3.4) is f~'0y x (resp. 0) if g =0 (resp. if ¢ #0). Hence we obtain the
desired isomorphism in this case by 3.1.

Casg 2: Let x=(0,0,...,0). We can compute the right hand side of (3.4)
as f10yx®z /\"Z"/Z. We will prove in three steps that

”q(w:Y/Y)x = Z iy ogg s N A Jigy iy ef-l(gY,x /Ia

1<y<-<y<r

where f; =dt;/t; (1 <i<r) and [ is the submodule generated by f; +--- + f.
We have

! _ Ox /i ® - ®Oxxf
YYx ™ 0y (i@ Df)

: q
We can write an element of w% Jy,x A8

€15:++,€) el €, €14+,
E : E : a o n o ANy gy, @ e C

eyl \ 2 <<l <r

Let M{ , be the submodule

ser

e er.
§ : ail,n-,quil AN /\ﬁ tll e tr’vail,m,tq eC

2<y <<y <r

of wf Y Then we have

wf‘,/Y,x = {¢ € Z M ié converges}.

€1y.-4€r

we will prove that d¢ e M7+!

€1y..,ep’

Step 1. For ¢ e M?

15ees€r?

We write ¢ as follows:

b= S afinnd |

2<y <<y <r
We have
e
d¢ = tll .. .tf' Z Z ai],m,lqejf] /\_fi‘ YNEEE /\ﬁ

25y <<y <r jé¢{u,..10}

= tfl e tf’ Z Z ailvnqu(ej - el)ﬁ Nfa A /\fiq

2<y <<y <r jé¢{l,u,....1}

g+1
k—1
= tfl e tfr Z {Z(_l) ail,...,l;c,u.,lq_,_l(eik - el)}ﬁl Acs A fiq+1 :

2y < <ggqr <r L k=1
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Step 2. Let ge M , nkerd. We will prove that ¢ ¢ imd if and only if
eg=---=¢ and ¢ #0

Let

'// = Z &il,..‘,lq_lﬁl AN Afiq—l tfl T trer

2y <<ig1 <1

be an element of M‘Il‘ e Then geimd if and only if there exists a complex
vector (@;,..,_,) such that ¢ = dy. This is translated as what the simultaneous

linear equations in the @, . .

9
(3 5) Z(—l)k_léil,...,{k ..... lq(eik - el) = ailr--,'q
. k=1

Q<ii<---<ig<r)

has a solution. “If part” is clear. In order to prove “only if part”, we may
assume that e; # e, without loss of generality. Let a (resp. a) be the vector
@, ;. ,q) resp. (a;,,..,,)) and A the matrix whose entries consist of coefficients
of the simultaneous equations (3.5). For I = {i1,...,iq}, we call the equation

as an I-th equation. We call the row of the matrix A corresponding to the I-th
equation as I-th row. Then there exists a solution of (3.5) if and only if
rank 4 =rank (4,a). Let I be a set {ij,...,i;} such that 2 <ij <--- <iy <r.
For each k=1,...,9, we denote Ji:= {2} u(l— {ix}). We will make an
elementary transformatlon as follows. Multiply the I-th row of A by e; — ey,
and add (-1)¥ (e;, — e1) times the Ji-th row of A4 to it for all k. Then we have

q
(I-th equation) x (e; — ;) + )¥ (Ji-th equation)) x (e;, — e1)
k=1
N k-1
= ;(—1) By iertas (€ — €1) (€2 — €1)
. k
3 Vgl ) = )
k=1
= l k
+k ~
+ IZ: L) A peesllm T L syl s 1 yeeoolg (ei’ - el)(eik - el)
1

I+k—1~
+ Z (=1) e kTR oML F L el (ey — e1)(es — el)}
I=k+1
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I+k ~
= Z (_1) a2»111---,ll-(,;1,11+1,---Jk-x,fk,lk+1,--v»tq(e"l - el)(eik - el)

I1<l<k<q
I+k-15
+ Z (_1) XTI LI+ temT Tt 15 ,lq(e el)(e"‘ el)
1<i<k<gqg
=0.
This means that, by the above elementary transformation, A is transformed to
e — e 0
*
0 ey — e
0 o

Using the same elementary transformation for the vector a, its I-th row is
transformed to

q
(3.6) Z(—l)kaio,“.,,;,...,,,, (i, —e1), (io=2).
k=0

Therefore the condition ¢ € kerd implies that (3.6) is equal to 0. This means
that (4,a) is transformed to

€ — €] 0

0 ey — e
0 ‘0

Thus we have rank A = rank (4,a) as desired.

STEP 3. Let ¢ be an element of w? Y x Nnkerd and ¢*“ an element of
M{ , such that ), ¢ converges in some neighborhood of x and such
that this sum is equal to ¢. We claim that there exists y € w? /IY such that
dyy = ¢ if and only if there exist y** e Mg‘j,‘qer such that dy® % = ¢*% for
all (e1,...,er).

The “only if part” is clear, hence we will prove the “if part.” All what we
have to do is to prove Y., , Y also converges in some neighborhood of

x. We write ¢ (resp. y*) as

( Y a A Afi,,>t‘f‘ g

2<n< <Yy <r

~€1,...,8r " €1 ... 16
resp. S a Jon A |8 e .
2< <<y <1
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Then it is enough to prove that
~€1,..,€r (€] er
>
€1y.-s€r

converges in some neighborhood of x for all (ij,...,i{-1). By the argument in

Step 2, we can solve the simultaneous linear equatlons in a;' e "~ In fact,

assume ¢ # 0 and take an integer k, with 1 <k <r and e, # ey, then we have,
for example, for some k = k(ey,...,e,) such that ex # e;, we can write as follows:

—1 yeeCr 1 }
&gl,m‘er _ { (ek _ el) afll,,,_,li,,..,lq-l k ¢ {117 ey lq—l}s
i yeelg—1 0, otherwise.

Hence

; er+te, [| zel et
limsup “**¢/|a; |
e1+-+e,—0
is finitely bounded, therefore Y y“* converges in some neighborhood of x.

From Step 2, we have

gy )= [ Mer  @=v=en
s 0, otherwise.

From Step 1 and Step 3,
H (0% /v)x {¢ Z e Z H! (M ¢converges}
€ly.-e e1,...,er

Thus we have

H (0 v)s = > Guenfih o Afiiai,, € Or /I

1<y<-<ig<r

as desired.
Casg 3: Let x be the point (0,0,...,0,t1,...,%) such that #xq---t #0
(k <r—1), then x e X has an affine open neighborhood

Spec Clz,ty,... ti, iy, .. 2] /(z =11 -+ 1,).

We change coordinate #; by T = 14,41 ---t,. This change of coordinate induces
an isomorphism of fs log analytic spaces. We denote by X’ the resulting open
set:

= (SpeC C[Z> T; t27- . '7tk7 tki'i-ll’ s ’tril]/(z - th o tk))
Then f becomes
f/IXI—>Y; (Z;T7t2;"'atr)HTt2'”tk
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Now we will compute the cohomology #7(w$, /},)x. We have
CDI =(OX,xf11®"'@@X,xf:
X']Yx @X,x(fi/+"'+f}€/) )

where f{ =dT/T, f/ =dt;/t; for i > 1. Similarly as Case 2, we define sub-
modules M7, of %,y . For

yeensr

/ . 4 [P ! er ., . o 9
¢ - ( § : all,"',tq 1 A /\ﬂq) tl tr EMel,..‘,e,’

2<y< <y <r

we have
k
, T
af =rir| 3| Y aalg—edfafin AL,
2<y <<y <r J=1
]¢{1,11,,..,1q}
r
+ Z ai,,,,,,,qejj;’/\ A /\f,;
J=k+1
]¢{lvllv~~vlq}
By a similar argument in Case 2, we can show that #7(w} /Y)x is isomorphic to
the stalk of the right hand side of (3.4) at x. O

THEOREM A (Log relative Poincaré lemma). Let f: X — Y be a morphism
of fs log analytic spaces satisfying 3.2. Let w:‘,l"f, be o*wy y, here o : X log _, X is
the canonical map. Then the canonical morphism

log\—1 plog elog
(f®) 0y — Wy )y
is a quasi-isomorphism.

Proof. Let (P— Mx,Q— My,Q — P) be a chart of the morphism f.
Let S (resp. T') be Spec C[P],, (resp. Spec C[Q],,). The question being local, we

may assume X =~ ¥ xr S. Since co;,l;’f, x cog.l/"f ®p, Ox = wgl/‘? ®o, Oy, we have

H(0}2) = #(5%) @, Oy

On the other hand, as (91,‘,’g ~ 017?g®(97.0y, we may assume that X =S and
Y=T Let XeX" x=0g(x)eX and y=f(x)eY. Let (t;);.,, be a
family of elements of .#%¥, whose classes in /% /0% , is a basis of M5 /0%
over Z and u an element of .#% 6 whose class in /4% /0y, is a basis of

MT /Oy, over Z.

Step 1. Let A (resp. B) be the polynomial ring Oy,[z] (resp.
Oy,|Ti,...,T;]). We define a morphism of @y -algebras by
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A—-B;, z—T1+---+T,
and a morphism ¢ of complexes of Oy ,-modules by
dt;
T

Let 4 — Qp/, be the canonical morphism of complexes. Then the diagram

$:Qp 4 — w:‘,];’f,,x; dT, —

elog
4 — oyy,

° log

Qpy — Dy/y,x

is commutative.

Step 2. The morphism 4 — Qp, is a quasi-isomorphism. This is well
known.

Step 3. We define increasing filtrations F of Q3 and G of w}l;",‘,,x by
Fk(Q%/A) = {Xfn; feB, degf <k, n=dT, A+ AdT, €Q} (i1 <+ <ig)},
G (%) := the image of fil(O%%) ® %,y in wf7s.

Here fil is the filtration introduced after 2.9. Since ¢ respects to filtrations F and
G, it induces Gr(g) : Grf Q34 — Gr,f(Q;,l;’f,)x. We claim that Gr(¢) is a
quasi-isomorphism.

(From Step 3, ¢: Qp/, — a)}];’;x is a quasi-isomorphism, hence 4 — co:‘,l;’f,’x
is a quasi-isomorphism.)

Now we prove Step 3. By 2.11, there is the canonical isomorphism of
complexes

Y : Grf (0} 75) = 07! (SymG (M5 /0%)) ®z 07 0y
Let

8D /
&+ HIGHE 0, = (1705 ® A\ i @ Sym (42/0%) )

(AP 0%) y

be the natural isomorphism. Let £, be a morphism as in 3.3. Put &=
(¢, ®id) 0 &,. Then ¢ makes the following diagram commutative:

. 4 ° *
Hq(GrII:QB/A) B -Wq(wx/y)x ® sym’é(,/{i,l’/@x)x
Gr(¢)1 ”
HUGriwy %), —— HI(Y)y), ® Symy(ML/0%),

Thus we have Gr(¢) is a quasi-isomorphism as desired. O
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4. The morphism t*Rf,w} y — Rf.®C ® O

Let f: X — Y be a proper smooth morphism of complex manifolds. Then
we have a quai-isomorphism Rf.C @ cOy — Rf.QY%/y. We construct a similar
quasi-isomorphism on fs log analytic spaces satlsfymg 3.2.

LemMa 4.1 (Proper base change theorem). Let X, Y, Z, W be locally
compact Hausdorff topological spaces and f:X —-Y, g: Z— W, 6: X — Z,
7:Y — W continuous maps such that the diagram

X—f->Y

1

z .w

is cartesian. Assume that g is proper (i.e., an inverse image of a compact set is
compact). Then for any complex K* of sheaves of abelian groups on Z, we have a
quasi-isomorphism

7 'Rg,K* 5 Rf,(67'K*).
See [SGA, p. 39].
LemMA 4.2. Let f: X — Y be a proper continuous map of locally compact
Hausdorff topological spaces, o a sheaf of rings on Y, & a sheaf of (f~'o/)-

modules on X and 4 a sheaf of «/-modules such that 4, is a free s/ ,-module for
each ye Y. Then we have a quasi-isomorphism

RLF @ u% = RA(F @1y f'9).
Proof. First notice that, using 4.1, we may assume that Y is a point.
Hence it is enough to prove that
®H"X,F)—-> H"X, ®; F)
is an isomorphism for all m. If Iis a finite set, it is clear. If Iis an infinite set,

use [Ive, p. 173, Theorem 5.1]. O

4.3. Let X, Y, f be as in Theorem A in section 3 and moreover, assume that
f is proper. Let X (resp. Y) be the underlying analytic space of X (resp.
Y). We have the canonical commutative diagram of topological spaces

log
Xlog f Ylog

A

¥ L, ¥
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Let X’ be a log analytic space (X, f*My). Let g: X"t — ylog p. xloe _,
X"°¢ G X"°¢ —, X be the canonical maps, respectively.

Xlog h xlog 9 ylog

R
P — % L. ¥

4.4. Let # be a locally free Ox-module of finite rank. From the natural
morphism ¥ — o,.0*F = 6.h.c*F, we have an associated morphism &% —
Rh.o*F

LemMMmA 4.5. 6*# — Rh.o*F is a quasi-isomorphism.

Proof Since taking a cohomology commutes with taking a direct sum, our
task is now to show a*(9X — Rh*a (OX is a qua51-1somorph1sm This is
equivalent to show that (9 — Rh, (9 is a quasi-isomorphism. Let x be a
point of X"°¢, Since & is proper, we have

(R'hO%E), = H' (K™ (x), 08|~ (x)).

Let r be rankz (M5 ,/0% ). Then we have h~'(x) = (8", Let X; be the
log analytic space whose base space is X and whose log structure is locally
defined by the chart

Nk—»F(Xk,(OXk)=F(X,@X); (el,...,ek)Htf te" ‘t R

(Hence we have X, =X and X; =X'.) For l <k <r-1, let Y, : Xpy1 — Xi
be the morphism of log analytic spaces, that is defined by the morphism of
monoids

Nk-_'Nk_H; (el)“"ek)H(el"“?ek)ek)'

Let Ay : X,l"gl — X% be the associated morphism to V. Then ! (l x) = S
Therefore, in order to show being a quasi-isomorphism (9 = RhO3F, it is
enough to prove that the following morphism are quasmsomorphlsms.

O > Riyu O (1<k<r—1).

We will prove it only in the case r = 2, since the argument is the same as in the
general case. Set h=h;. We compute the cohomology of A~ I(x) = 8! with
coefficients in (9'°g|h !(x) in the Cech method. We define a coordinate 6 on S’
defined by

S! = {exp(V—16) ; 6 e R}.
Let {U;, U,} be an open covering of S! defined by
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U; = {exp(V-16); 0 < 0 < 2=},
= {exp(V-160) ; n < 0 < 3r}.

Let Vi (resp. ¥2) be an open set {exp(v—16) ; 0 < 8 <z} (resp. {exp(v—16);
n < < 2n}) of S!. If V be the intersection of U; and U,, then V is a disjoint

union of ¥; and V,. Since (91°g|U1, O%E|U, and 0|V are constant sheaves, we
have

H*(U;, 0X8|U;) = HE(V, 058V =

for k > 0. Hence, we can compute the Cech cohomology of 0'%8|A~!(x) b?r the
open covering {U;, U,}. Let y =4(x) €e X. We denote the restnctlon of Ox® t

Ui (resp. Us) by OE|U; = O[Ty, T3] (resp. O%8|Us = Ox,[T}, T}]) where T, T

1

are variables such that the difference of T, and 7] on Vis in 22v/—1Z. From
the assumption of f; we have T1 + T> = T} + T,. Therefore we may assume that

T, =T +2aV-1, Tj=T,—2n/—-1.
Thus we have the following Cech complex C*
C® = Ox,[T1, To] ® Ox,[T7, T3),
C' = 0y, [T\, T5] ® Ox,[T1, T>),
C'=0 (i>2),
d:C° = C(p(T1, T2),4(T}, T5))
> (p(T1, T2) — q(T1, Ta), p(T1, T2) — (T + 22V =1, To — 22V/-1)).
Hence we have
H°(C*) = kerd
= {p(T1,T») € Ox,[Th, Ta); p(T1,T2) = p(Ty + 22vV—1, Tr — 2nv/—1)}
= Ox,[T1 + T3] = O%%,.
It is clear that H'(C*) =0. This completes the proof. O

Similarly, we have the following proposition.

PROPOSITION 4.6. Let X be an fs log analytic space, ¥ a locally free Ox-
module of finite rank and t: X'°8 — X the canonical continuous map. Then we
have a quasi-isomorphism

F — Rt T F.
Hence

1,08 ~ Oy, and R0 =0, fori>1.
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ProposITION 4.7. Let X, Y, f, T be as in 4.3. We have a quasi-isomorphism
~ 1
TR0y y = RS0y}

Proof. We have the notation in 4.3. From 2.7 (iii), the following diagram
of topological spaces is catesian.

x'loe __9 ylog

|
¥ L ¥

By 4.1, we have a quasi-isomorphism t~!Rf,0} Iy S Rg.67 1wy /y- Thus using
4.2, we have quasi-isomorphisms

TR0y = (7' RA0Y/y) @10y OFF

S Rg.(67' 0% )y) @10, 07

S Rg. (67 0%y ® (251 0y g loy).
Since 0'% =~ 510y ® (zg)! g 10%%, we have a quasi-isomorphism
(4.8) T Rf.0% )y = Rg:G 0y )y

By 4.5, we have a quasi-isomorphism G*w},y S Rhyo* o /y- Since f log — gh,
we obtain quasi-isomorphisms

(4.9) Rg.6" 0y y — Rg.Rh.c" 0%y
(4.10) ) A
By 4.8-4.10, we obtain the desired quasi-isomorphism. O

THEOREM B. Let f: X — Y be a proper morphism of fs log analytic spaces
that satisfies 3.2. Then we have a quasi-isomorphism

Rf5C @ cOY® = T Rf.00yy-

Proof. By Theorem A, we have a quasi-isomorphism
COCS* 07 5 wyfy.
Hence, using 4.2, we have quasi-isomorphisms
Rf2C ® cOy* = RAH(C ®cf 7' 0FF)
S R0y ry).

Theorem B follows from 4.7. O
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5. Log Hodge structures

The aim of this section is to prove Theorem C. A log Hodge structure in
Theorem C is a log geometric interpretation of object called a limit mixed Hodge
structure in [Stl].

Let X be an fs log analytic space. For x € X, let ¥, (resp. %,) be the set of
all homomorphisms J/li,p . — Rso (resp. Mx x — R>o) which are extensions of

@},x — Rso; [ |f(x)]

We introduce on %, (resp. %) the topology in the following way If a,.
are elements of J/lﬁ,p ., (resp. M x ) whose classes in .//l / Oy  (resp. Mx x/ (9 )
generate MY /0%, as a group (resp. My /O, as a mon01d), x (resp. L] x)
has the topology as a subspace of (Rso)" (resp. (R»o)") in which &, (resp. %) is
embedded by .// (Ip(al))l <i<r*

We regard %, as a subspace of #, by the fact that a homomorphism
MF , — Rso is uniquely induced to one Mx — MY, — R>o— Rso. Let &,
be the element of %, that sends Ji[‘,‘}’ N (O}X to 0 € Rxo.

Lemma 5.1 (K. Kato). Let y€ X" and let x=1(y) e X. Let ¥y, be the
set of homomorphisms ¢ : (9 — C having the following properties:

(1) ¢ is an extension of(9 x5 C; [ f(x).

(2) The composite &), — (OXg = C — C/R = RV/-1 coincides with 6, in 2.8.
Then there exists a unique szectzon

Y — OJ/x,yQ '// = l/’y
satisfying
y(exp(a)) = |exp(y,(a))|, forae Z).

Proof. Let n=Re(y,). Then y, is uniquely determined by #. Let

t1, .,t be a family of elements of £, whose image under exp is Z-basis of

/(OXx n (resp. V) is uniquely determmed by the image of #,..., (resp.
exp(t1) exp(t,)). Put #(#;) =log(¥(exp(t;))). Then we have the desired
bijection. O

We assume that the fs log analytic space X satisfies the following condition:

5.2. Locally on X, there is an fs monoid P and an ideal ¥ of P such that X
is an open subspace of (Spec C[P]/X),, that is endowed with the log structure
associated to P — C[P]/Z.

DermniTION 5.3 (K. Kato). Let X be an fs log analytic space satisfying the
condition 5.2. For ne Z, a log Hodge structure (log HS) 5 on X of weight » is
a triplet (H#p, #p,1x) consisting of
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e a sheaf of Q-modules #p on X'°g
e a sheaf of Ox-modules #p on X endowed with a descending filtration
(F'#b);cz and with an integrable connection

V: —>(o}Y Qo #o,
e an isomorphism of ©'g¥-modules
Ly Hp ®g OFF = T Hp,
that satisfy the following conditions 5.4-5.9:

5.4. i is locally constant, and each stalk is free of finite rank as a Q-
module.

5.5. #y is locally free of finite rank as an Ox-module.
56. FFty=Hp if i<0, FHp=0if i>»>0.

5.7. Each F'#p is an Ox-submodule of #p, and is locally an @x-direct
summand of #%.

5.8. V(F' ) = w}‘, ®o, F~13#, for each i.

5.9. Let xe X. Then there exists an open neighborhood V of ¢, in ¥, such
that for any yet!(x) and y e ¥, N V, %Q y with the filtration C ®g,  F'#p,x
on C® %Q,y = C Qg,, #0o,x, the equality given by ¥,, is a Hodge structure of
weight 7 in the classical sense. Here Oxx— C is f > f(x).

Let Y ={ze C| |z| < 1} be the unit disk with the log structure defined by
the origin, Y* the punctured disk. Via the mapping U — Y*; um— exp(27zi u),
the upper half plane U = {u € C|Im(u) > 0} becomes the universal covering of
Y*. The fundamental group =;(Y*) = nl(Y“’g) is generated by the translation
ur>u+1. Consider the subsheaf Qlu] = O¥%. Let o be the monodromy of
O[u] around the origin. Then we have ¢:u+>u—1 and log ¢ = —d/du.

LemMa 5.10. Let V be a Q-vector space, N :V — V nilpotent homo-
morphism and Qlu] a polynomial ring in one variable over Q. We define the
endomorphism A of V ®¢gQlu] to be N®1—1®d/du. Then

kerA =W = {ZNM(X) Ru"; x }
m=0

Proof. Let f be an element of V' ® Q[u]. We can write f =Y "/ x, @ ,
x, € V. Then we have
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m—1

A(f) = Z{Nx, — (i + Dx1} ® v+ Nxpy @ u™.

1=0

Hence, f € ker A implies x, = N*(xp)/i! for (i > 1), therefore f € W. It is clear
that W < kerA. O

LeMMA 5.11. Let X be the analytic space Spec Can endowed with the log
structure associated to N — C; n+> 0" and & a locally constant sheaf of Q-vector
spaces on the topological space X'°%. Let t be a section of the sheaf of monoids on
X associated to its log structure such that t is an image of 1 € N, and consider the
subsheaf Qlu] = (91‘93 where u= (2n/—1)"" logt. Let N be the logarithm of the
monodromy of F. Assume N is nilpotent. Then the restriction map of the sheaf

F ® o 0lu
(X", 7 @ Qu]) » % ® Qul, (xeX"®)

factors through the submodule

ooz~ {S 0 g xesif 7o ol

n=0

and moreover, T'(X'°8, # ® Qlu]) — exp(uN)F, is an isomorphism.

Proof. Let A be N®1—1®d/du. Since A is the logarithm of the
monodromy of # ® Qu], we have ['(X'%, % ® Qu]) = kerA ¢ F ® Qul.
From 5.10, we have the desired isomorphism I'(X'°8, % ® Q[u]) — exp(uN)%,.

O

5.12. Let T be a topological space and & a sheaf on T. For a subset S of
T, we omit I'(S,#|s) as I'(S,%).

ProposiTioN 5.13 (F. Kato). Let Y be a unit disk with the log structure
defined by the origin and f : X — Y a proper morphism of fs log analytic spaces
that satisfies 3.2. Let D be f~1(0) and X* the fibre product of X and the universal
covering of Y* over Y*. Let 1: Y'Y — Y be the canonical map. For o€ t~'(0),

we have 5 _ 5 _
@) p: H™((f'8) ! (w), €) = H™(X*,C) (resp. H™((f"¢)" (), Q) > H™ (X",

)' (ii) T(z71(0), R"f1¢C ® 0F%) > H™((f'°8) ! (), C) (resp. T(z71(0), R"f1¢Q
® Olu)) > H™((f') " (w), Q).

(iii) Let 1 be a morphism as in Theorem B. Taking C(z71(0), ) on 1, we got
an isomorphism q: H"(D,w}) — H™((f log)~1(«), C). Then the composite map
pogq is the same isomorphism as [Stl, (2.16)].

Proof. See [Usu] and [FKa, pp. 21-22]. O
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5.14. let Y := {z € C||z| < 1} be the unit disk, and f: X — Y a projective
surjective morphism of complex manifolds. We assume that fis smooth over the
punctured disk Y* =Y — {0} and that X, =/f"'(0) is a reduced divisor with
normal crossings. Let Pe X,. We assume that there exists a coordinate
neighborhood U of P with coordinates (zo,...,z,) and an integer r with 1 <r <n
such that P = (0,...,0) and f|U(z1,...,20) =21---2, =z. Let My (resp. Mx)
be a sheaf of holomorphic functions on Y (resp. X') which are invertible outside
the origin (resp. Xp).

THEOREM 5.15 (Usui). Let f: X — Y a morphism of fs log analytic spaces
that satisfies 5.14. Then f1°8 : X8 — Y198 js q locally topologically trivial family
over the base. Moreover R™f18Q is a locally constant sheaf. (This is a special
case of [Usu, Theorem 3.4].)

TueoreM C. Let f:X —>Y be as in 514 Let #p= R"fEQ,
Ho = R"f,0%y,y endowed with a filtration F' := R™f,%7, and 1 the isomorphism
as in Theorem B. Then the triplet (#p, #v,1) is a log Hodge structure on Y.

Proof To show Theorem C, we will verify the conditions from 5.4 to
5.9. It is well known that the pair (#p, F°) satisfies from 5.5 to 5.8. 54 is
direct from 5.15. Let ye Y be a smooth point, then it is well known that 5.9
is satisfied for y from the theory of variation of Hodge structure. We verify
5.9 for the ongln y of Y as follows. Let we77!(y) c Y'°8 and «’ an element of
£, whose image under £Xp is the Z-basis of 4% /0] g 1€, exp(u’) =
exp(27uu) =z Lety,: (9{3gw — C be an element of @/yw such that ¥, (') = a,
v MY Yy — Rso the corresponding element of %,. We have the following
commutatlve diagram

~

H™(D,w}) — H™(X*,C) = H™(X*, Q)

? ? Jvl

L(71(0), #, ® 03%) —  T(:7(0), #p® 03%) « T(z7(0), #p ® Qlu))

res res res j'

H™(D,0}) ® 0%, = H™(f5\(w),0) ® 0%, — H™(f1%%(w),0) ® Qlu]

'l/w ww

H™(D,wp) — H"(f*'(),0)®C
Here res is a restriction map. By 5.11, the image of H™(X* Q) in
H™(f'81(w), 0) ® 0}%, at the above dlagram is_exp(uN)#p,.. We have
Y, ores is the 1dent1ty map. Hence an image of H™(X*, Q) in the left hand side

of 1, at the diagram is canonical. Consider H™(X*, Q) as a submodule of
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H™(D,w}y) in this way. Since the above diagram is commutative, the image
of H™(X*,Q) by 1, is exp((a/2ni)N)#p,. Let — (resp. ) be the complex
conjugation mapping associated to the Q-structure H™(X*,Q) (resp.
How). Then we have — = exp(—(a/2ni)N) o — o exp((a/2ni)N). Hence

50 F - 7 @ oxp( - N)oxp (LN F)
o5 =7 @CXP( 2niN)exP(2niN'/ )
a (] a ®
zexp(%N)f (-Bexp(%N)é’f .
By nilpotent orbit theorem [Sch, (4.9)], (H™(X*,Q),H™D,#), exp((a/
2ni)N)F*) is a Hodge structure if Im(a/2ni) > 0. This is equivalent to say that
(How ® C,#p,w, F°) is a Hodge structure if y(z) « 0. O
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