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SUBMANIFOLDS WHOSE QUADRIC REPRESENTATIONS
SATISFY A#=Bx+C

JitaN Lu

Abstract

Let x: M*—E™ be an isometric immersion of an n-dimensional Riemann-
ian manifold into the m-dimensional Euclidean space. Then the map ¥=xx!
(where ¢ denotes transpose) is called the quadric representation of M™. In
this paper, we give some results on submanifolds in the Euclidean space E™
which satisfy A¥==B#%+C, where B and C are two constant matrices.

1. Introduction

Let x: M*—E™ be an isometric immersion of an n-dimensional Riemannian
manifold into the m-dimensional Euclidean space, and SM(m) be the mXm real
symmetric matrices space (this space becomes the standard (1/2)m(m+1)-dimen-
sional Euclidean space when equipped with the metric g(P, Q)=(1/2)tr(PQ)[4]).
We regard x as a column matrix in E™ and denote by x! the transpose of x.
Let #=xx*’. Then we obtain a smooth map %: M*—SM(m). Since the coor-
dinates of % depend on the coordinates of x in a quadric manner, we call ¥ the
quadric representation of M™([5]). X% is an important map, because it has
many interesting relations with the geometric properties of the submanifold.
In fact, for the hypersphere centered at the origin embedded in the Euclidean
space in the standard way, the quadric representation is just the second standard
embedding of the sphere. In [5], I. Dimitric established some general results
about the quadric representation, in particular those relative to the condition of
% being of finite type. In [8], the author gave some classification results for
hypersurfaces in E™ which satisfy A¥=BX¥+C with B and C are two constant
matrices. In this paper, we will study submanifolds in E™ which satisfy the
same condition A¥=B%-+C. We prove that an n-dimensional submanifold with
parallel mean curvature vector which satisfy A¥=B%+C must be the n-di-
mensional Euclidean space or contained in a quadric hypersurface, but there is
no submanifold in E™ satisfying A¥=B%. We also prove that the only sub-
manifold in E™ satisfying A¥=C is a lower dimensional Euclidean space.
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2. Preliminaries

Let us fix the notations first. Let x: M®—E™ be an isometric immersion
of an n-dimensional Riemannian manifold into the m-dimensional Euclidean
space. We denote by H the mean curvature vector of M® in E™ Let e, ...,
€u, €ns1, ..., em be local orthonormal vector fields along M™, such that e, ...,
e, are tangent to M™ e,.,, ..., ¢, are normal to M™, and e,,, is parallel to
H. Then H=ae,,,;, where a is the mean curvature of M™ in E™, Let {,)
and V be the Euclidean metric and the connection of E™, and denote by V, 4,
D, A,, | A,| respectively, the connection of M", the second fundamental form
of M™ in E™, the normal connection of M™ in E™, the Weigarten endomor-
phism relative to the normal direction ¢,, and the length of A,, r=n-1, ..., m.

In this setting, the indices 7, j, & always range from 1 to #n, 7, s, ¢ from
n+1l to m and B, y from n+2 to m. At any point x&M™", for any column
vector V in E™, we denote by V=2V, eye, Vy=2V, ¢ e,, and Vz=
2 ﬁ(V, eﬂ>e5.

We define a map * from E™XE™ into SM(m) by VsW=VW!+WV?, for
column vectors V and W in E™. Then V«W=WxV. Let V denotes the Eucli-
dean connection of SM(m), then we have ([5]):

@.1) VoW kW o) = (VW W o+ W (VW) ,

(2.2) gV xV,, WisWo)=<KV |, W DXV, WDV, WXV, W,
and

2.3) AVxW)=AVxW + V*(AW)—ZZ;‘,(VE iV)*(VeiW) s

where V, W, W,, W,, V, and V, are all vectors in E™, and A is the Laplacian
operator of M™.
Using (2.3), by a lengthy but direct computation, we have

2.4 AX=—nae, *x—e*e,,
and
(2.5) At¥=4ne, . *grada

+(n?a®+2] Apiil®enii*en .
+2n(Dgrad aenH)*x_na(ADenn)*x
+43p(trAn 1 Ap)eniveg—n’a(grad a)xx

—2n(An.. grad a)xx —2na(3, Ap, 2,)%X

én+1

+4nai(De,en)*e; 2305 (trAgAy)egkey
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- nazﬂ(trAﬂAnn)eﬂ*x —23,,i(Are)x(Aqe,)
—nAa+al Al enxx —2na>li(An,e)%e, .

Without noting, in this paper, we always denote by X, ¥ and Z the tangent
vector of M™, by & and  the normal vector of M” in E™, and V and W the
column vector in E™,

3. Submanifolds satisfying A¥=Bx+4C

THEOREM 3.1. Let x: M™—E™ be an isometric immersion with the parallel
mean curvature vector. If its quadric representation satisfies A¥=B%+C, then
M™ must be (a prece of) the n-dimensional Euclidean space or contained in a
quadric hypersurface.

Proof. If M™ is a minimal submanifold of E™, that is a=0, then (2.4) and
(2.5) become A% = —3;exe, and A X =233, (trA,Ay)exe;—23, i(Aqe)x(A,e,).
Since A¥=B%-+C, then A**=B(A%). Applying g(~, e,*e,) to this relation and
summing on r, we have >),|A,|?=0. Then M™" is a totally geodesic submani-
fold of E£™, that is to say that M™ is (a piece of) the n-dimensional Euclidean
space.

Moreover, we can easily prove that when M"=E?",

2

0

Now we suppose a++0. Since M" has the parallel curvature vector in E™,
then De,,;=0 and a is a constant. Differentiating A¥=B%+C along X, an
arbitrary tangent vector of M", we have

3.1 naen,,l*X—i-Z}r](ArX)*er
+(BX)x'+(Bx)Xt—na(A, ., X)xx=0.
Finding the e,xe, component of (3.1) we have
(3.2) (BX, e,>{x, esy+<BX, e;><x, e,>=0.
In (3.2), let »=s and sum on s, we know
(3.3) {BX, xx>=0.

From (3.2) we also have
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(3.4) (BX, e;>xy+<x, ex)(BX)y=0.

Combining (3.3) and (3.4), we have (BX)y=0 or x5=0.

CASE 1. xy=0. In this case x=xr and for any tangent vector ¥ of M™",
0=Y<ens1, x>=—CAp1x, Y>. Thus A,,;x=0. Finding the e¢,,;*Y component
of (3.1) we have

3.5) (BX, e,.0¢{x, Y>4+2nalX, V)
+<{Bx, en XX, Y>+4KAuruX, Y>=0.
In (3.5), let X=Y =x, we know
(3.6) {Bx, ez, y=—na.
In (3.5), let X=Y =e¢, and sum on 7, we have
(3.7 (n+1XBx, en.>+2n(n+2)a=0.

Combining (3.6) with (3.7) we obtain =0, this is a contradiction with the
assumption a+0.

CASE 2. xy+#0, but <x, e,,,>=0. Obviously (BX)y=0. Finding the e,.,*Y
component of (3.1) we have

3.8 {Bx, en. )X, YD4+2nalX, Y>4+4<{A, 1 X, Y>=0.
In (8.8), let X=Y =e¢,, we have
(3.9) (Bx, enyd=—2(n+2)a.

Combining (3.8) with (3.9), we obtain A, X=aX. Moreover, differentiating
{en.1, x> along X, we have A, xr=0. Then we have ax;=0. If x,=0, for
any tangent vector X, we know that X<{x, x>=0 and <{x, x)> is a constant. This
means that M™ is contained in a hypersphere, which is certainly a quadric
hypersurface. If x7#0 we have a=0. This is a contradiction with the as-
sumption that a=+0.

CASE 3. <eu.1, ) #0. Obviously xy # 0 and (BX)y =0. Then Finding
the e,.,*Y component of (3.1) we have

(3.10) —2nalAn, X, Y){en.1, x>
+2nalX, Y>+<{Bx, e, <X, ¥>
+<(BX, Y {x, en,0+4{Ar X, Y)=0.
From the above relation we know
(3.11) (BX, Y>=<(X, BY>.

Substituting Y =x, in (3.10), we have
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(3.12) —2nalA, X, x)en,1, X
+2nadX, x>+<Bx, en.1 <X, x>
+<(BX, 2<%, ens>+ 4K AnuX, x>=0.
Finding the Y*Z component of (3.1) we obtain
(3.13) (BX, YXx, Z)+<{BX, Z)Xx, Y
+{(Bx, ZXXX, Y>—2nalA, X, Y XXx, Z)
+<{Bx, YXXX, Z>—2naA,.X, Z)Xx, Y)=0.
Let Y=Z=e, in the above equation and sum on 7/, we have
(3.14) (BX, xr)+<{Bx, X)—2nalAn.X, xr>=0.
Combining (3.12) with (3.14) we have
(3.15) (Bx, en.p+2na)xr—<x, e D(Bx)r+4Anaxr=0.
In (3.13), let X=Y =e¢, and sum on 7, we know
(3.16) (;<Be“ e,>—2n%a%)xr
+Bxr+(n+1)Bx)r—2naA, .. xr=0.
But by using (3.11), we can from (3.14) obtain
(3.17) Bxr+(Bx)r=2naAn.xr.
Combining (3.17) with (3.15) and (3.16), we know
3.18) dnA, . xr
=—{n{(Bx, en:>+(Zi(Be,, e.)—2n’a’)en.y, x>+2n°atxr.
In (3.10), let X=Y =e¢, and sum on 7, we obtain
3.19) ni{Bx, e,,.>+2n’a+4na
+(Zi{Be,, e,>—2n*a*)<en,1, x>=0.
Combining (3.18) with (3.19) we know

(3.20) ApXr=axyp.
Then
(3.21) X{(Bx, xy={BX, x>+<{Bx, X>

=2nalA, X, x>=2naX, x>=na’X<{x, x),
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where the second equation used (3.14) and the third equation used (3.20). Thus
X{(B—na®l)x, x>=0 and

{(B—nal)x, x>=0C,,

where [ is the identity matrix in SM(m) and C, is a constant.

If B=na?l, substituting B=na*l in (3.19) we obtain 2n(n+2)a=0. Thus
a=0, this is a contradiction. If B#na®l, then the above equation tell us that
M™ is contained in a quadric hypersurface. ]

THEOREM 3.2. There does not exist a submanifold in E™ whose quadric
representation satisfies A¥=BZX.

Proof. Obviously a submanifold in E™ satisfying AX¥ = BX can not be
minimal. Then a+#0 and

(3.22) BJ?-{-Z‘}ei*ei—f-naen“*x:O.

Finding the e;xe, component of the above equation and sum on j, we have
(3.23) {Bx, xr>+2n=0.

Applying g(~, e,..*Y) to (3.22), we have

(3.24) 2nacY, x>+<{Bx, en.1){x, Y>+{(Bx, Y){ez.1, x)=0,
and then
(3.25) @na+<{Bx, e, D) xr+<ens, x)(Bx)r=0.

But applying g(~, en,i*en.1) to (3.22), we have
(3.26) @na+<{Bx, ens1>)Xen.1, x>=0.

Then 2na-+<{Bx, e,,,))=0 or <e,.;, x>=0.

CASE 1. <eps1, x)=0 but 2na+<Bx, e¢,.»#0. Then from (3.25) we know
that xy=0, this is a contradiction with (3.23).

CASE 2. 2na+<Bx, e,.,>=0 but <e,.1, x>#0. Then from (3.25) we know
(Bx)y=0. This is also a contradiction with (3.23).

CaSE 3. 2na+<{Bx, e,,,>)=0 and {ey.,;, x> =0. Finding the e¢gxe, com-
ponent of (3.22) we have

(3.27) {Bx, eg){x, ey>+<{Bx, ¢;>{x, eg»=0,
and
(3.28) (Bx, eg>xy+<x, egd(Bx)y=0.

In (3.27) let B=y and sum on 7, then we have
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(3.29) (xw, (Bx)§>=0.

Combining (3.29) and (3.28), we know x%=0 or (Bx)y=0. Finding the
egxY component of (3.22) we have

(3.30) {Bx, eg>{x, Y>+<x, eg)<{Bx, Y>=0.

If x5=0, then xy=0 and (3.23) become <Bx, x>+2n=0. Differentiating
this relation along tangent vector x, we have <{Bx, x>=0. This is a contradic-
tion with <Bx, x>+2n=0.

If x5+0, we must have (Bx)y=0. Then from (3.30) we know that (Bx)p
=0, This is a contradiction with (3.23).

Thus in any case, the condition A¥=B% can not hold. |

THEOREM 3.3. The only n-dimensional submanifold in E™ satisfying AZ=C
is the n-dimensional subspace of E™.

Proof. From the proof of Theorem 3.1, we also know that the only mini-
mal n-dimensional submanifold in E™ satisfying A¥=C is the n-dimensional
subspace of E™. Let M" be a submanifold of E™ satisfying A¥=C, to complete
this proof, the only thing we need to prove is that a=0.

Suppose a+0. Differentiating A¥=C along X, an arbitrary tangent vector
of M™, we have

(3.31) nX(@)e,, %x+nae, .+ X
+na(Vye,,)*x+23:(Vye)xe,=0.
Finding the e,,,;*e,,, component of (3.31), we have
(3.32) X(a)en.1, x>=0.

If <en,i, x> # 0, then a is constant. Finding the e,.,,*Y component of
(3.31), we have

(3.33) (naen 1, x>—2XAnuX, Y>=nal{X, Y>.

Since a=+#0, from (3.33) we know that na<e,,;, x>—2+0, and then

na
(3.34) ApnX= WX

Finding the e;*e, component of (3.31) and summing on 7, we obtain
(3.35) 2naAn X, x>=0.

Combining (3.34) with (3.35), we have <X, x>=0, that is x;=0. Moreover,
computing the e,*e; component of A’¥=0 and summing on k2, we have a=0,
this is a contradiction with the supposition a=+0.
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Suppose that <{e,,;, x>=0. Finding the e, *e,,; component of A’¥=0, we
can have n’a®+2|A,..|*=0, then «=0. This is also a contradiction. n
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