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MONOTONE DISCONTINUITY OF LATTICE OPERATIONS

IN A QUASILINEAR HARMONIC SPACE

MlTSURU NAKAI

Abstract

We claim, contrary to the linear case, that the lattice operations among
harmonic functions are not necessarily monotone continuous in quasilinear
harmonic spaces by showing the existence of a quasilinear harmonic space
(X,H) in which there are harmonic functions un in H(X) (n=1,2, - ,oo) with
the following properties: the least harmonic majorant un\y0 and the greatest
harmonic minorant unA0 of un and 0 exist in H(X) for every n = l , 2 , - , o o
the sequence (un)ί^n<oo is increasing and convergent to u^on X the sequence
(unA0)ιsn<oo converges increasingly to a harmonic function strictly less than
MooΛO on X.

1. Introduction

In the theory of Jϊ-harmonic functions (including ^-harmonic functions) as

developed by Heinonen, Kilpelainen, and Martio in their monograph [2], the

order structure and in particular the induced lattice structure of the space of

jί-harmonic functions (see 5 below) supplement the lack of its linear structure.

In this sense the availability of the monotone continuity of lattice operations

would greatly enrich the Jί-harmonic function theory. More specifically, denote

by uVv (uΛv, resp.) the least ci-harmonic majorant (the greatest ^-harmonic

minorant, resp.) of two Jϊ-harmonic functions u and v on a region Ω of the m-

dimensional Euclidean space Rm, if it exists. Consider ei-harmonic functions

un (w = l, 2, •••, <*>) such that both unVθ and unA0 exist on Ω (n—1, 2, ••• , oo).

We wish to know whether the following statement is true or not.

2. S T A T E M E N T . // the sequence (un)1^n<oo zs increasing and convergent to

Uoo on Ω, then {un/\$)l1in<0o converges to u^AO on Ω:

( 3 )
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The validity of limn_ooMwV0=WcoV0 is trivially true and therefore, if the
space of ei-harmonic functions happens to form a linear space, then the relations
unVQ+unΛ0=un (w=l, 2, •••, oo) instantly imply (3). Hence the difficulty of
course comes from the nonlinearity of the space of ci-harmonic functions. The
purpose of this paper is to claim that (3), even if it is true, cannot be proven
in general by merely using the so-called quasilinear harmonic structures of en-
harmonic functions; more precisely, there is a quasilinear harmonic space (cf.
[2, Chap. 16] see 4 below) and a sequence (un)ι^n<oo and its limit u^ in H(X)
as described above such that (3) is invalid (see Theorem 21 below).

4. Quasilinear harmonic spaces

Consider a locally compact, locally connected, and connected Hausdorff space
X. To exclude triviality we moreover assume that X is noncompact. Let H
be a sheaf of continuous functions, i.e. H is a mapping of the family of open
sets U of X to a set of subfamilies H(U) of real valued functions on U satisfy-
ing the following sheaf axioms:

(5.1) if U is open in X, then H(U)aC(U)t the space of continuous func-
tions on U;

(5.2) if UdV are open in X and ueH(V), then u\U^H(U);
(5.3) if Ue are open in X and U=VJCUC and u is a function on U, then

u\Uc€ΞH(U
c
) for all i imply U*ΞH(U).

We say that an open set U of X is regular with respect to a sheaf H of
continuous functions if the following conditions are fulfilled:

(R.I) U is relatively compact in X;
(R.2) for each /eC(3ί7) there is a unique Hu

f(Ξ.H(U)Γ\C(U) such that

(R.3) for each pair of / and g in C(dU) the condition f<^g on dU implies
that Hu

f<Hu

g on U.

After introducing these terminology we are able to state the following three
axioms.

AXIOM A. For every compact set K of X and for every open set U of X
with KcU there is a regular open set Ω of X such that KdΩdΩdU.

AXIOM B. If U is a subregion of X and (w,)î <co is an increasing sequence
in H(U), then either lim ÔoW<; = + 0 0 on U or liin^oott^//(£/).

AXIOM C. If IKΞH(U) and Ae/2, the real number field, then u+X<=H{U)
and λu^H{U).

According to [2, p. 319] (see also Laine [3] and Lehtola [4]), the pair
(X, H) of the space X as stated above and a sheaf H of continuous functions
on X will be referred to as a quasilinear harmonic space if Axioms A, B, and
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C are satisfied; compare this with various linear harmonic spaces (cf. e.g. [1],
[5], etc.).

5. ci-harmonic functions

Consider an operator Jί: RmxRm->Rm satisfying the following four condi-
tions : (i) JL(χ, h) is continuous in h for a.e. fixed x and measurable in x for
all fixed h; (ii) there are constants 0<α^/3<oo such that Jί(x, h)-h^a\h \v

and \Jl(x, h)\ ^ β\h\p~ι for a.e. x and for all h (iii) (Jl(x, hλ)-Λ(xf A2))

(Λi —A2)>0 for a.e. x whenever hiΦh2; (iv) Jί(x, λh)—\λ\p~2λJί(x, h) for a.e. x
and for all h whenever λ^R\{0\. A continuous weak solution of the quasilinear
elliptic equation

on U is said to be Jl-harmonic on U and we denote the totality of Jί-harmonic
functions on U by HJL(JJ). Then Hj, is a sheaf of continuous functions on Rm.
It is one of fundamental results in jί-harmonic function theory that (Rm, Hj)
forms a quasilinear harmonic space (see [2, Chap. 6]).

Many important consequences are expected in the theory of c^-harmonic
functions if Statement 2 in the introduction is true so that we naturally would
like to prove it. However we will show that Statement 2 cannot be proven by
using only Axioms A, B, and C in (Rm, HJ). In other words, Statement 2 is
false for some quasilinear harmonic space (X, H). We will construct such an
(X, H) in the sequel. Our example is motivated by that of Martio (cf. Laine
[3] and [2, p. 319]).

6. An example of a quasilinear harmonic space

Consider a one dimensional subset X of the plane R2 given by

(7) X={(x,0):

With the induced plane topology X is a locally compact, locally connected, con-
nected, and noncompact Hausdorff space. The open intervals I={(x, 0): a<x<
b}, 0£a<b<^ with (k, 0)^7 (feeiV, the set of positive integers), Jk={(k, y):
a<y<b}{k(=N), 0<a<b£oo, and the neighborhoods Tk={(x, 0): k-t<x<k +
t}U{(k, y): O£y<t} of the point (k, 0), 0<α<l (έeiV), form a base for the
topology of X. For each open set UczX we define H(U) as follows.

(Hi) If U is of the form / above, then H(U) consists of all aίϊine (i.e.
linear) functions on U, i.e. H(U) consists of functions u of the form u(x, 0)=
px-\-q for some p and q in R.

(H2) If U is of the form Jk above, then H(U) consists of all afϊine func-
tions on U, i.e. H(U) consists of functions u of the form u(k, y)—py-\-q for



MONOTONE DISCONTINUITY OF LATTICE OPERATIONS 285

some p and q in R.
(H3) If U is of the form Tk above, then H(U) consists of continuous func-

tions u such that

(8) u(k, 0)=-77(maxw+min u)
Z \ dU dU /

and u is affine on the intervals from (k, 0) to the boundary points of U.
(H,) If U={(x, 0) : a<x<b}\J(UkςΞN,a<k<b{(k, y) 0£y<ck}) for 0<a<b

^oo and 0<ck<ίoo (k^N, a<k<b), then H(U) consists of continuous functions
u such that u\Tk<=H(Tk) (ktΞN, a<k<b) for Tk={(x, 0): k-tk<x<k+tk}\J
{(k, y)' 0<^y<tk} with tk=m'm(k — a, b—k, ck, 1) and u is affine on intervals
which are connected components of {(x, 0): a<x<b}\{(k, 0): &e7V, a<k<b]
and on intervals {(&, y): 0<y<ck}(k^N, a<k<b).

(H6) If U is an arbitrary open set in X, then each connected component V
of ί/ is of the form in (Hi), in (H2), or in (//4) and we let u^H(U) if and only
if u<=H(V) for each such component F.

It is clear that H is a sheaf of continuous functions on X, i.e. // satisfies
(S.1)-(S.3). Concerning the Axiom C, the stability of H under the addition of
scalars is clear. To see the stability of H under the multiplication by scalars
we only have to observe that, in case (Hz), mβ.Xduλf~λmmduf and m i n a ^ / ^
λmaxduf for scalars Λ<0. Axiom B is easily seen to hold. Thus (X, H) is
concluded to be a quasilinear harmonic space if Axiom A is assured. It is
achieved by establishing the following assertion.

9. PROPOSITION. Every open subset U of X in (7) which is relatively com-
pact in X or more generally in XU {(0, 0)} with the relative plane topology is
regular with respect to H on X determined by (Hλ)-(Hb).

Proof. In order to show that U is regular it suffices to show that each
connected component V of U is regular. Any connected component V of U is
one of the following forms: the form in (Hi), in (H2), or in (//4). The regularity
of V of the form in (Hi) or in (H2) is entirely clear. Hence we only have to
consider the case V is of the form in (H4) with 6<oo. Therefore we only
have to prove that, if U is of the form

£ / = { ( * , 0 ) : α < x < & } u ( \ J { ( m + A ! , y ) : 0S

where 0<a<b<oof m <, a<m+l ^ m+n<b£m+n + l (meiVVJ{0}, n^N), and
0<d*<oo (l^k^n), then U is regular. We set po=(a, 0), pk=(m+k, dk) (1^
k£n), pn+i=(b, 0) and also ρk=ίm + k, 0)(l£k£n). Then dU= \p3 :_0^j£n+l}
considered in XU {(0, 0)}. We are to find a unique Hu

f^H(U)Γ\C(U) such that
Hu

f\dU=f on dU for any f(ΞC(dU) and to show that f£g on dU implies Hu

f

^Hu

g on U. For the purpose we observe that f^C(dU) may be identified with
a v e c t o r a=(a°, a1, •••, an, an+1)^Rn+2 by f(pj)=aJ ( ; = 0 , 1, ••• , n, n+ϊ). T h e n
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Hυj is completely deterimmed by the vector x = (x1, •••, x n ) e Rn such that
H%qk)—xk (l<,k^n). It is easy to see by (Hi)-(HB) and especially by (H3) that
the condition Hu

f<=H(JJ) is valid if and only if x satisfies the following simul-
taneous quasilinear equations

/ xι~ι-xx aι-xι

(10) (

= 0

( ί = l , •••, n), where x°=a° and * n + 1 = α n + 1 . Here c ° = ( m + l ) - α , ck = l (fe = l,
•••, w—1), and cn=b—(m+n). Thus we only have to prove that there is a
unique solution x = ( % \ •••, xn) of (10) for any a—(aQ

f •••, α w + 1 ) and that if a is
replaced by ά—(ά°, •••, άn+1) with aJ<άJ (/=0, •••, n + 1 ) , then the corresponding
ic=(jc1, •••, x n ) satisfies %'^jc' ( ι = l , •••, n). This is assured by Proposition 26
in Appendix 24 at the end of this paper. G

11. An increasing sequence in H(X)

We take the quasilmear harmonic space (X, H) constructed above m 6. For
two functions u and v in H(X) we denote by u\Jvy if it exists, the function in
H(X) with the following two conditions: ( i ) u\/v^u and v o n Z ; (ii) if ΛG
H(X) and h>u and i; on X, then h^uVv on X Similarly wΛv, if it exists,
is characterized as the function in H{X) by the following two conditions: ( i )
u/\v<u and v on X; (ii) if h^H{X) and /i^w and y o n Z , then h^uΛv on X
In short, u\/v(u/\vy resp.) is the least (greatest, resp.) harmonic majorant
(minorant, resp.) of u and i; on X. Hence uΛv=—((—w)V(—v)) and M V V = -
( ( - M ) Λ ( - V ) ) .

We define a sequence (wn)ign<oo of functions un^H(X) and a function Uoo^
H(X) as follows. First on {(x, 0): x^O} we set

(x
(12) Unix, 0)=\

[ -x+2n (n<x<oo);

a n d n e x t on \Jΐ=ι{(k, y ) : 0<S;y<oo} w e s e t

(13) un(k. y)=\

It is easy to see that un<=H(X) and un has the boundary value zero at the ideal
boundary point (0, 0) of X(n = l, 2, •••). The definition of Woo is simpler:

(14) U00(

(15) uj^k, y)
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It is also easy to see that u^^H{X)y u<» has the boundary value zero at the
ideal boundary point (0, 0) of X, and Woo>0 on X. Obviously

(16) un^un+1 (neiV) and u^^limun on X.
n-»oo

Finally consider the function v on X defined by

(17) v(x, 0)=-x (0<x < oo)

(18) v(k,y)=-k (0<y<oo; k(=N).

Obviously v<^H{X), v has boundary volue zero at the ideal boundary point (0, 0)
of X, and v<0 on X. We will show in 23 below that

(19) unA0=v ( n = l , 2, •••)

on X so that we have

(20) limκnΛθ=ι;<0=ttcoΛθ
7i-»oo

on X. Clearly unVQ exists in H(X) since Un^u^UooVO (n<=N)). Therefore
we have established the following result.

21. THEOREM. There is a quasilinear harmonic space (X, H) which carries
an increasing sequence {un)^n<O0 in H(X) with a limit u^ in H(X) such that un V0
and unA0 exist in H(X) ( l ^ n ^ o o ) and

on X therefore the lattice operations on quasilinear harmonic spaces are not ne-
cessarily monotone continuous.

22. Remark. If (un)ι^n<^ ΐ Woo in H{X) in a quasilinear harmonic space
(X, H), then unWθ} WooVO is always true but wnΛ0 ] WooΛO may not be true as
we saw above. As the dual assertion, if (un)ί^n<oo 11/*, in H(X), then unA0 |
MooΛO is always true but unVθ | WooVO may not be true. What we say "mono-
tone discontinuity" should be understood in this sense. On the other hand, as
stated in the introduction, if (X, H) is linear in the sense that every H(U)
forms a linear space, then the "monotone continuity" of lattice operations Λ
and V is true.

23. Proof of (19)

Fix an n^N. Clearly v<un and v<0 on X so that v<unA0= : h on X.
Hence v^h^unΓ\^\—mm{uny 0) on X. By the fact that v and un have boun-
dary value zero at (0, 0), we see that h is continuous at (0, 0) and /z(0, 0)=0.
Observe that h is linear (i.e. affine) in each interval {(x, 0): k—l^x<
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Similarly, h and unΓ\O are linear on the half-line {(k, y): 0^;y<oo} and in
particular the slopes of v and unΓ\0 are zero. Hence the slope of h on {(k, y):
0^y<°°} must be zero. This implies that the slope of h on {(x, 0): k—1^
x^k\ and that on {(x, 0): k^x^k+1} must coincide with each other. There-
fore h is linear on the half-line {(x, 0): 05jx<oo) and its slope must be — 1 since
otherwise h and the part of unΓ\0 which is a half-line with slope —1 must intersect,
contradicting h^unΓ\0 on {(x, 0): 0^%<oo}. This proves that h=v. D

24. Appendix. Simultaneous quasilinear equation

In the proof of Proposition 9 it occured the need to solve the following
type of simultaneous quasilinear equations which may also be in use in the
theory of finite networks (cf. e.g. [6]):

.__, / xι~ι—xx ax—x% xx+ι—x% \ , . / x1"1—x% ax—xx xx+1—xx \
(25) maxί —λ—, —-rx—, J+mmί —λ—, — — — , )

( ι '=l, •••, n), where x°=a° and xn+1=an+1. Here n e i V ; c=(c°, c\ •••, cn)<=
Rn+1 and d=(d\ •••, dn)<=Rn are arbitrary vectors of strictly positive com-
ponents but fixed once and for all for each n^N; a—(a0, a\ •••, a71, an+1)<=
Rn+2 is a known vector but may vary ; x=(x\ •••, xn)<=Rn is an unknown
vector to be sought. We will look into the solvability of the equations (25)
and study the dependence of the solution x on the given vector a.

For convenience we say that, for a given vector a—(a0, •••, an+1)^Rn+2, a
vector x—(x\ •••, xn)<=Rn is an a-system for c=(c°, •••, cn)<=Rn+1 and d=(d\
•••, dn)^Rn if x satisfies the equations (25). For two vectors ζk~(ζi •••, ζ?)
e β m ( ^ l , 2) we write ζ ^ ζ 2 (ζ i<ζ 2 , resp.) to mean ζ { ^ ζ ί ( ζ ί < ζ ί , r e s ρ . ) ( ι = l ,
•••, m). The purpose of this appendix is to maintain and prove the following
result.

26. PROPOSITION. For any vector a^Rn+2 there exists a unique a-system XG
Rn(: unique existence); if xk is the ak-system {k — ly 2), then a^a2 implies x^
x2(: monotoneity).

Proof. For any vector ζ=(ζ\ •••, ζm)^Rm and a scalar λ^R we denote
by ζ+λ the vector (F+λ, •••, ζm+λ)^Rm. Observe that x+λ is an (a+λ)-
system if and only if x is an α-system. Hence in proving the above proposi-
tion we may and thus will assume without loss of generality that αϊ>0. We
start with proving the following

27. Assertion, ( i ) For any a=(a°, a\ α 2 )e/2 3 (α^0) there exists a unique
α-system χ=φ(a)=φ(a°, a1, α^eJR1 for c=(c°, c1) and d^id1); (ii) φ{aι)^φ{a2)
if <Zî <22; (iii) the function χ—φ(a) is continuous in a; (iv) the graph of the
function aι^x—φ(a°, a1, a2)(al^0) in (a\ x)-plane is a polygonal line consisting
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of at most 3 line segments and a half-line each of which has the form x^
+B with the slope A=A({a°, a\ aa}\{a*})€=[0, 1) and B=B({a°, a\ α8}\{α'})
e[0, oo) (,=0, 1, 2).

In this case the equations (25) defining α-system (a=(a°, a1, a2)) x=x1=φ(a)
for c=(c°, c1) and d={dι) is reduced to a single quasilinear equation

(28) maxί- »-xι
aι—xι aύ-

We will express x=x1=φ(a) explicitly below in terms of a by solving (28) con-
cretely, which proves ( i ) in Assertion 27 instantly. By observing the de-
pendence of φ(a) upon a in the explicit formula of φ(a) below we can at once
see the validity of not only (ii) but also (iii) in Assertion 27. In the proof of
(iv) in Assertion 27 we only have to treat the /=0 case since the other cases
can be similarly taken care of. For all these purposes in mind we now try to
solve (28) concretely in such a fashion that x=x1 is viewed as the continuous
piecewise linear function of a0. For the purpose we may assume that α ^ α 2

without loss of generality. For simplicity we set α=((c1+c0)fl1+(rf1—c°)a2)/
(d'+c1) and j3=((c 1-c 0)α 1+(d 1+c 0)α a)/(ίί 1+c 1), and in the case dιΦc\ γ=((c1+
c*)aι—(dι+cQ)a2)/(cι—dι). By the conventional assumption a><>a2 we see that
always a^β. It is easy to solve (28) concretely in a unique fashion as follows:
if d 1 =c 1 , then a^β and xι, as the function of a0, is the restriction to [0, oo)
of the function in a0 given by

(29)

if dι<cι

f then γ^a<β and x1, as the function of a0, is the restriction to [0,
of the function in α° given by

(30)
(cιa°+c°a2)/(cQ+cι)

, (dιa«+c«aι)/{cQ+dι)

if d}>cι, then a£β£γ and xL, as the function of α°, is the restriction to [0, oo)
of the function in α° given by

(31)

a°<oo).
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The validity of (i )-(iv) in Assertion 27 can now be instantly verified by ob-
serving the relations (29), (30), or (31).

By the mathematical induction on neiV'we will prove the following asser-
tion which is also sufficient for the proof of Proposition 26.

32. Assertion, ( i ) For any flG^+2(a^0) there exists a unique α-system
x=φ(a; n); (ii) ψ{ax\ n)<φ(a2; ή) if a^a2; (in) x=φ(a; ή) is continuous in
a; (iv) writing α=(β°, a')^Rn+2 (a'(ΞRn+1, α'^0) and <p(a; n)=(φ\a; n), •••,
φn(a; n)), the graph of the function a^xι=φ\a°, a' n) (α°^0) in (α°, x1)-
plane is a polygonal line consisting of a finite number of line segments and a
half-line each of which has the form x1=Aa°+B with the slope A=A(a')^
[0, 1) and β=B(α')e=[0, oo).

Assertion 32 for w—1 is clearly a part of Assertion 27. Take an arbitrary
n^N with n ^ 2 and assume that Assertion 32 is true for n—1. We produce
from the pair of c=(c°, •••, cn)^Rn+1 and ^ ( d 1 , •••, dn)^Rn two new pairs
of d=(c°, cx)e/22 and d1=(d1)^R1 and of ca=(c1, - , cn)eΛ» and d2=(d2, •••,
dn)^:Rn~ι. Let x*^0 and X2;Ξ>0 be variables but fixed for the time being.
From a vector a=(a°, a\ •••, αn + 1)G/2w + 2 we also produce two vectors ax=
(a0, α1, ^ 2 ) G / 2 3 and flg^ίx1, G2, a\ •••, α n + 1 )eΛ n + 1 . First take the unique α r

system Λ I ^ U 1 ) for Ci and <ii. We set x1=φ1(a°> a\ x2 1). Observe that the
function x2^>x1=φ1(a0, a1, x2 1) enjoys the properties (i)-(iv) in Assertion 27
for cx and dx. Next, by the assumption of the induction that Assertion 32 is
true for n—1, there exists the unique α2-system x2—{χ2, •••, χn) for c2 and d2

and the functions a2^ χ2=φ(a2; n—l)—(φ\a2; n—1), •••, φn~1(a2; n—l)) and

J C 1 ^ ^ 2 ^ : ^ ) ^ ^ 1 , α2, •••, an+1 n—l) enjoy the properties (i)-(iv) in Assertion 32
for n—l and for c2 and d2. Describe the graphs of functions x2^ x1=φ1(a°,
a\ x2; 1) and xί^x2=φ\x\ a2, •••, an+1 n—l) in the (x\ %2)-plane. By pro-
perties (ϋ)-(iv) in Assertions 27 and 32, and especially by the fact that graphs
of these two functions are polygonal lines each segment or half-line of which
has nonnegative slope less than 1 as functions of x1 or x2 and that φ1(a°, a1,
0; 1 ) ^ 0 and φ\0, α2, •••, an+1 n—1) > 0, a simple geometric consideration
assures that these two graphs intersect at only one point (x1, x2) in the first
quadrant of (x1, x2)-plane which varies continuously and increasingly along with
(α°, a1, •••, an+1). Hence in particular we can see that the simultaneous equations

ί xι=φ\a\ a\ x2; 1)
(33)

{x2=φ\x\ a2, ••-, an+1; n-1)

have a unique solution (x\ x2) which is the above point of the intersection.
Using this particular xι we see that the first component of the (x1, a2, •••, an+1)-
system x2 is the above particular x2. Let x 2=(x 2, x3, •••, xn). Then x=(x\
x2, x3, •••, xn) is the unique α-system (α=(α°, a1, •••, an+ί)) for c and d. This
proves ( i ) in Assertion 32 for n and for c and d. We set x=φ(a; n)=(φ1(a;
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ri)> •" > φn{d w)). The above geometric observation on the unique intersecting
point of the two graphs of functions in (33) yields the properties (ii) and (iii)
in Assertion 32 for n and for c and d.

By the assumption of the induction for the second equation of (33) there
exist two scalars A and B depending only on a2, •••, an+1 and thus independent
of x1 and α° with O<:.A<1 and Q<*B<oo such that

(34) x*=Ax1+B

on [0, oo) sectionally, i.e. A and B may vary accoding to a subdivision of the
^-interval [0, oo). The same is true of the first equation of (33); more pre-
cisely, by the concrete representation of x1=φ\a°, a1, x2 1) given by (29), (30),
or (31), we see that x1 is given by one of the following forms (35)-(37) below
sectionally:

(35) x^^a'+c

(36) x1=(c1άί+dιx*)/(cί+dι)

(37) x1={dιa»+c«a1)/(c*+dι).

First in the case where the first two components (x1, x2) of the α-system (a=
(α°, —, an+ι)) x = (x\ x2, -", xn) is given as the intersection of (34) and (35),
replacing x2 in (35) by that in (34) we have

so that x1 is linear in α° sectionally with the slope c1/((l—A)c°+c1)&(0, 1) and
c°B/(S\—A)c°+cι)<^\Jd, oo). Next in the case of (34) and (36), the simultaneous
equations (34) and (36) produce

M1 Λ _ft , c^+d'B

so that x1 is linear (and in fact constant) in a0 sectionally with the slope Oe
[0, 1) and (c1a1+d1B)/(c1+(l-A)d1)t=L0, oo) Last in the case of (34) and (37),
the formula (37) itself indicates that x1 is linear in α° sectionally with the slope
dVC^+d^eCO, 1) and c°a1/(c^d1)^10, oo). Thus the property (iv) in Assertion
32 for n and for c and d has also been shown to hold.

This completes the induction for the proof of Assertion 32 and hence the
proof of Proposition 26 is now over. •
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