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SUBMANIFOLDS WHOSE QUADRIC REPRESENTATIONS

SATISFY Ax=Bχ + C

JlTAN LU

Abstract

Let x: Mn->Em be an isometric immersion of an n-dimensional Riemann-
ian manifold into the m-dimensional Euclidean space. Then the map x=xxι

(where t denotes transpose) is called the quadric representation of Mn. In
this paper, we give some results on submanίfolds in the Euclidean space Em

which satisfy Ax—Bx+C, where B and C are two constant matrices.

1. Introduction

Let x : Mn->Em be an isometric immersion of an n-dimensional Riemannian
manifold into the m-dimensional Euclidean space, and SM(m) be the raXra real
symmetric matrices space (this space becomes the standard (l/2)ra(m+l)-dimen-
sional Euclidean space when equipped with the metric g(P, ζ?)=(l/2)tr(PQ)[4]).
We regard x as a column matrix in Em and denote by xι the transpose of x.
Let x—xx1. Then we obtain a smooth map x: Mn—>SM(ra). Since the coor-
dinates of x depend on the coordinates of x in a quadric manner, we call x the
quadric representation of Mn ([5]). x is an important map, because it has
many interesting relations with the geometric properties of the submanifold.
In fact, for the hypersphere centered at the origin embedded in the Euclidean
space in the standard way, the quadric representation is just the second standard
embedding of the sphere. In [5], I. Dimitric established some general results
about the quadric representation, in particular those relative to the condition of
x being of finite type. In [8], the author gave some classification results for
hypersurfaces in Em which satisfy Ax=Bx + C with B and C are two constant
matrices. In this paper, we will study submanifolds in Em which satisfy the
same condition Ax=Bx + C. We prove that an n-dimensional submanifold with
parallel mean curvature vector which satisfy Ax—Bx + C must be the n-di-
mensional Euclidean space or contained in a quadric hypersurface, but there is
no submanifold in Em satisfying Ax—Bx. We also prove that the only sub-
manifold in Em satisfying Ax — C is a lower dimensional Euclidean space.
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2. Preliminaries

Let us fix the notations first. Let x : Mn^>Em be an isometric immersion
of an n-dimensional Riemannian manifold into the m-dimensional Euclidean
space. We denote by H the mean curvature vector of Mn in Em. Let eu ...,
en, en+ι, ..., em be local orthonormal vector fields along Mn, such that elf ...,
en are tangent to M n , en+u ..., £ w are normal to Mn, and en+i is parallel to
//. Then H=aen+1, where a is the mean curvature of Mn in Em. Let < , >
and V be the Euclidean metric and the connection of Em, and denote by V, h,
D, Ary \Ar\ respectively, the connection of Mn, the second fundamental form
of Mn in Em, the normal connection of Mn in Em, the Weigarten endomor-
phism relative to the normal direction er, and the length of Ar, r=n+l, ..., m.

In this setting, the indices i, j , k always range from 1 to n, r, s, t from
n+1 to m and β, γ from n+2 to m. At any point x e M " , for any column
vector V in Em, we denote by Vτ=Σ>i<V, eι>et, VN=Σr<V, er}er, and F ^ =

We define a map * from EmxEm into SAf(m) by V^W=VWι-{-WV\ for

column vectors V and W in £ m . Then V*W=W*V. Let V denotes the Eucli-

dean connection of SM(m), then we have ([5]):

(2.1)

(2.2) giV&Vi, W1*Wt)=<V1, W1XVt, Wt>+<Vl9 W2><V2, W,},

and

(2.3)

where V, W, Wu W2, VΊ and F 2 are all vectors in Em, and Δ is the Laplacian
operator of Mn.

Using (2.3), by a lengthy but direct computation, we have

(2.4) Ax = — naen+ι*x—

and

(2.5) Δ2 x =4nen+i*grad«

+(nta*+2\An+ι\*)en+i*en+i

+2n(Dgradaen+1)*x-na(ADen+ί)*x

2n(An+1grdLάa)*x—2naC>lιADeien+1eτ)*x
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- n(Aa+a \ Λn+1 \ 2)en+1*x

Without noting, in this paper, we always denote by X> Y and Z the tangent
vector of Mn, by ξ and η the normal vector of Mn in Em, and V and W the
column vector in Em.

3. Submanifolds satisfying Ax = Bx-\-C

THEOREM 3.1. Let x : Mn-*Em be an isometric immersion with the parallel
mean curvature vector. If its quadric representation satisfies Ax—Bx-\-Cf then
Mn must be (α piece of) the n-dimensional Euclidean space or contained in a
quadric hypersurface.

Proof. If Mn is a minimal submanifold of Em, that is α=0, then (2.4) and
(2.5) become Ax = — Σ t ^ * ^ and A2x = 2Σtr.*(tτArA9)er*e$—2Σr,i(M)*(M).
Since Δic = β^ + C, then Δ2Jc = J5(ΔJc). Applying ^(~, er*^r) to this relation and
summing on r, we have Hr\Ar\

2=0. Then Mn is a totally geodesic submani-
fold of Em, that is to say that Mn is (a piece of) the n-dimensional Euclidean
space.

Moreover, we can easily prove that when Mn — En,

0

Now we suppose aΦO. Since Mn has the parallel curvature vector in Em,
then Den+ί=0 and α is a constant. Differentiating Ax — Bx + C along X, an
arbitrary tangent vector of Mn, we have

r

+(BX)xt+(Bx)Xt-na(An+1X)*x=O.

Finding the er*es component of (3.1) we have

(3.2) (BX, erXx, es>+<BX, esXx, er>=0.

In (3.2), let r~s and sum on s, we know

(3.3) (BX, xNy=Q.

From (3.2) we also have
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(3.4) <BX, er>xN+<x, erXBX)N=O.

Combining (3.3) and (3.4), we have (BX)N=0 or xN=0.
CASE 1. xN—0. In this case x—xτ and for any tangent vector Y of Mn,

0=zY(en+1> %>=—(A n + 1x, Y}. Thus An+1x— 0. Finding the en+1*Y component
of (3.1) we have

(3.5) <BX, en+1χx, Y>+2na<X, Y>

+<Bx, en+1XX, Y>+4<An+ιX, F > = 0 .

In (3.5), let X=Y=x, we know

(3.6) <Bx, en+1>=-na.

In (3.5), let X^Y—et and sum on i, we have

(3.7) (n+ΐ)<Bx, en+1>+2n(n+2)a=0.

Combining (3.6) with (3.7) we obtain α = 0 , this is a contradiction with the
assumption aφO.

CASE 2. xNφ0, but <s, en+1>=0. Obviously (BX)N=0. Finding the en+1*Y
component of (3.1) we have

(3.8) <Bx, en+lXX, Y>+2na<X, 7>+4<Λn + 1X, r > = 0 .

In (3.8), let X=Y=et, we have

(3.9) <Bx, en+1>=-2(n+2)a.

Combining (3.8) with (3.9), we obtain An+ιX =aX. Moreover, differentiating
(en+i, x> along X, we have An+1xT=0. Then we have axT=0. If xτ~0, for
any tangent vector X, we know that X(x, *>=0 and <#, x} is a constant. This
means that Mn is contained in a hypersphere, which is certainly a quadric
hypersurface. If xτΦQ we have a=0. This is a contradiction with the as-
sumption that aφQ.

CASE 3. <*n+1, Λ:> =£ 0. Obviously x.v ^ 0 and (BX)N = 0. Then Finding
the en+ί*Y component of (3.1) we have

(3.10) -2na<An+1X, Y><en+U x>

, en+1χX, Y>

From the above relation we know

(3.11) (BXt γy=

Substituting Y—xτ in (3.10), we have
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(3.12) -2naiAn+ιX9 x><βn + 1, x>

+2na<X, x>+<Bx, en+1><X, x>

+<BXy xτ>(x, en+1>+4<An+1X, x>=0.

Finding the Y*Z component of (3.1) we obtain

(3.13) <BX, YXx, Z>+<BX, Z><x, Y>

+<Bx, ZXX, Y>-2na<An+1X, Y><x, Z>

+<Bx, Y><X, Z}-2na<An+1X, Z><x, Y>=0.

Let Y=Z=et in the above equation and sum on /, we have

(3.14) (BX, xτ>+<Bx, X}-2na(An+1X, xτ}=0.

Combining (3.12) with (3.14) we have

(3.15) «Bx, en+1y+2na)xτ-(x, en+1>(Bx)τ+4An+1xτ=Q.

In (3.13), let X=Y=et and sum on i, we know

(3.16) (Σ<Bet, et}-2n2a2)xτ

But by using (3.11), we can from (3.14) obtain

(3.17) Bxτ+(Bx)r=2naAn+iXτ -

Combining (3.17) with (3.15) and (3.16), we know

(3.18) inAn+1xτ

= -{n<Bx, en+ι>+(Σi<Beι, eι}-2n2a2Xen+u x>+2n2a}xτ

In (3.10), let X=Y=et and sum on i, we obtain

(3.19) n(Bx, en+1>+2n2a+4na

+(Σ>i<Bet, eι>-2n2a2Ken+u x>=0.

Combining (3.18) with (3.19) we know

(3.20) An+ιxτ=axτ.

Then

(3.21) X(Bx, xy=(BX, x>+(Bx, X}

=2na<An+ιX, x}=2na2<X, x>=na2X<x, x>,
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where the second equation used (3.14) and the third equation used (3.20). Thus
X((B-na2I)x, x>=0 and

({B-na2I)x, x>=C0,

where / is the identity matrix in SM(m) and Co is a constant.
If B = na2I, substituting B=naΊ in (3.19) we obtain 2n(w+2)α=0. Thus

a—0, this is a contradiction. If Bφna2I, then the above equation tell us that
Mn is contained in a quadric hypersurface. •

THEOREM 3.2. There does not exist a submanifold in Em whose quadric
representation satisfies Ax=Bx.

Proof. Obviously a submanifold in Em satisfying Ax = Bx can not be
minimal. Then aΦO and

(3.22) Bx+Σei*ei + naen+1*x=0.

Finding the e^e3 component of the above equation and sum on /, we have

(3.23) <βχ, xτ>+2n=0.

Applying g(~, en+1*Y) to (3.22), we have

(3.24) 2na<y, x>+<Bx} en+1Xx, Yy+<Bx, YXen+1, x>=0,

and then

(3.25) (2na+<Bx, en+1>)xτ+<en+u x>(Bx)T=0.

But applying gf, en+ί*en+1) to (3.22), we have

(3.26) (2na+<Bx, en+1»<en+u x>=0.

Then (2na+<Bx, en+ιy)=§ or <βn+1, x>=0.
CASE 1. <en+u x>=0 but 2na+(Bx, en+ί>Φθ. Then from (3.25) we know

that xτ=0, this is a contradiction with (3.23).
CASE 2. 2na+(Bx, βn +i>=0 but <en+1, JC>^0. Then from (3.25) we know

(Bx)T=z0. This is also a contradiction with (3.23).
CASE 3. 2na.+(Bx, en+1}=0 and (en+u x) = 0. Finding the ββ*er com-

ponent of (3.22) we have

(3.27) <Bx, eβXx, er>+<Bx, erXx, eβ>=0,

and

(3.28) <Bx, eβ>xϊ+<x, eβ>(Bx)ΰ=Q.

In (3.27) let β—γ and sum on γ, then we have
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(3.29)

Combining (3.29) and (3.28), we know xfi=0 or (BX)N=Q. Finding the
eβ*Y component of (3.22) we have

(3.30) <Bx, eβXx, Y>+<x, eβXBx, Y>=0.

If χχ=Q, then xN=0 and (3.23) become <Bx, x>+2n=0. Differentiating
this relation along tangent vector x, we have (Bx, x>=0. This is a contradic-
tion with (Bx, x>+2n=0.

If XUΦO, we must have (Bx)&=0. Then from (3.30) we know that (Bx)τ

=0, This is a contradiction with (3.23).
Thus in any case, the condition Ax—Bx can not hold. •

THEOREM 3.3. The only n-dimensional submanifold in Em satisfying Ax = C
is the n-dimensional subspace of Em.

Proof. From the proof of Theorem 3.1, we also know that the only mini-
mal n-dimensional submanifold in Em satisfying Ax=C is the n-dimensional
subspace of Em. Let Mn be a submanifold of Em satisfying Ax — C, to complete
this proof, the only thing we need to prove is that a=0.

Suppose aφQ. Differentiating Ax — C along X, an arbitrary tangent vector
of Mn, we have

(3.31)

Finding the en+1*en+ί component of (3.31), we have

(3.32) X(a)<en+u * > = 0 .

If <βn+i, #> =£ 0, then a is constant. Finding the en+1*Y component of
(3.31), we have

(3.33) (nα<*n + 1, x>-2KAn+1X, Y}=na<X, Y>.

Since aφΰ, from (3.33) we know that na(en+u x}—2φQ, and then

(3.34) Λn+1X= — . n a . OX.

Finding the e^et component of (3.31) and summing on i, we obtain

(3.35) 2na<An+1X, x>=0.

Combining (3.34) with (3.35), we have (X, %>=0, that is xτ—0. Moreover,
computing the ek*ek component of A2x=0 and summing on k, we have α=0,
this is a contradiction with the supposition
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Suppose that (en+u x>=0. Finding the en+ι*en+ι component of Δ 2£=0, we

can have n2a2+2\An+ί\
2=Q, then a=0. This is also a contradiction. •
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