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TOTALLY GEODESIC SUBMANIFOLDS OF RIEMANNIAN
MANIFOLDS AND CURVATURE-INVARIANT SUBSPACES

KazumMmi TSUKADA

1. Introduction

An isometric immersion ¢: S— M of a Riemannian manifold S into another
Riemannian manifold M is called totally geodesic if the geodesics in S are carried
into geodesics in M. We call such a pair (S, ¢) a totally geodesic submanifold
of M. Nevertheless, identifying S and the image ¢(S), we often call the subset
¢(S)in M a totally geodesic submanifold. Local problems are generally discussed
in such a way. Among submanifolds of a Riemannian manifold, totally geodesic
ones are fundamental.

Totally geodesic submanifolds of Riemannian symmetric spaces have been
well investigated and it has been shown that they have beautiful and fruitful
properties. In particular, due to the (M,, M_)-theory by B.Y. Chen and T.
Nagano ([3]) this subject has made great progress. The author has a wish to
understand well totally geodesic submanifolds of “general” Riemannian manifolds
and obtained a few results in this paper.

We are concerned with three problems in this paper.

PROBLEM 1. For a given subspace V in a tangent space T,M, find good (or
practical) criteria to conclude that there is a totally geodesic submanifold through
p whose tangent space at p is V.

For this problem, we recall a theorem of E. Cartan is section 2 (Theorem
2.1 in this paper), which becomes a remarkable criterion if M is a Riemannian
symmetric space. That is, there is a totally geodesic submanifold whose tangent
space is V if and only if V is a curvature-invariant subspace with respect to the
Riemannian curvature tensor R, i.e.,

(1.1) R(x, y)z€V for any x, y, z€V.

Is there such a criterion as above for a wider class of Riemannian manifolds ?
For example, for homogeneous Riemannian manifolds does there exist a finite
number d such that a condition similar to (1.1) for R, VR, ---, V¢R implies the
existence of totally geodesic submanifolds? In this paper we will show this for

Received April 1, 1996.
395



396 KAZUMI TSUKADA

naturally reductive homogeneous spaces (Theorem 2.3). And in section 7, with
the same sense as the above question, we make “experiments” classifying totally
geodesic surfaces in 3-dimensional Lie groups with left invariant Riemannian
metrics (Theorem 7.2 and its observations).

In section 3, to understand totally geodesic submanifolds in another point
of view, we introduce a distribution ® on the Grassman bundle over a Rie-
mannian manifold, which is an extension of the notion of geodesic spray on
the unit sphere bundle. We show the relation between totally geodesic sub-
manifolds and integral manifolds of ® (Theorem 3.1). Applying this relation,
we consider the global existence problem of totally geodesic submanifolds
(Theorem 3.5 and Theorem 3.6). These results are reformulations of a theorem
of H. Reckziegel ([11]) and a theorem of R. Hermann ([7]).

It is a natural idea that “general” Riemannian manifolds will not have any
r-dimensional totally geodesic submanifolds for 2<r<n—1. In fact, M. Spivak
states in his book ([12], p. 39) as follows: “It seems rather clear that if one
takes a Riemannian manifold (N, <,)) “at random”, then it will not have any
totally geodesic submanifolds of dimension >1. But I must admit that I don’t
know of any specific example of such a manifold”. This yields our second
problem.

PROBLEM 2. Show that “general” Riemannian manifolds do not have any
r-dimensional totally geodesic submanifolds for 2<r<n—1. Give specific examples
of Riemannian manifolds which do not have any totally geodesic submanifolds.

Our results related to this problem are Theorem 5.4, examples after Prop-
osition 6.6, and an observation of Theorem 7.2.

The following algebraic problem is motivated by Theorem 2.1 and it will
play an important role in investigating totally geodesic submanifolds of Rie-
mannian manifolds.

PROBLEM 3. Given a curvature tensor R on R®, classify curvature-invariant
subspaces with respect to R.

In sections 4 and 5, we study curvature-invariant subspaces. Let G,(R"™) be
the Grassmann manifold of r-dimensional subspaces in R*. How are r-dimen-
sional curvature-invariant subspaces characterized in G,.(R")? Some answers to
this question are given as Theorem 4.1, Theorem 4.4, and Corollary 4.5. In the
case of hyperplanes, such characterizations are stated as Proposition 4.6, Prop-
osition 4.7, and Theorem 4.8. Theorem 4.8 is a variation of so-called axioms
of planes. That is, the existence of many curvature-invariant subspaces implies
that its curvature tensor is of constant sectional curvature. As an application
of Theorem 4.8, a slight generation of Theorem 1 in B.Y. Chen ([2]) is obtained
as Corollary 4.9. In section 5, we will classify curvature-invariant subspaces
with respect to curvature tensors of special form (Propositions 5.1, 5.2 and 5.3).
Applying these results, we construct examples of curvature tensors which don’t
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have any r-dimensional curvature-invariant subspaces of 3<r<n—1 (Theorem
5.4). Comparing with Corollary 4.2, we see that it is different from 2-dimen-
sional case

In sections 6 and 7, we will classify totally geodesic submanifolds of specific
and simple Riemannian manifolds. It also has the meaning of testing adequacy
of our problems and our results. In section 6, we classify totally geodesic
submanifolds of hypersurfaces in R**! defined by the equations: a,(x!)?*+ a;(x2)?
4+ o Fap(x")2=1 (a;#0 =1, 2, -+, n+1) or (xV)P+(x23+ - F(x"*)i=1
(Theorem 6.5 and Theorem 6.7). In section 7, Totally geodesic surfaces of
3-dimensional Lie groups with left invariant Riemannian metrics are classified
(Theorem 7.2).

2. Preliminaries—A theorem of E. Cartan on the existence of totally
geodesic submanifolds of Riemannian manifolds

In this section, we shall recall a theorem of E. Cartan on the existence of
totally geodesic submanifolds of Riemannian manifolds and state related results.

Let M be an n(=3)-dimensional Riemannian manifold. We introduce some
notation. For a vector u in the tangent space T,M at p=M, we denote by 7,
the geodesic through p whose tangent vector at p is u# and denote by R,(¢) the
(1, 3)-tensor on T,M obtained by the parallel translation of the curvature tensor
at 7,(t) along the geodesic y,. We define a (1, 2)-tensor 7,(f) on T,M by
ro()(x, »)=R,(t)(u, x)y, x, yeT,M. Now we can give an answer to Problem
1 in section 1. The following theorem is fundamental in our study, which is
due to E. Cartan (cf. R. Hermann ([7])).

THEOREM 2.1. Let V be a subspace of T,M. Then the following three
conditions are equivalent.

(1) There is a totally geodesic submanifold of M through ) whose tangent
space at p s V.

(2) There is a positwe number ¢ such that for any unit vector ueV and
any te(—e, ¢), the following holds:

2.1) R, (t)(x, v)z€V  for any x, vy, z€V.

(8) There is a positive number ¢ such that for any unit vector u€V and
any tE(—¢, ¢€), the following holds:
2.2) r ()(x, y)EV for any x, yEV.

Remark. The third condition in Theorem 2.1 is evidently weaker than the

second one. The formulation of the third condition is due to K. Tojo ([13]).
The following is immediately seen.
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COROLLARY 2.2, Let M be a real analytic Riemannian manifold and V be
a subspace of Tp,M. Suppose that for 0<i<oo, the following holds:

(2.3) ViR)u, ++-, u;u, x, )€V  for u, x, yEV,

where ViR denotes the i-th covariant derivative of R. Then there is a totally
geodesic submanifold of M through p whose tangent space at p is V.

In view of Corollary 2.2, we have the following question: Does there exist
a finite number d such that the condition (2.3) for 0<:<d implies the existence
of a totally geodesic submanifold? We shall show that there exists such
number for naturally reductive homogeneous spaces. Let M=K/H be a naturally
reductive homogeneous space with an Ad(H)-invariant decomposition f=§-+m
and with the Ad(H)-invariant inner product <{,)» on m such that

2.9 Lx, ¥1m 2>+<y, [x, 2Jup>=0 for x, y, z&m

(cf. S. Kobayashi and K. Nomizu [8] Chapter X). As usual, we identify m
with the tangent space T,M at the origin o (=the coset H) of M. We denote
by z(h) the diffeomorphism of M induced by heK. We put 4: mXm—m by
A(x)y=1/2[x, y]m for x, yem. Then (2.4) means that A(x) is a skew-symmetric
linear endomorphism of (m, <,>). Therefore 4% is a linear isometry of
(m, {,>). Since the Riemannian connection is a natural torsion-free connection
on K/H, the following properties hold ([8], Ch. X):

(i) For each x&m, the curve y.(f)=7(exptx)(o) is a geodesic with y,(0)=o,
=(0)=x.
’ (ii) The parallel translation along y. is given as follows;

t(exptx)xe 4@ 1 TM(=m)—T; M.

(iii) The (1, 3)-tensor R.(¢f) on m obtained by the parallel translation of the
curvature tensor along y. is given as follows:

R (H)=e"®.R,.

In the above, R, denotes the curvature tensor at the origin o and ¢*4® .denotes
the action of ¢4 on the space ®(m) of curvature tensors on m. The formulas
(ii) and (iii) are explicitly proved in K. Tojo ([13]). For each uem, we denote
by %, the smallest subspace of R(m) which satisfies R,&R, and A(u) - R, CR,.
We define d(u) by d(u)=dim R,. Trivially we have d(u)<dim R(m).

THEOREM 2.3. Let M=K/H be a naturally reductive homogeneous space and
V be a subspace of m (=T,M). Suppose that for each unit vector ucV, the
following holds :

(2.5) VRY(u, -+, u; u, x, y)EV  for 0=i<d(u), and x, yeV.
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Then there is a totally geodesic submanifold of M through o whose tangent space
at o is V.

Proof. At first, we recall the fundamental fact on the curve in the
m-dimensional Euclidean space R™. Let ¢:/—R™ be a curve defined on an
open interval I of R into R™. We say that ¢ has constant osculating rank r if
for all te1, its higher order derivatives ¢’(t), ---, ¢(™(¢) are linearly independent
and c¢’(¢), ---, ¢"*D(t) are linearly dependent in R™. It is a fundamental fact
that if ¢ has constant osculating rank 7, there exist smooth functions a,, ‘-, a,:
I— R such that

c®)=c(0)+ a,(t)c’(0)+ --- +a(H)c™(0) for all tel.

We return to a naturally reductive homogeneous space M. For a unit vector
usV, R, (t)=et4™.R,is a curve in ®(m). Since ¢!4™ is a l-parameter subgroup
of the group of linear isometries of %(m), the curve R,(?) has constant osculating
rank ». Therefore we have

R.®)=Ru(0)+a,O)R0)+ -+ +a, ()R (0).

We note that R{»(0)(x, ¥)z=(ViR)(w, -, u; x, y, z). Hence from the condition
ViRY(u, -+, u; u, x, y)eV for 0<i<r and x, yV, it follows that »,(#)(x, y)eV
for x, y€V and all ¢. On the other hand, since R (0)=A(u)*-R,, R, coincides
with the subspace of %(m) spanned by R,, A(u)-R,, -+, A" (u)-R,. In particular,
we have r=d(u)—1 or d(u). O

3. An extension of geodesic spray and the existence of
totally geodesic submanifolds

Let M be an n-dimensional Riemannian manifold and P be the bundle of
orthonormal frames over M with structure group O(n). We fix an integer 7,
1<r<n—1 and denote by G.(R*)=0(n)/O(r)XO(n—r) the Grassmann manifold
of r-dimensional subspaces of R*. Let G,.M) be the set of all »-dimensional
subspaces of the tangent spaces at all points of M, i.e.,

G.(M)={(p; V)|pesM, V is an r-dimensional subspace of 7,M}.

Then it is the associated fibre bundle with P with standard fibre G,(R") which
is expressed by PXowmG(R*) or by P/O(r)XO(n—v). The bundle G.(M) is
called the Grassmann bundle over M and sometimes simply denote by E in this
section. We use the following symbols for associated projections :

n: P—M,
g E—>M,

p:P—E.
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Here the projection p is explicitly described as p(u)=(w(u); {u(e,), ---, ule)}r)
for ue P, where {e,, ---, ¢,} is the natural basis of R™ and {u(e,), -, u(e,)}z
denotes the subspace of T,,M spanned by orthonormal vectors u(e,), ---, u(e,).

Let w and & be the Riemannian connection form and the canonical form
on P, respectively; ® is an o(n)-valued 1-form and & is an R™-valued 1-form.

With respect to the natural basis ¢y, -+, e, of R™, we write =37, 0%,. We
define a distribution ® of dimension » on P as follows: For each uP, we set
Du={XET,P| o(X)=0, §7*(X)= --- =07(X)=0}.

%, is characterized as the subspace of T, P which satisfies DuC K, and 74(Dy)
={ule,), ---, u(e,)}r, where 4, denotes the horizontal subspace of T,P with
respect to the Riemannian connection w. We denote by R, the right action on
P by a€0(n). We remark that for acO0(r)XO0(n—r), Rz4Du,=Dy, and hence
txuDu= ftsneDuqa. For each a=(p; V)€ E=G,M), we choose ucP such that
p(w)=c and set D,=px,D,. By the preceding remark it follows that D, is
independent of the choice of u=P such that p#(u)=0¢ and hence it is well-defined.
Moreover we have nE*@a=n*§~Du={u(el), -, u(er)}g=V. Thus a distribution ®
of dimension » on the Grassmann bundle G,(M) has been defined. We consider
the case of »=1. Let UM be the unit tangent bundle over M and G be the
geodesic spray defined on UM. We denote by p the bundle homomorphism of
UM onto G(M) which is naturally defined. Then we have ®,)={0+G:}r for
all x€UM. So we can view the distribution ® on G, (M) as an extended
notion of geodesic spray.

We shall show that integral manifolds of the distribution ® on G,(M) are
in one to one correspondence with r-dimensional totally geodesic submanifolds
of M. It is an analogous property to that of geodesic spray.

THEOREM 3.1. Let f: S— M be a totally geodesic imbedding of an r-dimen-
sional connected Riemannian manifold S into M and g be the mapping of S into
the Grassmann bundle G.(M) defined by g(p)=(f(p); f+«TpS) at p&S. Then the
image g(S) is an integral manifold of the distribution D.

Conversely let S be an integral manifold of ® on G.M). The restriction
of the projection mg: G,(M)— M to S is a totally geodesic immersion of S into M.

Proof. We will review the theory of submanifolds for the proof of Theorem
3.1. For this we follow [8] Chapter VI and describe submanifolds using the
notion of frame bundles.

Let f:S— M be an imbedding of an r-dimensional connected manifold S
into M. We identify S with the image f(S) by f if there is no danger of
confusion ; for any point p of S we shall denote f(p)M by the same letter
p. Then the tangent space 7,S is a subspace of T,M. Let P|S and E|S be
the principal fibre bundle and its associated fibre bundle over S induced by f
from the orthonormal frame bundle over P and the Grassmann bundle E=G.(M)
over M, respectively. P|S and E|S are given by
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P|S={uesP| n(u)eS},
E|S={ceFE | ng(e)=S}.

We denote by the same letter ; the injective homomorphism of P|S into P and
that of E|S into E. Associated with the imbedding f, the mapping g:S— FE
=G(M) is defined by g(p)=(f(p); f«T»S) (=(p; T,S) under the preceding
identification). Clearly we have mzeg=f and we can view g as a cross section
of S into E|S. A frame u=P|S at peS is said to be adapted if {ule,), ---,
u(e,)} is a basis of T,S and hence {u(e,.;), ---, u(es)} is a basis of the normal
space T3S. The set Q of adapted frames forms a principal fibre bundle over
S with structure group O(r)XO(n—r). @Q is the subbundle of P|S. It corre-
sponds to the cross section g of F|S ([8] Chapter I Proposition 5.6). That is,
the following holds: Q={uecP|S | p(u)=g(x(w))}, where = and p denote the
projections of P|S— S and that of P|S— E|S, respectively. We denote by i
the injective homomorphism of @ into P|S. Then we have the following

diagrams :
Q
S
E|S

—_— E
g REl lﬂ'l-;'
/
S ——M

Let o' =j*®w be the connection on P|S which is the restriction of the
Riemannian connection w on P. We note that the connection @' on P|S is
reducible to a connection on the subbundle @ if and only if S is a totally
geodesic submanifold of M (cf. [8] Chapter VI Proposition 3.5 or Proposition
8.2). Let 4’ be the horizontal distribution on P|S defined by «’. A distribution
%’ of dimension » on E|S is defined as follows. For each ¢=E|S we choose
uEP|S such that p(u)=c and set D;=ps 4. Now we recall that @ is the
subbundle of P|S corresponding to the cross section g:S— E|S. It is known
that the connection w’ on P|S is reducible to a connection on @ if and only if
at any point pES, g+«T,S=Dj,» holds ([8] Chapter I Proposition 7.4). We
see that jx9,=D, for each u=Q. In fact, we have w(j4%,)=w'(H})=0 and
TefxH v=FfsTsxH 0= fsTraS={uley), -+, u(e,)}r. Also we see that ;D=
D, for each peS. In fact, choosing usQNz~'(p), we have p(u)=g(p) and
T35y =Japtse I u=pr]xH 0= pxDu=Dy p).

]

,11 l
i f
S — M

«—>

J
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Now we shall prove Theorem 3.1. Let f:S—M be a totally geodesic
imbedding. Then the connection w’ on P|S is reducible to a connection on the
subbundle Q. From this it follows that for each point p&S, g«T,S=Dj
holds. Since j4+®;p=D,(», the image g(S) is an integral manifold of the
distribution D,

Conversely let S be an integral manifold of the distribution ®©. We denote
by f the restriction of zx to S. Since for each ¢=G,M), =gz restricted to
the subspace ¥, is injective, f is an immersion. For each o=(p; V)=SCG.(M),
we have f(o)=ng(o)=p and fu(T,S)=7e(D,)=V. Therefore the mapping
g:S—G.M) associated with f is exactly an inclusion mapping. We proceed
backward and see that f is totally geodesic. O

Now we shall study the global existence problem of totally geodesic sub-
manifolds. Our results stated here have been already obtained by H. Reckziegel
([11]) and R. Hermann ([7]). We will state them by another way, applying
the preceding theorem:.

We need to consider integral manifolds of a distribution which is not
necessarily involutive. Even in this case, we can show the existence of maximal
integral manifolds, exactly following the proof in the case of an involutive
distribution (performed in C. Chevalley [4] Chapter I §Vil). Let N be a
manifold and ® be a distribution of dimension » on N. We don’t assume that
D is involutive. We state the following preparatory lemma which is essentially
a consequence of 2.1 Affinity lemma in P. Dombrowski ([5]).

LEMMA 3.2. Let S be an integral manifold of ®. For each point pES,
there exists a neighborhood U of p in N which satisfies the following property.
If I is an open interval of R containing 0 and y: I— N is a C*-curve in N such
that y(0)=p, yI)CU, and y'®)EDs« for any tE1, then y(I) is contained in S
and y is a C*-mapping of I into S.

By this lemma, we obtain the following proposition, which corresponds to
Chapter Il § VI Proposition 1 in [4].

PROPOSITION 3.3. Let S and S’ be two integral manifolds of ® containing
a point p in common. Then there exists an integral manifold containing p such
that it is an open submanifold of both S and S’.

After preparing this proposition, we can proceed by the same way as the
case of an involutive distribution. Let 4 be the subset of N defined by

d={peN | there exists an integral manifold of ® containing p}.

We shall define a topology on 4. Let © be the family of those subsets of 4
which may be represented as unions of collections of integral manifolds of D.
O satisfies the axioms of the family of open sets and hence provides a topology
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on 4. Since for an arbitrary open subset U in N we have UNJE0O, I equipped
with this topology is a Hausdorff space. Let S be a connected component of
J. Then S can canonically be equipped with the structure of an r-dimensional
manifold and further it is an integral manifold of ®. Thus we have the
following.

THEOREM 3.4. Let D be a distribution of dimension r on N which is not
necessarily involutive and 9 be the set of points of N which are contained in
integral manifolds of ®. Then for each p&d, there exists a maximal integral
manifold containing p, i.e., an integral manifold which is not a subset of any
larger integral manifold. Any integral manifold containing p is an open sub-
manifold of this maximal integral manifold.

Applying Theorem 3.4, we shall show the existence of maximal totally
geodesic submanifolds. H. Reckziegel in [11] proved the existence of maximally
expanded isometric immersions with parallel second fundamental form. Our
assertion is evidently a consequence of his result. In this paper we construct
maximal totally geodesic submanifolds by another way. Let ® be the distri-
bution of dimension » on the Grassmann bundle G.(M) which is defined in
Theorem 3.1. We denote by 4 the set of points of G.(M) which are contained
in integral manifolds of ®. By Theorem 3.1, 4 coincides with the set of
elements ¢=(p; V) in G.(M) which satisfy one of the equivalent three conditions
in Theorem 2.1. Then we have the following.

THEOREM 3.5. For each c=(p ; V)EJ, there exists a maximal totally geodesic
immersion ¢:S— M of an r-dimensional connected Riemannian manifold S into M
in the fellowing sense: Let f: N—M be any totally geodesic immersion of an
r-dimensional connected Riemannian manifold N into M through p whose tangent
space at p is V. Then there exists an isometric immersion g:N—S such that

¢og=f.

Proof. By Theorem 3.4, we take a maximal integral manifold S of ®
containing ¢. Let ¢ be the restriction to S of the projection 7g: G.(M)— M.
Then by Theorem 3.1 ¢ is a totally geodesic immersion of S into M. Let
f:N—M be a totally geodesic immersion which satisfies the assumption of
our theorem. We set g: N— G.(M) as g(q)=(f(q); f«T,N) for g=N. For each
g=N, we take a connected neighborhood U of ¢ such that fly:U—M is
imbedding. Then by Theorem 3.1 g(U) is an integral manifold of ®©. Hence
by Theorem 3.4, g(U) is an open submanifold of some maximal integral manifold.
From the connectedness of N, it follows that g(NN) is contained in S and that
g:N—S is an immersion. Clearly we have ¢og=f. This implies that g is
an isometric immersion of N into S. |

From now on we assume that M is a complete Riemannian manifold. We
shall consider a necessary and sufficient condition that given a point pM and
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an r-dimensional subspace V of T,M, there exists a complete totally geodesic
submanifold of M through p whose tangent space at p is V. Our statement
is an another formulation of R. Hermann’s result in [7]. We will prepare the
notation. Let ¢=(p; V)eG,(M) be given. For v&V, we denote by 7,: R—M
the geodesic of M such that 7,0)=p and y40)=v and denote by V(¢) the
subspace of Ty )M obtained by parallel translating V along 7, to the point
7). Evidently we have r)eV(#). We put o,(&)=(yf); V({#). Then gy,:
R—G,(M) is a horizontal curve of G.(M) with respect to the Riemannian
connection with ¢,(0)=¢. Moreover since mg,0,(H)=r,(t)cV(t), we have gy(t)
D, . Using the notation, we formulate the following.

THEOREM 3.6. Let M be a complete Riemannian manifold. For o¢=(p; V)
G, (M), the following two conditions are equivalent :

(1) There is a complete totally geodesic submanifold of M through p whose
tangent space at p is V.

(2) For all veV and teR, o,(t)Ed9, where 9 denotes the subset of G.(M)
defined in Theorem 3.5.

Proof. The implication (1)— (2). Let S be a complete Riemannian manifold
and f:S— M be a totally geodesic immersion with a point oS which satisfies
flo)=p and f4«T,S=V. For veV, we take ucsT,S which satisfies fiu=wv.
Let 7,: R—S be the geodesic of S through o whose tangent vector at o is u.
Then we have f(y.())=7.t) and f4Ty,S=V(t). Here V() denotes the subspace
of Ty, M obtained by parallel translating V along 7, to the point p,(f). Hence
we see that g(ru@)=(7u®); fxTr,S)=@); V())=0,{t). For each teR,
we take a connected neighborhood U of y,() in S such that fly: U—M is
imbedding. Then by Theorem 3.1, g(U) is an integral manifold of ® which
contains g(y.(t))=04{). From this it follows that ¢,(f)edJ.

The implication (2)—(1). By the assumption, we have c=9. We take a
maximal integral manifold S of ® containing ¢. Then ¢g=rg|s is a totally
geodesic immersion of S into M. We shall prove that o,(t)eS for any veV
and tR. By Lemma 3.2 we see that for each { <R there exists a positive
number ¢ such that o) for |{—f,|<e are contained in a maximal integral
manifold containing ¢,(%). From the connectedness of R, it follows that g,({)=S
for all teR. Since ¢(o.(t))=7r4t), 0, is a geodesic of S. Noticing that @«(c4(0))
=70)=v and that ¢, is a linear isomorphism of T,S onto V, we see that the
exponential mapping exp, at o¢<S is defined on all of T,S. Hence S is a
complete Riemannian manifold. 0

We define subsets J* and 4, of G,.(M) for k=0, 1, --- as follows:
IP={e=(p; V)EGM) | (V*R)us, - ur; x, y, 2)EV

for any Uy, -, Ug, X, Y, ZEV}
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Jk:Jm’ NID N ... f\ﬂ(k).
Then 4® and 4, are closed subsets of G,(M). Evidently we see that
I DI D DI DI g1 D

and that N, 9. DJ. Corollary 2.2 implies that N\, J,=J for a real analytic
Riemannian manifold M. In particular 4 is a closed subset of G.(M). By
Theorem 2.3 we see that for a naturally reductive homogeneous space, there
exists a finite integer d such that J;=d.

Applying Theorem 3.6, we have the following.

COROLLARY 3.7. Let M be a real analytic complete Riemannian manifold.
For 6=(p; V), there is a complete totally geodesic submanifold of M through
p whose tangent space at p is V.

Proof. We follow the notation of Theorem 3.6. For veV let ,: R—
G.(M) be a curve defined in Theorem 3.6. We put I={tcR|o,(t)=9}. Since
J is a closed subset of G,.(M) for a real analytic Riemannian manifold, I is
closed in R. On the other hand, as it has been seen in the proof of Theorem
3.6, I is open in R. Since ¢,0)=0c <4, I contains 0. Consequently / coincides
with R. From Theorem 3.6, Corollary 3.7 is thereby proved. O

4. Characterizations of curvature-invariant subspaces

Let R™ be an n-dimensional real vector space equipped with a standard
inner product <{,>. We denote by %R(n) the space of curvature tensors over
R". Given a curvature tensor RE%(n), we call an r-dimensional subspace V
of R® curvature-invariant with respect to R if it holds that

4.1) R(x, v)zeV for any x, v, z&V.

Here we assume that 2<r<n—1 when we have no reference. Viewing Theo-
rem 2.1, we recognize that it is an important problem for investigating totally
geodesic submanifolds to classify curvature-invariant subspaces with respect to
a given curvature tensor. In this section we shall study characterizations of
curvature-invariant subspaces.

Let G,(R™ be the Grassmann manifold of 7-dimensional subspaces of R”.
We want criteria that VeG,.(R") is curvature-invariant with respect to a given
curvature tensor. In the case of =2, we recall a result of R.S. Kulkarni, A
curvature tensor R defines the sectional curvature

K(R): Gy(R™) — R

by K(R)YV)=<R(e, es)es, e,>, where {e,, e,} is an orthonormal basis of V. The
following has been shown by R.S. Kulkarni [9] as Corollary of Proposition 5.1.



406 KAZUMI TSUKADA

THEOREM 4.1. VEG(R"™ is a curvature-invariant subspace with respect to
a given curvature tensor R if and only if V is a critical point of K(R).

Immediately the following two corollaries yield.

COROLLARY 4.2. For every curvature tensor R, there are always curvature-
invariant 2-dimensional subspaces with respect to R.

We note that in the higher dimensional case a different phenomenon from
this occurs. See Theorem 5.4 in the next section.

The following is well-known as the axiom of planes which is due to E.
Cartan.

COROLLARY 4.3. If every 2-dimensional subspace is curvature-invariant with
respect to R, then the curvature tensor R has constant sectional curvature.

We shall consider a generalization of Theorem 4.1 to the case of higher
dimensional subspaces. First we represent the Grassmann manifold G.(R™) as
Riemannian symmetric pair. The rotation group SO(n) acts on G.(R™) transi-
tively. Let e, ---, ¢, be a natural basis of R* and V,={e,, -, ¢,} » be the

r-dimensional subspace linearly spanned by ey, -, ¢.. We define a mapping
7:S0(n)—G.(R") by =n(a)=a-V,={ae, -, ae;}rg={a,, -, a,}p, where a=
(@y, =+, Qpy Qryy, -, G)ES0(n) is written as the row of column vectors

@y, -, Gr, Gry1, **, G The isotropy group at V,&G.(R™) consists of all
matrices of the form

(g g)eSO(n), where a€O0(r) and f=0(n—r).

Denoting this subgroup by S(O(»)XO(n—r)), we have G (R™)=S0(n)/S(O(r)x
O(n—rv)). Hereafter denote simply by G and K, SO(n) and S(O()XO(n—r)),
respectively. We regard G as the total space of the principal fibre bundle
G(G(R™), K) over G.(R™ with structure group K and projection #. Let g and
f be the Lie algebra and the Lie subalgebra of g corresponding to G and K,
respectively. The complement p of the canonical decomposition g=f+p is

given by
0 —tX
={(y )| XeMar B},

where M, _, (R) denotes the space of all real matrices with n—» rows and 7
columns. The tangent space Ty, G.(R") is identified with p by the differential
Ty

Let F, be the natural r-dimensional vector bundle over G,(R*). Namely F,
is the vector subbundle of the trivial bundle G,(R*)X R"* defined as follows:

F={V;v) | VEG.R"), veV}CG.(R")XR".
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F, can be viewed as a vector bundle with standard fibre R™ associated with
the principal fibre bundle G(G.(R"), K) which corresponds to the Lie group
homomorphism of K onto O(r):

(a 0>'_>a
0 B ’
In fact defining a mapping of GXR™ onto F, by
(a;0)eGXR" —> (a-V,; 3 aa*)eFCGR)X R,

we have G X xR"=F,. In particular we can regard a=G as a linear isomor-
phism of R" onto the fibre (F,),.r, at a-V,=G,(R"). We introduce the invariant
connection on the principal fibre bundle G(G.(R"), K) which corresponds to the
canonical decomposition g=f+p. We denote by D the covariant differentiation
in F, defined by the connection. Let I'F, be the space of sections of F, and
exptX be the l-parameter subgroup of G generated by X<p. Then under the
identification of Ty, G,(R") with p, we have the following formula:

d
4.2) DXQIIn(E’lzo(exp tX)-lSD(exp tX)-Vo>

for pI'F, and X&Ty G(R")=p. Here I, denotes the unit matrix. Moreover
exptXeG is regarded as a linear isomorphism of R” onto (Fo)exp:x).v, and
(exp tX) '@ exp ¢t x).v, 1S understood as a curve in R’.

Let TYF)=FfQFfRF*QF, be the vector bundle of type (1, 3) tensors of
F.. We shall define a mapping ¢ of %(n) into the space I'Ti(F,) of sections of
TYF,). For Re®(n) and VG, (R"), we define a (1, 3)-type tensor ¢(R), on
(F)y=V by restricting R to V, i.e.,

d(R)y(x, y)z=the V-component of R(x, y)z, for x, y, z€V,

where we take the V-component with respect to the orthogonal decomposition

R*=V+V*, Evidently ¢ is a linear homomorphism of %(n) into I'TiF,).

Moreover we see that ¢ is injective. In fact, if ¢(R)y=0 for all VeG.(R"),

then R has constant sectional curvature 0 and hence R=0 (Note that 2<r<n-—1).
Now we show the following.

THEOREM 4.4. VEG.(R") is a curvature-invariant subspace with respect to
a given curvature tensor R if and only if DG(R)=0 at V<G (R").

Proof. We can discuss the above assertion at Vo={e,, ---, e,} p Without loss
of generality. Let E] be the nXn matrix such that the entry at the i-th
column and the j-th row is 1 and other entries are all zero. We put €¢=Ef—E*%
(a=r+1, -+, n, k=1, .-, 7). Then {€¢;a=r+1, -, n, k=1, -, r} forms a
basis of p. The l-parameter subgroup expt&f of G generated by &f is given
as follows: Put
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exp i€f=(e\(t), -, ext), erna(®), -+, en(t))
as the row of column vectors e,(¢), -, e.(f), e,.1(t), -+, ex(t). Then we have
e;()=e, for i+k, a
er(t)y=cost ep+sint e,
eq(t)y=—sint e,+cost e,.
For 1<i,, 45, 45, 7,<7, We see that
(exp tER) T P(R) texp te®r v (€uys €15)Cay, €1,
=CR(e;,(t), es,(1))es, (D), es, (D).
The formula (4.2) implies that

{(Degd(R)) e, ry)eng €2,

:ij ,=0<R(ei1(t): e, (1)e.,(1), es ()

=04k {R(eq, €.,)e.,, 1,0 +0:,:{R(es,, ea)e,, e,
+513k<R(etlx eiz)ea; et4>+5i4k<R(et1! elg)els’ ea>-

Therefore if V, is a curvature-invariant subspace with respect to R, we have
D¢(R)=0 at V,. Conversely suppose that D@g(R)=0 at V,. We devide it into
the three cases according to the values of 7.

Case 1, r=4. For 1<i,, 45, 7,<r, we choose k£ such that 1<k<r and k+

7y, #3, 7. For each a (r+1<a<n), we have
0=L(Degd(R))es,, €s,)es, €., >=CR(e.,, ,,)es,, €a).

Therefore we see that V, is curvature-invariant with respect to R.
Case 2, »=3. For each a 4<a<n), we get

0={(Deggp(R))es, es)es, €1y
=(R(eq, @s)es, e:>+<{R(ey, es)es, e>
=<{R(ey, es)es, ea>+<{R(es, €2), €3, €0
and similarly (R(es, es)ei, eq>+<{R(es, e1)es, e.>=0. Therefore we have
0=C(R(es, es)es, ea>+<R(es, es)e, ead+<R(es, er)es, €a)
={R(e, e5)es, e.)—{R(es, 1)es, e,>—<{R(e,, e,)es, e,>
=3(R(ey, es)es, ..

The others are same. Hence we see that V, is curvature-invariant with respect
to R.
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Case 3, r=2. For each a (3ga<n), we get
0=<K(Deed(R))es, es)es, 1>
=(R(eq, es)es, e)+<{R(ey, es)es, €q)
=2{R(e,, es)es, €q4).

Therefore we see that V, is curvature-invariant with respect to R. O

Given a curvature tensor RE%(n), we can define various functions on
G.(R™. For example, we have the following :

WGRNV)= 33 <R(@. 27, 2
Io@RIINV)=_ 3 (R, &), 8)RE, 2y, 2

IBRIVI= 5 (R, 80 60R @, 824, )

3: 4

where {&,, -+, &} denotes an orthonormal basis of V.
Using Theorem 4.4, we can prove the following.

COROLLARY 4.5. If V&G (R™) is a curvature-invariant subspace with respect
to R, then V is a critical point of functions ©(¢(R)), [ p(@(RNI? lig(R))?, - .

In the rest of this section, we shall discuss the case of r=n—1, i.e.,
hyperplanes. By simple computation, we obtain the following which will be
used in section 7.

PROPOSITION 4.6. If VeG,_,(R") is a curvature-invariant hyperplane with
respect to a curvature tensor R, then the orthogonal complement V* is an eigen-
space of its Ricci curvature p. When n=3, the converse also is true.

Proof. We take an orthonormal basis {¢;, -, &,} of R" such that V is
linearly spanned by &y, -+, &,_;. Since

0@, 0)= "8 CR@, 28, &) for j=1, -, n—1,

the first part of the above proposition holds.
When n=3, let {&,, &, &,} be an orthonormal basis of R® such that &; is an

eigenvector of the Ricci tensor p. Since

020(53, &)=C(R(&,, 82)¢, 5>
and
0:(’(53: 52)=<R(€2; él)ély 53>7
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V=1{&,, &} & is curvature-invariant with respect to R. O

Let A*R™ be the space of 2-vectors of R®. For a given curvature tensor
R, we define a symmetric endomorphism R on A*R", which is called a curva-
ture operator. Namely put

CR(xAY), uAvy=<R(x, y)u, vy for x, y, u, vER"

(cf. J. P. Bourguignon and H. Karcher [1]). The existence of curvature-invariant
hyperplanes has an effect on the spectral data of the curvature operator R.
Namely the following holds.

PROPOSITION 4.7. Let VG, _(R™) be a curvature-invariant hyperplane with
respect to a curvature tensor R and & be a unit vector of R™ which is orthogonal
to V. Then there is an orthonormal basis {&,, ---, &,_,} of V such that ENE,
(=1, -+, n—1) are eigenvectors of the curvature operator R. In particular the
curvature operator R has at least n—1 decomposable eigenvectors which are
linearly independent.

Proof. Let V and & be the ones which satisfy the condition in Proposition
4.7. For R and &, we define a symmetric endomorphism K‘e of R™ by <I§e(x), V>
=(R(&, x)&, y> for x, yeR". Evidently we have R(V)CV. We take an
orthonormal basis {&,, -+, &,_,} in V such that &, (=1, ---, n—1) are eigen-
vectors of ﬁe, ie., ﬁ5(51)=liét. Then we see that £AZ, (=1, ---, n—1) are
also eigenvectors of the curvature operator R with eigenvalues 1,. In fact,
we get

CRENE), ENEY=CR(E, .8, &,5=(Re(?.), 2,>=2:0;,
and

CRENE,), 8, \Ex>=CR(E, 8,)¢,, &:>=(R(&s, &,)¢,, £>=0. O

Applying Proposition 4.7, we obtain the following which is an analogous
result to the axiom of planes.

THEOREM 4.8. Let H be the connected Lie subgroup of SO(n) which acts
irreducibly on R™ and R be an invariant curvature tensor by the action of H.
If there is a curvature-invariant hyperplane VeG,_(R™) with respect to R,
then R has constant sectional curvature.

Proof. Let 80(n) be the Lie algebra which corresponds to SO(n) and §) be
the Lie subalgebra of 8o(n) which corresponds to H. By the assumption, §) acts
irreducibly on R*. Let V&G,_,(R™) be a curvature invariant hyperplane with
respect to R and & be a unit vector of R™ which is orthogonal to V. Let
V=V,+ --- +V, be the orthogonal decomposition of V into the eigenspaces of
ﬁs and 1, (=1, ---, s) be the eigenvalues of E on the eigenspaces V,. It is
assumed that A, ---, A, are mutually distinct. From Proposition 4.7, it follows
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that R(EAv)=AEAv for veV,. Now we shall prepare the following lemma.

LEMMA. For each XY and vEV,, the following formulas hold :
1) REAXv)=21ENXv,
2) R(XEAV)=A,XENv.

Proof of Lemma. Let exptX be the l-parameter subgroup of H generated
by X&Y. Since the curvature tensor R is invariant by the action of H, we
have R-exptX=exptX-R on A*R". Hence

R(exp tX(ENv)=exp tX(RENAV))=A, exp tX(EAV).
Differentiating this equation at =0, we have
R(XEAV+HEAXV)=2(XEAV+HEAXD).

We note that R(A*V)C A%V and REAV)CEAV, since V is curvature-invariant
with respect to R. Since Xé=V, we obtain REAXv)=LEAXv and R(XEAV)
=A;XéAv. Thus Lemma has been proved.

By Lemma (1), we see that for each eigenspace V, and any X<, X(V,)C
V+R-& 1If Xé=0 for any X&Y, it contradicts to the irreducibility of .
Therefore there exists some X,&h) such that X, £+0. Accordingly, for some
ie{l, -+, s} and v,&V, we have (X, v,0#0. For this /, we shall show that
XéeV, for any X<Y). We take an arbitrary vector v'<V, for j#7. By Lemma
(2), X.EAv' and XEAwv, are eigenvectors of R with distinct eigenvalues 4, and
A, respectively. Therefore they are mutually orthogonal. Hence

0=(X LNV, XENVo)
={Xo&, XEXW, vop—< Xk, vop<X§, v'>
=—( X8, vop<{X§, v'>.

Since <X &, vop#0, we have <X¢&, v'>=0. From this it follows that X¢éV,.
This together with the preceding fact implies for this 7 V;+R-& is an invariant
subspace by the action of ). By the irreducibility of §, we have V;+R-£=R",
This means that the whole V' is an eigenspace of ﬁg, whose eigenvalue will
be denoted by A. In particular it holds that

RE, x)y=2{¢&, y>x—<x, y>§ for any x, yER"

Now we define a curvature tensor R, of R" by R,(x, v)z=<y, z)x—<x, 2>y
for x, y, zeR". For the preceding eigenvalue 2 of ﬁe, put a subspace N of R"
as follows:
R={x=R" | i(x)(R+AR,)=0}.

Here #(x)(R+AR,) denotes the (1, 2)-tensor on R™ given by
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1(x )} R+ARo)u, v)=(R+AR,)x, u)v for u, veR”,

Since R and R, are invariant by the action of H, % is an invariant subspace
of R™ by the action of H. By the preceding discussion, we have £€R. From
the irreducibility of H, it follows that ®=R". Therefore it holds that R(x, y)z=
—2{<y, 2>x—<x, 2>y} for x, y, zeR". Thus our assertion has been proved. ]

As an application of Theorem 4.8, we obtain the following, which is a
slight generalization of Theorem 1 in B.Y. Chen [2].

COROLLARY 4.9. Let M=G/H be a Riemannian homogeneous space such that
the identity component H, of H acts irreducibly on the tangent space (dim M=3).
If M admits a totally umbilical hypersurface S, then M has constant sectional
curvature.

Remark. B.Y.Chen in [2] investigated the case when M is an irreducible
Riemannian symmetric space and showed the same conclusion as above. J.A.
Wolf ([15]) investigated and classified Riemannian homogeneous spaces which
satisfy the assumption stated in Corollary 4.9.

Proof of Corollary 4.9. We can prove this corollary following the same
process as the proof of Theorem 1 in [2]. The coset H is denoted by o. We
can assume that the totally umbilical hypersurface S is through o. M is
Einsteinian and hence from the equation of Codazzi, it follows that the mean
curvature of S is constant. Using the equation of Codazzi once more, we see
that the tangent space T,S is a curvature-invariant hyperplane of T,M. The
curvature tensor R at o is invariant by the linear isotropy action of H,. By
Theorem 4.8 we obtain our conclusion. O

5. Curvature-invariant subspaces—consideration of examples

In this section, we shall classify the curvature-invariant subspaces for
curvature tensors of special form. Let A and B be symmetric endomorphisms
of R™ with respect to the standard inner product <,)>. We define a (1, 3)-tensor
AAB by

(56.1) ANB(x, v)z={By, 2>)Ax—<Bx, z)Ay+{Ay, 2)Bx—<Ax, 2)By

(cf. J.P. Bourguignon and H. Karcher [1]). Then AAB is a curvature tensor
on R®. We try to classify curvature-invariant subspaces with respect to AAB.
First we fix notations. Given a subspace ¥V in R"”, we have the orthogonal
decomposition R*=V+V+L, For veR", we denote by v, and v, the V-component
and the V+*-component of v, respectively. For a symmetric endomorphism A of
R", we define a mapping A*:V—V and A*: V—-V* by A*x=(Ax), and A’x
=(Ax), for x&V, respectively.
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The following is easily shown.

PROPOSITION 5.1. Let R=ANI be a curvature tensor given by a symmeitric
endomorphism A and an identity transformation I of R* and V be a subspace of
R™ with dim V=2, Then V is curvature-invariant with respect to R if and only
if V is an invariant subspace of the symmetric endomorphism A.

Remark. If a Riemannian manifold M is conformally flat, its curvature
tensor R has the form AAI for some symmetric tensor fleld A.

PROPOSITION 5.2. Let R=ANA be a curvature tensor given by a symmetric
endomorphism A of R™ and V be a subspace of R™ with dimV=2. Then V is
curvature-invariant with respect to R if and only if one of the following holds:

(1) V is an invariant subspace of the symmetric endomorphism A.

(2) V is a null-subspace with respect to A, i.e.,

{Ax, y>=0 for any x, yeV
(3) The image A(V) of V by A is of l-dimensional.

Proof. Let V be a curvature-invariant subspace with respect to R. Then
we have

(Ay, 2>A’x—<Ax, 2)A’y=0 for any x, v, z€V.
We discuss dividing into the following three cases:
Case 1, ker A=V
Case 2, ker A=V
Case 3, ker A*+#V and ker A*+7V,

where ker A% and ker A® denote the kernel of A% and that of A’ respectively.
Case 1 means that V is an invariant subspace of A and Case 2 means that
V is a null-subspace with respect to A. Therefore we consider Case 3.

ASSERTION 1. ker A*=Kker A’. In particular they coincide with ker ANV.

Proof of Assertion 1. First we shall prove ker A°Cker A®. We take a
non-zero vector y which belongs to the orthogonal complement of ker A® in V.
Then A’y is not zero. For xeker A% we have —(Ax, z)A%y=0 and hence
(Ax, z)=0 for any z€V. This implies that xeker A*.

Next we shall prove ker A°Cker A°. We take a non-zero vector y which
belongs to the orthogonal complement of ker A in V. Then A%y is not zero.
For x&ker A%, we have (Ay, z)A°x=0. Putting z=A4%y, we obtain A’x=0.

We put V'/=ker A*=ker A°=ker ANV and denote by V” the orthogonal
complement of ¥V’ in V.
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ASSERTION 2. dim V”7=1.

Proof of Assertion 2. We fix non-zero x&V”. Then A®x and Abx are
both not zero. For arbitrary yeV”, <{Ay, A®x>A’x—<{Ax, A®x)A’y=0 and
hence A’y=({A%x, A*y)>/|A®x]|*)A’x. Therefore we have dim A’(V”)=1. Since
A? is injective in V7, dim V”=1.

From these, it follows that in Case 3, dim A(V)=1.

Conversely, it is evident that if one of the three conditions in Proposition
5.2 holds for V, then V is curvature-invariant with respect to R=AAA. O

Remark 1. Let M be a hypersurface immersed in a real space form JVI(E)
of constant sectional curvature ¢ and A be its shape operator for a unit normal
vector field. Then by the equation of Gauss, the curvature tensor R of M has
the form R=1/2{¢INI+ANA}. Therefore we can apply Proposition 5.2 to the
classification of its curvature-invariant subspaces. In fact, this Proposition will
be used in section 6.

Remark 2. 1f A is non-singular, the case (3) in Proposition 5.2 does not
occur. Moreover if A is positive-definite, the case (1) only may occur.

PROPOSITION 5.3. Let R=ANAB be a curvature tensor given by the positive-
definite symmetric endomorphisms A, B of R™ and V be a subspace of R™ with
dim V=3. Then V is curvature-invariant with respect to R=ANAB if and only
if one of the following holds:

(1) V is an invariant subspace by both A and B.

(2) There exists a positive number A such that

B2=2A%* and B’=—1A® on V.
(3) There exist a positive number A and a subspace V' of codimension 1 in V
such that the following holds:
(i) A(VHCV, B(V)HCV and Bx=21Ax for x&V’
(i) Bly=—A1A%y for y&V”,

where V” denotes the orthogonal complement of V' in V.

Proof. Let V be a curvature-invariant subspace of R™ with respect to
R=AAB. We assume that dim V' =3.

ASSERTION 1. For each x&V, there exists a positive number A (which may
depend on x) such that B°x=—AA%x. In particular we have ker A°=ker B® and
AYV)y=BYV).

Proof of Assertion 1. Since dim V =3, there exists a non-zero vector z€V
such that <{(Ax, z) =<{Bx, z)=0. From (5.1), it follows that (By, z>Ax-+
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(Ay, zyBx<V. Hence {(By, 2)A’x+<{Ay, z2)B*x=0. We put y=z. Since A
and B are both positive-definite, <{Az, z2>>0 and {(Bz, z)>0. Putting A=
{Bz, z)/{Az, z), we have Bbx=—1A%x.

Owing to Assertion 1, we define a subspace V' of V by V’'=ker A’=ker B®
and denote by V” the orthogonal complement of V'’ in V.

ASSERTION 2. If dim V”=2, there exists a positive number A such that
B*x=2A%x and B°x=—1A%x for any x<V.

Proof of Assertion 2. Let x and y be linearly independent vectors in V7.
By Assertion 1, we have Bbx=—A(x)A’x and B®y=-—A(y)A%y, where A(x) and
A(y) denote positive constants depending on x and y, respectively. We shall
prove that A(x)=A2A(y). We have

B (x+y)=—Ax+3)A(x+y)=—Ax+y)A’x —Ax+y)A’y .
On the other hand,

B(x+v)=B’x+By=—A(x)A’x — A(y)A%y .
Hence
Ax)=Ax+y)N A x+A(y)—A(x+3) A’y =0.

Since A°x and A’y are linearly independent, we see that A(x)=A(x+y)=2A(y).
From this, it follows that the constant A does not depend on the choice of
vectors in V7.

Again, let x and y be linearly independent vectors in V”. By (5.1), it
holds that

{By, z)A’x—{Bx, z)A’y+<{Ay, z)B®x—<{Ax, z)B®y=0

for any z€V. Hence <By—AAy, 2> A’x—{Bx—1Ax, z)A’y=0. Since A’x and
A’y are linearly independent, we have (Bx—1Ax, z)=0. Since z is an arbitrary
vector in V, we see that B%x=AA%x.

Finally, let x and y be a vector in V’ and a non-zero vector in V7,
respectively. Then we have —<(Bx, z)A°y—<{Ax, z)B*y=0 and hence <{(Bx—
AAx, z2>Aby=0. Since A’y+0, Bx=AAx. Therefore it has been shown that
there exists a positive number A such that B®x=1A4°%x and B°x=—1A% for
any xV.

ASSERTION 3. If dim V”=1, there exists a positive number A such that
Bx=21Ax for x&V’ and B°y=—AA% for ysV”.

Proof of Assertion 3. From Assertion 1, it follows that B’y=—1A%y for
a non-zero vector yeV”. Then we have Bx=AAx for xV’. It is shown by
the same way as Assertion 2.
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The case when dim V”=0 means that A(V)CV and B(V)CV. This, together
with Assertions 2 and 3 implies that if V is curvature-invariant, one of three
conditions in Proposition 5.3 holds.

Conversely, it is easily shown that if one of three conditions in Proposition
5.3 holds for V, V is curvature-invariant with respect to R=AAB. O

Applying Propositions 5.2 and 5.3, we shall construct examples of curvature
tensors which do not all have curvature-invariant subspaces of dimension not
less than 3. We denote by {e,;, ---, e,} the natural basis of R*. Let A be a
positive definite symmetric endomorphism of R" such that each e, (=1, ---, n)
is an eigenvector of A with mutually distinct eigenvalue a, ¢:=1, .-, n). For
such an A, we choose a symmetric endomorphism B which satisfies the follow-
ing two conditions:

(5.2)-(i) Let (bys)i,y=1,...n be the nXn-matrix which represents B with respect
to the natural basis. Then each entry b;, is not zero.

(5.2)-(ii) Each eigenspace of A™'B is of dimension 1.

Here we shall make a remark about the endomorphism A~'B of R™ Denote
by g a new inner product on R"™ which is defined by g(x, y)=<Ax, y> for
x, yeR" Then A™'B is a symmetric endomorphism with respect to this inner
product g. In fact we have

g(A™'Bx, y)=<{AA'Bx, y>=<{Bzx, y)=<x, By)
=<{x, AA'By>=<{Ax, A7'By>=g(x, A7'By).

Thus A™'B has real eigenvalues and mutually orthogonal eigenspaces with
respect to g.

THEOREM 5.4. Let A and B be symmetric endomorphisms of R™ taken as
above. We define a curvature tensor R. by Re=AN(A+¢eB) for ecR. Then
for sufficiently small & (#0) the curvature tensor R. does not at all have curvature-
invariant subspaces of dimension not less than 3.

Proof. We fix an integer » with 3<r<n—1. First we shall classify
r-dimensional curvature-invariant subspaces with respect to R,=AAA. By
Remark 2 of Proposition 5.2, each r-dimensional curvature-invariant subspace
with respect to R, is invariant by A. Since each eigenspace of A is of dimension
1, an r-dimensional invariant subspace by A is linearly spanned by e,, ---, e,,,
1< - <i,, where {e,, ---, e,} denotes the natural basis of R". Consequently
each r-dimensional curvature-invariant subspace is given by {e., -+, e, }& for
some ;< -+ <#,. We note that for sufficiently small e, curvature-invariant
subspaces with respect to R.=AAN(A+¢B) lie near those with respect to R,=
ANA if they exist. Applying Theorem 4.4, we can easily show this fact.
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Since A+¢B is a positive definite symmetric endomorphism for sufficiently
small ¢, we can apply Proposition 5.3 to the curvature tensor R.. We shall
show that if non-zero ¢ is sufficiently small, neither of three cases in Proposi-
tion 5.3 holds for any r-dimensional subspace V.

ASSERTION 1. The case (1) in Proposition 5.3 does not hold for any r-dimen-
stonal subspace V.

Proof of Assertion 1. 1f V is an invariant subspace by both A and A-+¢B,
then V is invariant by B. An r-dimensional invariant subspace V by A is
given by {e,, ---, e,,}r for some 7,< .- <7.. On the other hand, since Be, =
=1bje;, and bj, #0 for j+#i,, -+, i, owing to (5.2)-(i), Be,, is not contained
in V. Therefore the case (1) does not hold.

ASSERTION 2. The case (3) in Proposition 5.3 does not hold for any r-dimen-
sional subspace V.

Proof of Assertion 2. Suppose that there exist a positive number A and
r—1-dimensional subspace V'’ in V such that (A+eB)x=21Ax for any x&V’.
Accordingly, we have Bx=((A—1)/¢)Ax and hence A*Bx=((A—1)/e)x for x&V".
Therefore V' is a subspace of the eigenspace of A™'B with eigenvalue (A—1)/e.
Since dim V’'=2, it is contrary to (5.2)-(ii). Therefore the case (3) does not
hold.

ASSERTION 3. The case (2) in Proposition 5.3 does not hold for any r-dimen-
stonal subspace V if ¢ is sufficiently small.

Proof of Assertion 3. First recalling section 4, we prepare some notations.
Let End(F,)=F*QF, be the vector bundle consisting of endomorphisms of the
natural vector bundle F, over the Grassmann manifold G,(R") and I"End(F,) be
the space of sections of End(F,). For C€End(R") and V&G, (R"), we define
an endomorphism ¢(C)y of (F.)y=V by restricting C to V, i.e.,

&(C)y(x)=the V-component of Cx for x€V,

where we take the V-component with respect to the orthogonal decomposition
R"=V+V*, Thus we obtain a linear map ¢: End(R")— I"End(F,). For sym-
metric endomorphisms A and B in Theorem 5.4, we define a subset C(A; B) of
G.(R" as follows:

C(A; By={VeG,(R") | there exists a number g such that ¢(B)y=pud(A)y}.

It is easily seen that C(A; B) is a closed subset in G,.(R™).

Suppose that for VG, (R™), (2) in Proposition 5.3 holds with respect to
R.=AN(A+eB). That is, there exists a positive number A such that (A+eB)*
=4A® and (A+eB)®=—1A4% on V. Accordingly, it holds that B*=((A—1)/¢)A®
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on V, le., @¢(B)y=((1—1)/e)¢(A)y. Therefore V belongs to C(A; B). On the
other hand, we shall show that if ¢ is sufficiently small, curvature-invariant
subspaces with respect to R. must belong to G.(R™)—C(A; B). Let WeG.(R")
be a curvature-invariant subspace with respect to R,=AAA. Then W does not
belong to C(A; B). In fact W is given by {e,, ---, e,,}r for some 7, < - <7,
From our assumptions of A and B it follows that HAwe, =a, e, and ¢(B)we,,
=by,1,@0,+bigr @0+ o+ 0., Since by, #0, there does not exist g such that
d(Byw=pd(A)w. We recall that for sufficiently small e, curvature-invariant
subspaces with respect to R. must lie near those with respect to R, if they
exist. Noticing that G(R")—C(A; B) is an open subset in G,(R"), we obtain
our claim. O

6. Totally geodesic submanifolds of hypersurfaces in a Euclidean space

Let M n*+1(7) be an n-+1-dimensional real space form, i.e., a simply connected
complete Riemannian manifold with constant sectional curvature & Let M be a
hypersurface in M n*1(7). Here we assume that M is a regular submanifold of
M »+1(7), In this section we shall study totally geodesic submanifolds of M
applying Proposition 5.2. In particular, we shall classify totally geodesic sub-
manifolds of hypersurfaces in R"*' defined by homogeneous polynomials of
degrees 2 and 3.

We fix some notation. We denote V and V the Riemannian connections of
M™*(#) and M, respectively. We denote by & « and A a unit normal vector
field, the second fundamental form, and the shape operator of M, respectively.

PROPOSITION 6.1. Let M be a hypersurface in M ") and S be an r-dimen-
sional totally geodesic connected submanifold of M. We assume that dim A(T.S)
=2 at any point xS. Then one of the following holds:

(1) There exists an r+1-dimensional totally geodesic submanifold M ) of
M™\&) which contains S such that an open subset in M ™ (&)N\M containing S is
an r-dimensional regular submanifold of M and S is its open submanifold.

(2) There exists an r-dimensional totally geodesic submanifold M™(&) of
M) in which S is an open submanifold.

Proof. From the equation of Gauss, it follows that at x =M the curvature
tensor R of M is given by

RX, MZ=t Y, Z>X—X, Z5Y} +{KAY, Z>AX—<AX, Z)AY}

X, Y, ZeT .M. Since S is a totally geodesic submanifold of M, the tangent
space T.S is a curvature-invariant subspace of 7,M at any point x&S. Since
dim A(T.S)=2, by Proposition 5.2 one of the following holds for T,S:

(1) T,S is invariant by A, i.e., A(T,S)CT.S.

(2) T,S is a null-subspace with respect to A, i.e., (AX, Y>=0 for any
X, YeT,S.
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We define subsets S; and S, in S as follows:

S,={x&eS | T,S is invariant by A}
S,={x&S | T,S is a null-subspace with respect to A}.

Then we have S=S,US; and S;N\S,=0 (empty). Clearly, S, and S, are both
closed subsets in S and hence open. Since S is connected, we have S=S; or
S':Sz.

ldet TM|g be the vector bundle over S induced by the tangent bundle TM
of M. Then we have the orthogonal decomposition :

TM|s=TS+T*S+R-€,

where T'S denotes the orthogonal complement of T'S in TM|s. We have the
following formulas: for X, YeI'TS

(6.1) ViV =ViV4<a(X, Y), &€
(6.2) Vie=—AX.

We note that VyY I'TS, since S is a totally geodesic submanifold of M.

We consider the case S=S,. TS is an invariant subbundle of TM by NA.
This, together with (6.2), implies that TS+ R-& is a parallel subbundle of TM|g
with respect to V. Therefore by the well-known reduction theorem (J. Erbacher
[61), it follows tNhat there exists an r+1-dimensional totally geodesic submani-
fold M ™) of M"*!(¢) such that S is a submanifold of M7+'#). In particular,
we havNe ScM™@ENM. Since T M™'=T,S+R-&, at an arbitrary point
xS, M™'"\M is an r-dimensional regular submanifold of M7*! in a neighbor-
hood of S and S is its open submanifold. Since both M and M7+Y¢) are regular
submanifolds of M™*'(¢), an open subset in M""*"\M containing S is also a
regular submanifold of M. .

If S=S,, by (6.1), S is a totally geodesic submanifold of M"**(#). Hence
we obtain our assertion (2) in Proposition 6.1. O

Now we shall consider the converse of Proposition 6.1. Let S be an
r-dimensional submanifold of M. If S is a totally geodesic submanifold of
}\71"“(5), evidently it is a totally geodesic submanifold of M. Corresponding to
Proposition 6.1 (1), the following is easily seen.

LEMMA 6.2. Let M7\¢) be an r+1-dimensional totally geodesic submanifold
of M), Suppose that S=M™'"M is an r-dimensional submanifold of M)
(and hence it is also a submanifold of both M7 and M). Let & be a unit normal
vector field of M. If EIET,MT” at an arbitrary point xS, then S is a totally
geodesic submanifold of M.
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Let R™! be an n-+1-dimensional real vector space with standard inner
product ¢{,>. Let F be a symmetric multilinear form of degree m on R"*! and
f be a homogeneous polynomial defined by f(x)=F(x, ---, x) for x&R**', We
set a subset M of R"*! by M= {xeR"*!|f(x)=1}. As usual, we identify the
tangent space T.R"*! of R"*' at x with R®*!. Under this identification, we
have df ,(w)=mF(x, ---, x, v) for veT R**'=R"*', Since df.(x)=m=+0 at x&M,
M is a smooth hypersurface of R"*! if M is not empty. Easily we see that M
is a real analytic and complete Riemannian manifold. We try to classify totally
geodesic submanifolds of such hypersurfaces.

We consider two types of totally geodesic submanifolds:

Type 1. We take an r+1-dimensional linear subspace W of R™*! and a
vector CeW*, where W+ denotes the orthogonal complement of W in R"*!,
We denote by C-+W the affine subspace defined by C+w, weW. Let S be
one of connected components of (C+W)\M. Now we assume that

(6.3) F(x, -, x, WH)=0 at any point x<S.

Type . We take a point x&M and an r-dimensional linear subspace W.

Now we assume that
k m—=k

————
(6.4) Flx, -, %, W, -, W)=0 for 0<k=<m—1.

PROPOSITION 6.3. (1) Let S be a subset of M given in Type 1 above. Then
S is an r-dimensional totally geodesic submanifold of M.

(2) Let x and W be a point of M and an r-dimensional subspace given in
Type T, respectively. Then the affine subspace x+W is contained in M and
hence it is an r-dimensional totally geodesic submanifold of M.

Totally geodesic submanifolds in both cases are maximal in the sense of
Theorem 3.5.

Proof. (1) First we shall show that S is a smooth hypersurface in an
r+1-dimensional affine subspace C+W. Let x be an arbitrary point of S. We
can identify the tangent space T (C+W) with W. If df,(w)=mF(x, ---, x, w)
=0 for all weT (C+W)=W, then the condition (6.3) implies that F(x, --- x, v)
=0 for all veR**', It contradicts to F(x, ---, x)=1. Therefore there exists a
vector weT (C+W)=W such that df,(w)+#0. Hence S is a smooth hyper-
surface in C+W.

We note that the tangent space T.M is given by

T . M={veT  R*"'=R"*"! | df ,(0)=mF(x, -+, x, v)=0}.

From (6.3), it follows that W*C T .M at every point x&S. Let & be the unit
normal vector field of M in R**!. Then at every point xS, &, is orthogonal
to W*. Consequently we have &, €W=T. (C+W). By Lemma 6.2, S is a
totally geodesic submanifold of M.
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(2) For an arbitrary vector weW, the condition (6.4) implies
m—k

mel N ——
F(x_l_.w, e _x—.—w):k;o(k)F(x’ e, X, W, v, w)+F(x, e x):l'

Therefore the affine subspace x+W is contained in M.
Since totally geodesic submanifolds given above are complete Riemannian
manifold and imbedded in M, they are maximal in the sense of Theorem 3.5. I

Remark. Let ¢ be a linear transformation of R**!. We define a multilinear
form F’' by F'=¢-F, ie., F'(vy, -+, vn)=F(¢"'vs, ---, ¢ 'vy) and denote by M’
the hypersurface of R"** defined by F’. Then we have ¢(M)=M’. Moreover if
an affine subspace x+W is contained in M, then the affine subspace ¢(x+W)
is contained in M’ and vice versa. The existence of totally geodesic submani-
folds of Type II is a problem which belongs to affine differential geometry.

We add one more assumption to F. We say that a symmetric multilinear
form F is non-singular when F(x, ---, x, v)=0 for v R**! only if x=0.

THEOREM 6.4. Let F be a non-singular symmetric multilinear form of degree
m on R**' and M be a hypersurface defined by F. Let S be an r-dimensional
(2<r=n—1) connected Riemannian manifold and ¢ be a totally geodesic immer-
sion of S into M. Then there exists an r-dimensional totally geodesic submanifold
S obtained by Proposition 6.3 such that ¢(S)C§. That is, maximal totally geodesic
submanifolds are exhausted by ones given in Proposition 6.3. In particular, a
maximal totally geodesic submanifold of M is imbedded and closed in M.

Proof. We note that S is a real analytic Riemannian manifold and ¢ is a
real analytic immersion. Let ¢™'TM be an induced bundle by ¢ from the
tangent bundle of M. Then we have an orthogonal decomposition: ¢ *TM=
TS+T*S. We denote by A the shape operator of M in R"*!. We view it as a
section of the endomorphism bundle End(p™'TM). We put k=max,esdim A(T,S).
Then the following three cases may occur:

Case 1. k=0.
Case 2. k=I.
Case 3. k=2.

ASSERTION 1. Case 1 does not occur.

Proof of Assertion 1. Since our discussion below is local, we don’t distin-
guish S and ¢(S) and may assume that S is an imbedded submanifold of M.
We shall show that at a fixed point xS, the following holds:

(6.5) F(u, ---, u, v)=0 for any usT,S and veR"*",

Therefore it contradicts that F is non-singular. Now we shall prove (6.5). In
our case S is a totally geodesic submanifold of R**!. For xS and u&T,S,
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we put y(t)=x-+tu. Then there exists a positive number & such that y@)&S
for |t|{<e. Since A(T'S)=0 on S, the tangent bundle TM is a parallel subbundle
of TR™*! along y with respect to V. Under a usual identification, we see that
if v&eT .M, then veT,q,M for |t|<e. Therefore we have

0:—;[dfrm(v)=p(7’(t)’ w70, v)
=F(x, -, x, V)Fm—DtF(x, -, %, u, v)+ - +t"F(u, -, u, v).

Hence it follows that F(u, ---, u, v)=0 for any veT,M. Since y()eSCM for
|t| <e, we have

=14mtF(x, -, x, w)+ - +mt™'F(u, -, u, )+t"F(u, -, u).

Hence it follows that F(u, ---, u, x)=0. Consequently we obtain the formula
(6.5).

ASSERTION 2. In Case 2 at any point xS, T,S is a null-subspace with
respect to A i.e., CAX, Y>=0 for any X, YET,S. Therefore S is a totally
geodesic submanifold of R™*.

Proof of Assertion 2. Suppose that at a point xS, T.,S is not a null-
subspace with respect to A. Then there exists a neighborhood S’ of x in S
such that at each yeS’, T,S’ is not a null-subspace with respect to A. We
define a subspace ®, of T,S’ at yeS’ by ®,={X=T,S'|AX=0}. Then D is
a distribution in S’ with codimension 1. D is exactly a relative nullity distri-
bution when we view S’ as a submanifold of R"*!. Therefore ® is involutive
and each leaf of D is a totally geodesic submanifold of S’. We denote by N
one of leaves of ®. Then N is a totally geodesic submanifold of M which
satisfies A(T,N)=0 at any point yN. By the proof of Assertion 1, we see
that Assertion 1 is also true when S is a 1-dimensional totally geodesic sub-
manifold of M, i.e., a geodesic. Therefore such a submanifold N does not
exist. It’s a contradiction. Hence our assertion has been proved.

Now we consider Case 3. There exists an open subset S’ in S such that
dim A(T,S)=2 at each point x&S’. If there exists an r-dimensional totally
geodesic submanifold S obtained by Proposition 6.3 such that ¢(S')C§, then by
the real analyticity of ¢ it holds that ¢(S)C§. Therefore we may discuss,
assuming that S is an imbedded submanifold of M and dim A(T.S)=2 at each
point xS. By Proposition 6.1, one of the following holds:

Case 3-i. There exists an r+1-dimensional affine subspace M™*' which
contains S such that an open subset in M7*'N\M containing S is an r-dimen-
sional regular submanifold of M and S is its open submanifold.
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Case 3-ii. There exists an r-dimensional affine subspace M" in which S is
an open submanifold.

Now we consider Case 3-i. We note that by the proof of Proposition 6.1
E,eT .M at any point x&S. Let § be a connected component of MN\M
which contains S.

N ASSERTION 3. § is an r-dimensional regular submanifold of M and moreover
S is a complete totally geodesic submanifold of M.

Proof of Assertion 3. We fix a point p=S. Applying Corollary 3.7 to
T,S, we see that there is a complete totally geodesic submanifold S immersed
in M which contains S as an open submanifold. We denote by ¢ the totally
geodesxc immersion of S into M. By the real analyticity of ¢, we have
¢(S)CM 7+l and hence ¢(S)CS In the same manner, by the real analyticity of
&, it holds that $¢<q,eT¢<q)M’“ at any point ¢g=S. We put S= ¢(S) We shall
prove that S is an r-dimensional regular submanifold of M. We denote by 7
the polynomial function on M7 obtained by restricting f(x)=F(x, -+, x) to
Mr*, Then we have M™M= {xeM’“lf(x) 1}. Since §¢<q>eT¢(q)M’“
at an arbitrary point ¢85, d f¢(q)¢0 in the cotangent _Space T% (q)M’“ There-
fore there exists a mneighborhood U of ¢(g) in M+ such that MNU=
{xeU|f(x)=1} is an r-dimensional regular submanifold of M7+, Hence we
can take a neighborhood U of ¢ in S such that ¢ is a diffeomorphism of U
onto MMV, where V is an adequate neighborhood of ¢(g) in M™', From this,
it follows that SNV=MNV. Consquently it has been proved that S is an
r-dimensional regular submanifold of M"** and hence is also a regular submani-
fold of M. Moreover ¢ is a Riemannian covering map of S onto S. Since S
is a complete Riemannian manifold, so is S. In our proof above, it has been
also shown that S is an open subset of S.

Finally we shall show that S is a closed subset of S. If this is shown,
we have $=S§ and obtam our assertion. Let {p;} and 1 p be a sequence of points
in S and a point of S which satisfy lim,...p,=p in S. Since E,,jeijM’“ for
any j, then we have &,eT, M7+, Therefore there exists a neighborhood V of
p in M™' such that MNV is an r-dimensional regular submanifold of M+,
We choose p, which belongs to a normal coordinate neighborhood & of p in
MNV. Let y be a geodesic from p, to p in V. We parametrize y such that
7(0)=p, and y(1)=p. Since SNV is an open submanifold of MNV, there exists
an open interval IC [O 1] containing 0 such that y(/) is contained in S and 7lr
is a geodesic of S. Since § is a complete Riemannian manifold, we have
I= [0 1] and hence p= r(l) belongs to S. Consequently it has been proved
that S is a closed subset of S.

We continue our discussion on Case 3-i. We denote by W an r+1—din3en-
sional linear subspace of R™*! which corresponds to the tangent space T ,M"™*!
at xeM7*! under the usual identification T,R***=R"*! and denote by W* the
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orthogonal complement of W in R**!, Let C be a vector of W* which is the
image of Ig'“ by the orthogonal projection of R**! onto W*. Then the affine
subspace M7*! is given by C+W. As lgas been shown in Assertion 3, for an
arbitrary point xS, &, belongs to T,.M7*!and is orthogonal to W+. Therefore
we have F(x, -, x, WH)=(1/m)df,(W+)=0 and obtain the formula (6.3).

Finally we consider Case~2 and Case 3-ii. In each case, there exists an
r-dimensional affine subspace M" in which S is an open submanifold. We denote
by W an r-dimensional linear subspace of R**! which corresponds to 7,S=T,M".
For an arbitrary vector weW, we take a straight line y(#)=x-+fw. For suffi-
ciently small ¢, y(¥) belong to S and hence to M. Therefore we have

k m—
:F(x’ e x)+ cee +<7Z)tm"kF(x, ey X, Wy e, w)+ th(w’ e w).

k m—k
Hence we have F(x, ---, x, w, ---, w)=0 for nggmN—l. Thus y(¢) for all teR
belong to M and hence the affine subspace x+W=M" is contained in M. 0

In the rest of this section we shall classify totally geodesic submanifolds of
hypersurfaces defined by symmetric bilinear forms and trilinear forms on R"**,
Let F be a non-singular symmetric bilinear form on R"*!, We use the same
symbol F for the symmetric endomorphism of R™*! which corresponds to the
symmetric bilinear form by the standard inner product <,)>. Let M be a
hypersurface defined by F. Then the following holds.

THEOREM 6.5. If S is an r-dimensional 2Q<r<n—1) maximal totally geodesic
submanifold of M, then S is one of the following:

(1) a connected component of WM, where W is an r-+1-dimensional invar-
iant subspace by F,

(2) an r-dimensional affine subspace of R™' which is contained in M.

Proof. 1t is sufficient to consider Case 3-i in the proof of Theorem 6.4.
Namely there exist an r+1-dimensional linear subspace W and a vector CeW+*
and S is a connected component of (C4+W)NM which satisfies F(x, v)=0 for
any xS and any veW*. Let v be an arbitrary vector of Wi, We view F

and v as parallel tensor fields with respect to the Riemannian connection V of
R**!, For vector fields U, and U, over S, we have

0=y, F)(x, v)=UF(x, v)—F(U,, v)

=—F(U,, v)
and
0=(Vy,F)U,, v)=UF(U,, v)—F¥y,U,, v)

:—F(a(Uz, Ul)) U).
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From the above computations, it follows that at point xS
F(x, v)=0,
F(u, v)=0 for any usT.,S,
Fla(u,, u,), v)=0 for any u,, u,7T,S.

We may assume that a restricted to 7,S is not zero. Therefore there are u,
and u, in T,S such that a(u,, u)#0. The above last equation implies that
F(&,, v)=0. Since W=T,S+Ré&,, we obtain F(W, W+)=0. Hence W is an
invariant subspace by F. Since F(x, W)=0, we have F(C, W*)=0. On the
other hand, since CeW*, we have F(C, W)=0. From the non-singularity of
F, it follows that C=0. Consequently S is a connected component of WM. O

By fundamental properties of symmetric bilinear forms we can show the
following.

PROPOSITION 6.6. In Theorem 6.5, we assume that F has the index v. Then
the dimension of an affine subspace contained in M is not greater than the
minimum of v and n—y. Let S, and S, be affine subspaces of the same dimension
which are contained in M. Then there exists a linear transformation ¢ of R™™
which preserves F such that ¢(§1)=§2.

Examples. Let F be a symmetric bilinear form of R"*!' given by F=
laefQRe¥, where {e¥, ---, ¢%,,} denotes the dual basis of the natural basis
{ei, -+, en.i} of R, If every a, is positive, the hypersurface M defined by
F does not contain any affine subspace of positive dimension. In addition
suppose that a,, -, a,,; are mutually distinct. Then the number of F-invariant
r-+1-dimensional subspaces is (21%) We put M'={x=4x", -, x®*HeM|x'+0
for any 7z}. Then M’ is an open submanifold of M. The Riemannian manifold
M’ does not have any r(2<r<n—1)-dimensional totally geodesic submanifolds.
In fact, the F-invariant subspace which contains a point x&M’ is the whole
space R™*!,

Next we consider the following symmetric trilinear form F on R"*':
F=3"e¥Qe¥Qef. Then F is non-singular in our sense. In the rest of this
section, we denote by Q" the hypersurface of R"*' defined by F, i.e.,

Q"={xeR"*' | F(x, x, x)=1}

:{x:£<x1, o, gt e Rett

'g(xi)azl}.

Let S,,: be the symmetric group consisting of permutations of {1, 2, ---, n+1}.
For ¢=S,.,,, we define a linear transformation 7T, of R"*! as follows: T.(e,)=
e;y @=1, -+, n+1). Then T, is an orthogonal transformation which preserves
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the above trilinear form F. Hence T, yields an isometry of Riemannian mani-
fold Q™.

We shall classify totally geodesic submanifolds of Q*. First we present
examples of totally geodesic submanifolds. For 2<m<n—1, Q™ can be viewed
as a submanifold of @™, naturally, i.e.,

Qmr={x=4x, -, x™*NHEQ" | x™*2= ... =x"*1=(},

Let W be an m+1-dimensional linear subspace of R**! spanned by e;, -+, ems1.
Its orthogonal complement W+ is spanned by en.s **-, €, Then evidently it
holds that Q™=WNQ™" and F(x, v, v)=0 for x, yeW, veW<'. By Proposition
6.3 (1), Q™ is totally geodesic in Q™. Another example is given as follows:
Let k,, ---, k, be integers which satisfy 2<k,< - <k, and b+ - +-=<n41.
We put

S= {x=4x, -, x"“)eQ" | xl= .. :xkl’ xhitl= ... :xk1+kz,

R R g !

, xF1 =x

Then it is easily seen that S is connected and is a submanifold of Q™ with
codimension %,4 --- +%;—I[. We define cyclic permutations ¢,, -, 6; by ;=
A, o, ky), o, or=(ky+ - + ki +1, -, R+ - + ki +k;) and a permutation o
by 6=0¢,---0,. Then S is a fixed point set of Q® by T,. Therefore S is
totally geodesic in Q”. For convenience, we denote this submanifold by Si,.. s,
in this section. We shall show that these submanifolds and affine subspaces
exhaust totally geodesic submanifolds of Q™.

THEOREM 6.7. If S is an r-dimensional maximal totally geodesic submanifold
of Q™ then S is congruent to one of the following totally geodesic submanifolds
by an isometry Ty 6ES,.1:

(1) Sy, in Q™ for some m=n, where r=m-+I—(k;+ - +k),

(2) an r-dimensional affine subspace of R™** which is contained in Q™.

Proof. Owing to Theorem 6.4, we consider Case 3-i in the proof of Theo-
rem 6.4. Namely, there exist an r41-dimensional linear subspace W and a
vector CeW+* and S is a connected component of (C+W)N\Q" which satisfies
F(x, x, v)=0 for any xS and veW*'. Let & A, a, and Va denote the unit
normal vector field, the shape operator, the second fundamental form and its
covariant derivative of Q® in R"™*!, respectively. We note that at generic
points xS, a restricted to T.S do not vanish as it is known by the argument
in the proof of Theorem 6.4.

To prove our Theorem, we prepare some lemmas.

LEMMA 1. For xS, veW?, and u, u,, us, us, usT,S, the following for-
mulas hold :
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(1) F(x, u, v)=0,
@) Fuy, us, v)+F(x, alu,, us), v)=0,

(3) F<a(ub uZ)y u3) U)+F(a(uz, uS)r ul; U)+F(a(u3, ul)y u2) U)
+F(x, (Vu,a)(uy, us), v)=0,

(4) Fla(uy, us), a(us, us), v)+F(a(us, us), a(uy, u,), v)+F(a(us, u,), alus, us), v)
+F((Vu, @) (s, ), ts, V)+F(Vu,a)(us, ts), s, v)+F(Vau,a)(ts, ), s, )
+F((Vo,@) (s, ), ts, V)= F(Aacug up s s, V)—F(Aatuy, upls, Us, )
—F(Axcug upths, s, V)FF(x, (Vo Vo a)(uy, us), v)=0.

Proof of Lemma 1. Differentiating F(x, x, v)=0, we obtain the first for-
mula (1). Succeedingly differentiating one formula, we obtain next one.

We fix a point x&S at which « restricted to 7.,S does not vanish. We
define a subspace W' in W* as follows:

W'={eW?' | F(x, &, v)=0}.
Then we have next lemma.

LEMMA 2. The following formula holds:
(6.6) F(w,, ws, vV)=0 for any veW’ and w,, w,sRC+W.

Proof of Lemma 2. For u, u,, u,7T,S and veW’, we have

(i) F(x, x,v)=0, (i) F(x, &;, v)=0,
@iii) F(x, u, v)=0, 1v) F(uy, us, v)=0,
(v) F(u, &, v)=0, (vi) F(&,, & v)=0.

The formula (iii) is exactly Lemma 1 (1) and (iv) is obtained by Lemma 1 (2)
and (ii). Since a restricted to 7T.S does not vanish, by Lemma 1 (3) and (ii)
we have (v). Similarly, by Lemma 1 (4) and (ii), (iv) and (v), the formula (vi)
holds. Since W=T.,S+ RE,, by (iv), (v), and (vi), we have F(w,, w,, v)=0 for
w,, w,€W. Moreover by (ii) and (iii), we have F(x, w, v)=0 for weW. Since
x&S is written as x=C+w for some weW, Lemma 2 holds.

Our important step is to prove that the vector C is zero. We suppose that
C+#0 and will show a contradiction. Moreover we assume that dim W’'=
dim W*—1, where W’ denotes the subspace of W* defined in Lemma 2 (however
even if W/=W*, arguments below will hold). To present W*, we will choose
an appropriate basis of W*. Let {v,, -+, vy} be a basis of W* (dim W*=g) such
that {v,, ---, vq-,} is a basis of W’. Placing column vectors v,, -+, v, of R**!, we
obtain an (n-+1, ¢)-matrix P=(v, --- v,). We assume that first (¢—1, ¢—1)-matrix
and first (g, ¢)-matrix in P are both non-singular. If not so, we take a suitable
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permutation ¢<S,,, and transform W, C etc. by a linear isometry T,. Then
our assumption will be satisfied. By change of bases, we may assume that the
matrix P=(v, - v,) has the form:

1 0 0
0 1 0
6.7) v g 1
vt
L AR TS vg_-_l-ll vgﬂ
LeEMMA 3. In (6.7), for each j (=1, -+, g—1), v v§Y, -+, v}*! are zero

except at most one and if vi+0 (=g, -+, n+1), then vi=—1. Moreover W' is
orthogonal to RC+W.

Proof of Lemma 3. We prepare some notation. For a vector v=:(v?, v?%

, Ve R**! we denote by m,(v) and m_(v), the number of positive compo-

nents v* and the number of negative components v*, respectively. We denote

by F, a symmetric bilinear form on R"*! defined by Fyx, v)=F(x, v, v), i.e.,

F,=>"ve¥@e*. We note that the dimension of a null subspace with respect
to F, is not greater than n+1—max{m,), m_(v)}.

ASSERTION 1. For each j (=1, ---, ¢—1), v}, v¥*!, -, v}*! are zero except
at most one and if vi+0 (G=q, -, n+1), then v} is negative.

Proof of Assertion 1. By Lemma 2, RC+W is a null subspace with respect
to F, for veW’. Since C+0, we have dim RCH+W=r+2=n+1—(¢g—1). We
shall prove our assertion for j=1. The other cases are same. Suppose that
there exists a positive number in »§, v§*!, ---, vP*'. We assume that v?>0. We
choose sufficiently small positive numbers A, :--, 4,, such that vi+2Avi+ - +
Agi1>0. Put v=v;+ 2w+ -+ +2,-104_;. Then we have m,(v)=¢g. Therefore
the dimension of a null subspace with respect to F, is not greater than n+1—gq.
It is a contradiction. Next we suppose that there exist two negative numbers
in v§, v¥Y, -, vP*, We assume that they are vt and v] (¢<i<j<n-+1). Choosing
sufficiently small positive numbers 2,, -+, 44_;, We have vi—Awi— -+ —2,_0:_,<0
and vi—Awi— -+ —A_51<0. Put v=v,—Aw,— - —Ag_10q_;. Then we have
m_(v)=q. Again it yields a contradiction. Hence our first assertion has been
shown.
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Now we take vectors w, (:=1, ---, r+1) as follows:
vgvg+z_vg+1

vlzlvg+1,_vg+z

vE_witt—ovitt
__vg‘i'l
0
w,=

<— (g+17)-th row.

O = O

0
Then {w., -+, w,.1} is a basis of W. We take a vector C’'eC+W which has

the form C’=%c¢"?, -, ¢'4, 0, ---, 0). Since C#0, we have C’#0. Evidently
C'+W=C+W.

ASSERTION 2. There exist non-zero ones in vi*?, ---, v3*.

Proof of Assertion 2. Suppose that vi*'=..- =vg*'=0. For x&S, we have
0=F(x, x, v)=(x%? and hence x?=0. Since S is contained in C'H+W, 0=
(Vg x—C">=—¢"? and hence ¢?=0. Since for ; (1=;=¢—1), 0=F(C’, C’, v;)
=(c¢'?)?, it holds that ¢’=0. Consequently we have C’=0. It is contrary to

C’#0. Therefore there exist non-zero ones in vg*!, -, v+,

ASSERTION 3. If vi#0 for j=1, -, ¢—1 and i=q, ---, n+1, then vi=—1.
Proof of Assertion 3. For i=1, ---, r+1, we have
0=F(w,, w,, v)=0P" =05 ) +vj(—v§ ) +vi.

Suppose that v?**#0 for some ¢ (i=1, ---, »+1). Then by Assertion 1, we have
v2=0. This, with the formula above, implies that v}"*(v?**41)=0 and hence
vi**=—1. Suppose that v7**=0 for all :=1, ---, r+1. By Assertion 2, v§**=0
for some { (=1, -+, r+1). From the formula above, it follows that
*4(vi+1)=0. Therefore we have v5=0 or vi=-—1.

ASSERTION 4. For j=1, ---, g—1, if v$=0, then ¢”’=0 and if vi=—1, then
c¢’=c"". In particular W' is orthogonal to RC'+W=RCHW.

Proof of Assertion 4. From Lemma 2, it follows that 0=F(C’, C’, v,)=
(¢ +(c")%t Therefore if v9=0, then ¢’’=0. Next suppose that vj=—1. We
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choose an integer : such that v§**+#0. Since 0=F(C’, w,, v)=vi"*(c"—c"), we
obtain ¢”’=c¢"%.
Hence Lemma 3 has been completely proved.

We continue our proof of Theorem 6.7. We use the same notation as
Lemma 3 and its proof. We put vectors w, (=0, ---, r+1) as follows:
w,=—v*?, -, —084 0, -, 0, 1,0, .-+, 0), where vi"* (j=1, -, g—1) denote
the components of vectors v, given in Lemma 3 and (¢+7)-th row is 1. Then
{wo, wy, -+, Wyryy} is a basis of RC+W. In fact, for each 7, w, is orthogonal
to vy, -+, vo_; and hence by Lemma 3, w, belongs to RC+W. For yeRC+W,
we write y=>74'y'w,. Then S is a connected component of

T+1 T+ )
(C+W)mQ”:{yERC+W | o4 évg”ylzc’q’ gmi(y"):*:]_}.

Here m, (=0, ---, r+1) denote positive integers defined by m,=14the number
of {jlvi**=—1}. Moreover it holds that F(y, v, v))=0 for all ye&S, i.e.,
O+ 25 ve Y (y*)?=0. From now on, we simply write »* (=1, ---, r+1) and
¢ for v§** and ¢’ respectively. We note that ¢=c’? is not zero. In fact, if
¢'?=0, then by Assertion 4 in the proof of Lemma 3, we have C’=0 and it is
contrary to our assumption. We define functions f, g, and & on RC+W by
f)=32mi(v%)?, g()=y"+2Z/H vy, and h(y)=(y°)+ 33 v'(y?)?, respec-
tively.

As is shown in Assertion 2, there exist non-zero ones in %, -, v"*!, We
shall show that there exist negative ones in them. Suppose that v!, ---, v7*?
are all non-negative. Since h(y)=0 for y&S, we have g(y)=0. It is contrary
to g(»)=c+0 for y=S. Therefore there exist negative ones. So we assume
that v' is negative. We define a projection = of RC-+W onto the subspace V
linearly spanned by ws, -+, w,,, as follows: n(y)==a(r y'w,)=>7% y*'w, for
yeRC+W. It is easily seen that & restricted to (C+W)N\Q™ is a homeomor-
phism onto V. Therefore (C+W)NQ™" is connected and hence coincides with
S. Next we shall show that there exist non-zero ones in % -+, v™*!, Suppose

that v?=--- =p"*'=0, We put y=cw,+y*w,, where y?= ¥(1—m,c®)/m,. Then
v belongs to S and A(y)=c¢?*+0. It is a contradiction. Therefore there exist
non-zero ones in v?% ---, v"*!, So we assume that v®#0.

We take y° and y' which satisfy y°+vly'=c and my(y°)*+m,(y*)*=1 and
put y=yw,+y*w;,. Then y belongs to S. Since =0 on S, it holds that
dh=2df+pdg in THRCHW) for some 4, pcR. At y=y°w,+y'w, we have
df=3my(y°)2dy°+3m,(y):dy?!, dg=dy’+2Hv'dy* and dh=2y°dy°+2v'y'dy.
Comparing coefficients of dy® in both sides, we obtain p#=0. Since dh=2df,
it follows that 2y°=3im,(y°? and 2v'y'=3Am,(y*)?. Since h(y)=0, we have
0=2{(»")+v'(y")? =32 {mo(y°)*+m;(¥*)?} =34 and hence A=0. From this it fol-
lows that dh=0 and hence y°=y'=0. It is a contradiction, Consequently it
has been proved that the vector C is zero.
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By the argument above, it follows that S is a connected component of
WNQ", where W is an (r+1)-dimensional linear subspace of R™*!, Since
F(x, x, v)=0 for any x<S and vEW*, we have F(w,, w,, v)=0 for any w,, w,
€W and veW+*. By the same consideration as Lemma 3, we see that there
exists a basis {v;, ---, v} of W* which has the following form (up to a linear
isometry T, 6&€S,.1):

1 0
0 3
(v V)= pIFL vg‘”
Here for each j (j=1, ---, ¢), v¥*}, ---, v7*! are zero except at most one and if
v3#0 (f=q¢+1, ---, n+1), then vi=—1. Therefore it has been proved that S is
congruent to Si, ...k, in Q™ for some m=n. O

On case (2) in Theorem 6.7 the following holds:

PROPOSITION 6.8. The dimension of an affine subspace contained in Q™ s
not greater than n/2. When n=2q, a q-dimensional affine subspace contained in
Q™ is congruent to the following affine subspace S by a linear transformation T,,
0ESa,1:

S={x=ix", -, x"*)e R | x*+x1"=0 (G=1, -, q), x""'=1}

Proof. Let S be an r-dimensional affine subspace of R"*' which is con-
tained in Q™ and W be an »-dimensional subspace which corresponds to the
tangent space T.S at xS. Then the following formulas hold:

(i) F(x, x, x)=1, (ii) F(x, x, w,)=0,
(i) F(x, w,, w,)=0, iv) F(ws, ws, w,)=0

for w,, w, wsW.

We use the same notation as Lemma 3 in Theorem 6.7. The formulas (ii),
(iii), and (iv) imply that an »+1-dimensional linear subspace Rx+W is a null
subspace with respect to F,, for any weW. We may take a basis {v,, ---, v,} of
W which has the following form (up to a linear transformation 7,, 6&S,,.):

1 0
0 4
(6.8) (U1"'U7~): vz‘+l T+1 |

Uy

+ n+1l
v’f ... vy
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We put v=v,+ -+ +v,. Since m,(v)=r, the dimension of a null subspace with

respect to F, is not greater than n+1—r». Therefore we have r+1<n+1—7»

and hence r<n/2. Thus the first part of Proposition 6.8 has been proved.
From now on we assume that n=2¢ and that S is a ¢-dimensional affine

subspace of R™"' which is contained in Q*. Let {v,, ---, vy} be a basis of W
which has the same form as (6.8). By the same argument as Lemma 3 in
Theorem 6.7, we see that for each j (=1, ---, q), v¥*}, ---, v}*! are zero except

at most one. Since 0=F(v,, v,, v;)=1+2%1 (%), there exists only one 7"
such that v§**=—1. For k+#j, we have 0=F(vs, vs, v;)=vi"" i) =—(i"")?
and hence v§**=0. Therefore transforming by 7T, ¢<S,,, if necessary, we

can take a basis {v,, -, vs} of W which has the following form:
0
0 1
(Ul e Uq): '_‘1 O
0 ~1

Since F(x, v,, v;)=0, we have x’4x?""=0 (y=1, ---, q). Therefore the
vector f(0, ---, 0, 1) belongs to S=x-+W. Consequently the second part of
Proposition 6.8 has been proved. O

7. Totally geodesic surfaces of 3-dimensional Lie groups
with left invariant Riemannian metric

Let G be a Lie group with left invariant Riemannian metric and let g be
the corresponding Lie algebra with an inner product <{,)>. We want to clarify
various properties on totally geodesic submanifolds in G. In this paper we will
study the simplest case, i.e., 2-dimensional submanifolds in 3-dimensional Lie
groups. From now on we denote by G a 3-dimensional Lie group. We reduce
the classification problem of totally geodesic surfaces of G to the following
problem: Classify 2-dimensional subspaces in 7.G which are tangent spaces
of totally geodesic surfaces in G. Here e denotes the identity of G. As usual,
we identify T.G with g. In this paper we specialize to the unimodular case
and state our results.

First we recall the classification of 3-dimensional unimodular Lie groups
following J. Milnor [10]. Let g be a 3-dimensional unimodular Lie algebra
with an inner product <,)». Then there exists an orthonormal basis e, e, e,
for which the bracket operation is given as follows:

(7.1 Les, es]=hier, [es, e;]=2es, [ey, es]=2Ase5.
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According to signs of 1, A, 4s, six kinds of Lie algebras are obtained. The
following table is due to J. Milnor [10]:

Table 1.

Signs of A;, 25 4 Associated Lie group

+, +, + SU(2) or SO(3)
+, +, — SL®, R) or O(1, 2)
4 0 EQ)

4+, —, 0 EQ, 1

+, 0,0 Heisenberg group
0, 0,0 R?

Now we give the formulas of the Riemannian connection V and the curvature
properties, which are due to [10]. For convenience, we define numbers p, by
#121/2(21+12+13)—2, (=1, 2, 3).

LEMMA 7.1. Let ey, e, e; be an orthonormal basis of (g, <,>) chosen as (7.1).
(1) The Riemannian connection V is given with respect to ey, ¢, s as follows:

Velel———vezeg:Vg383:0
Ve, es=pes, Vees=—pe;
Vezelz‘"llzeay \ R

V6321:ﬂ322) Ve332:_ﬂsel .

(2) The orthonormal basis ey, e, e; diagonalizes the Ricci curvature tensor
and the principal Ricci curvatures are given by

P(en e:)zzﬂzﬂa, P(@‘z, ez)zzﬂxﬂm P(ea’ @s):zllx;lz-

(3) The covariant derivative of the curvature tensor R is given as follows:

(VelR)(el; 92)91:2#%(/12‘—#3)03; (Ve,R)(ely 23)01:2#%(/12‘“#3)92
(Vo R)e, es)es=—2pi(pa—ps)er, (Ve R)ey, es)ea=—2pi(pta— pts)e;
(VezR)(ez, 31)6222#§<ﬁ3—ﬂ1)33: (VezR)(ez, @3)02:2#3(/13‘/11)91

(Ve,R)es, e)es=—2p3(pts—pr1)es,  (Ve,R)(es, es)er=—2p5(pts—pt1)es

(Ve,R)es, ees=2p5(p1— ps)es, (Ve R)es, e2)es=2p5(pt1— pro)es

(VeyR)(es, e)es=—2p(pri—pa)es, (Ve R)es, en)ey=—2p5(st1— pa)es
the others (y.,R)(e, ex)e;=0.
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Proof. (1) and (2) are found in [10] and (3) is obtained by the straight-
forward computation. O

Let Aut(g) and O(g;<,>) be the group consisting of automorphisms of the
Lie algebra g and that of orthogonal transformations of (g, ¢, ), respectively.
For @< Aut(g), we take the (local) automorphism ¢ of the Lie group G such
that @, =®. Moreover if @<=0(g;<,>), then ¢ is an (local) isometry of G
with the left invariant Riemannian metric. Therefore a 2-dimensional subspace
V in T.,G=g is the tangent space of a totally geodesic surface in G if and
only if so is @(V). We will classify such subspaces up to the action of
Aut(@)NO(g; <, ).

THEOREM 7.2. Let G be a 3-dimensional unimodular Lie group with left
invariant Riemannian metric and let e,, e, es be an orthonormal basis of (g;<,))
chosen as (7.1). Then totally geodesic surfaces of G are classified as the follow-
ing table: to describe totally geodesic surfaces, we list up 2-dimensional subspaces
in T,G=g which are the tangent spaces of totally geodesic surfaces. We remark
that the signs of Ay, As, As in the table below are chosen as Table 1.

G metric t.g. su;faces remark
SU(2) A=2A=1s all 2-dim subspaces (1)
the others none
SL2, R) A >A— A none
A=2,— s {cos fe,+sin fes, e} r 2)
As
tan®f=——
(tan 5 )
A< As—As none
E@2) A>2s none
A=A all 2-dim subspaces 3)
EQ1, 1 AFE—As none
h=—2 : i@
1= 42 {ﬁ(eri‘ee); es}R an
1
{:'/’7‘(91—92), es}R
Heisenberg gr. none
R? all 2-dim subspaces (5)
Remarks :

(1) This metric is of positive constant sectional curvature.
(2) These subspaces are equivalent under the action of Aut(g)N\O(g;<,>).
They are Lie subalgebras of g.



TOTALLY GEODESIC SUBMANIFOLDS 435

(3) This metric is flat.

(4) These two subspaces are equivalent under the action of Aut(g)NO(g; {,>).
They are Lie subalgebras of g.

(5) This metric is flat.

Praoof. We shall prove our computation results when G=SL(2, R). The
other cases are similar. We may assume that A,=2, without loss of generality.
Since 2,<<0, we have p,=1/2(—2;+2:+2:)<0, ps=1/2(A;42:—25)>0, and po<ps.
The sign of p, is uncertain. We consider the following three cases:

Case 1. p,>0.

Case . p,=0.

Case . ,<0.

Case I. By Lemma 7.1 (2), the eigenvalues of Ricci curvature tensor are
mutually distinct. Therefore by Proposition 4.6 curvature-invariant subspaces
are {e;, es}r, {es es}r, and {e, estr. Since (V. R)(ei, er)e;=2pi(pa— ps)es, there
does not exist a totally geodesic surface whose tangent space at e¢ is {e,, es}r.
For subspaces {e,, es}r and {e,, es}r, the same holds. Hence in this case there
isn’t a totally geodesic surface.

Case II. In this case, we have p(e,, e;)=p(es, ¢;)=0 and p(e,, ¢,)<0. There-
fore curvature-invariant subspaces are {e;, e;}r and {cos fe,+sin fe;, e,}r for
f<R.

Case 1, {e;, estr. Since (V. R)(ei, es)e;=—2pipse,, there does not exist a
totally geodesic surface whose tangent space at ¢ is {e,, es}z.

Case 2, {cos fe,+sin fe,, e;}r. We put f=cos fe,+sin fe;. Making use of
Lemma 7.1 (3), we have

(VoR)(f, ea)f=2p,ps(c0s*0 pr,+-sin?0 ps)(sin e, —cos fey).

Therefore if cos®0p,+sin*0p,+0, there does not exist a totally geodesic surface
whose tangent space at e is {f, ¢;}r. From now on we choose # which satisfies
tan®=—p,/ps=—2,/A.. In this case, we put H)={f, e;}r. Then § is a Lie
subalgebra of g. In fact we have

[f, es]=—A4,sin fe,+ 25 cos fes=—2; tan 6.

Let H be a connected Lie subgroup of G which corresponds to §. Then H is
totally geodesic in G. In fact we have V,f=sin 6 cos O(—u+ps)es, V,f=0,
and V,e,=0.

Case III. We devide this case into the following two subcases:
Case 1. A4,> 4.
Case 2. A1=4,.

Case 1. Since p—p,=2,—A4<0, the eigenvalues of Ricci curvature tensor
are mutually distinct. Similarly to Case I, we see that there does not exist a
totally geodesic surface.
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Case 2. In this case, we have p(e;, ¢,)=p(e,, ¢,)<0 and p(es, e5)>0. There-
fore curvature-invariant subspaces are {e;, ¢;}r and {cos fe,+sin fe,, e;}r for
6= R. Moreover it is easily seen that

cosa —sina 0
sina cosa 0]]acsR;CAut(@NO(g;{,>D).
0 0 1

Therefore it is sufficient to consider the subspaces {e;, ¢} and {e;, es}r. Since
(Vo R)es, en)er=2pi(pa—pts)es and (Vo R)(ey, es)e;=2pi(ps— ps)e,, there does not
exist a totally geodesic surface whose tangent space at ¢ is {e;, e,} g Or {e;, es}r. [J

Observations of Theorem 7.2. (1) There do not exist totally geodesic sur-
faces in almost all 3-dimensional Lie groups with left invariant Riemannian
metrics.

(2) Except the cases of constant sectional curvature, totally geodesic sur-
faces are Lie subgroups. In particular, the equivariance of such immersions
holds.

(3) After we classified totally geodesic surfaces, we see that given a
2-dimensional subspace V in T.G there is a totally geodesic surface whose
tangent space at e is V if and only if R(x, y)z€V and (V,R)(x, y)z€V for
u, x, y, z€V. That is, we can conclude that there exists or not a totally
geodesic submanifold by the data of R and VR.

REFERENCES

[1] J.P. BourcuUuiGNON AND H. KARCHER, Curvature operators: pinching estimates
and geometric examples, Ann. Sci. Ecole Norm. Sup., 11 (1978), 71-92.

[2] B.Y. CHEN, Classification of totally umbilical submanifolds in symmetric spaces,
J. Austral. Math. Soc., 30 (1980), 129-136.

[3] B.Y.CHEN anD T. Nacano, Totally geodesic submanifolds of symmetric spaces
1I, Duke Math. J., 45 (1978), 405-425.

[4] C. CuevaLLEY, Theory of Lie Groups, Princeton University Press, 1946.

[5] P. DomBrOwskKI, Differentiable maps into riemannian manifolds of constant stable
osculating rank I, J. Reine Angew. Math., 274/275 (1975), 310-341.

[67 J. ERBACHER, Reducation of the codimension of an isometric immersion, J]. Dif-
ferential Geom., § (1971), 333-340.

[77 R. HErMmANN, Existence in the large of totally geodesic submanifolds of Rieman-
nian spaces, Bull. Amer. Math. Soc., 66 (1960), 59-61.

{87 S.KosavasHi anD K. Nomizu, Foundations of Differential Geometry I, II, Inter-
science publishers, 1963, 1969.

[91 R.S. KuLkarni, Curvature structures and conformal transformations, J. Differ-
ential Geom., 4 (1970), 425-451.

[10] J. MiLnor, Curvatures of left invariant metrics on Lie groups, Adv. Math., 21
(1976), 293-329.



(11]
(12]
[13]
[14]
(15]

TOTALLY GEODESIC SUBMANIFOLDS 437

H. ReckzIEGEL, A class of distinguished isometric immersions with parallel
second fundamental form, Resultate Math., 6 (1983), 56-63.

M. Spivak, A Comprehensive Introduction to Differential Geometry Vol. 3, Pub-
lish or Perish Inc., 1975.

K. Tojo, Totally geodesic submanifolds of naturally reductive homogeneous
spaces, Tsukuba J. Math., 20 (1996), 181-190.

K. Tojo, Totally geodesic hypersurfaces of normal homogeneous spaces, to
appear.

J.P. WoLF, The geometry and structure of isotropy irreducible homogeneous
spaces, Acta. Math., 120 (1968), 59-148.

DEPARTMENT OF MATHEMATICS
OcuanoMizU UNIVERSITY
Tokyo 112

Jaran








