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SHARP ISOPERIMETRIC INEQUALITIES

FOR STATIONARY VARIFOLDS AND

AREA MINIMIZING FLAT CHAINS mod k

JAIGYOUNG CHOE*

It is well known [4, 5, 8] that a smooth minimal surface Σ spanning a
rectiίiable Jordan curve C satisfies the isoperimetric inequality

(1) 4π Area(i;)^Length(C)2,

where equality holds if and only if C is a circle and Σ is a disk. Some smooth
minimal surfaces in R3 can be physically realized as soap films. However, the
soap films formed by dipping some wire frames in soap solution contain interior
singular curves. Here arises the main question of this paper: Does (1) still
hold for this soap-film-like surface with singularities? In 1986 one of Almgren's
results [2] answered this question affirmatively for area minimizing flat chains
mod k. In this paper we extend his two-dimensional result and show that (1)
holds also for two-dimensional stationary varifolds with connected boundary of
multiplicity ^ 1 (Theorem 2). Moreover, if the bounding curve C consists of k
curves having the same end points, we obtain a new type of sharp isoperimetric
inequality for area minimizing flat chains mod& spanned by C. Here, unlike (1),
equality holds only for the union of k flat half disks with a common diameter
(Theorem 3).

1. Arcs and sectors

In this section we derive sharp isoperimetric inequalities for domains in the
plane where only a specific part of the boundary counts toward the length of
the boundary.

LEMMA 1. Let lx and U be the rays emanating from a point O with an
angle of θ<π. Let C be a curve from a point of lx to a point of l2.

(a) Suppose that C lies in the smaller sector of the two formed by the rays
(C may lie in either sector if θ = π). Define D as the domain bounded by lu l2,
and C, Then
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2Θ Area(£)^Length(C)2,

and equality holds if and only if C is a circular arc perpendicular to the rays.
(b) // C lies in the larger sector, then

2π AreaCD)^Length(C)2,

where equality holds if and only if C is a semicircle perpendicular to one of the
two rays.

Proof, (a) For the existence of an optimal curve of fixed length enclosing
the largest area, we refer to [10, pp. 441-444] : the set S of convex curves of
fixed length lying in the smaller sector, being equipped with the topology
corresponding to the Hausdorff metric, is compact; the two functions defined
on S, Length and Area, are continuous. Let C be an optimal curve which is
convex and lies in the smaller sector, and let pi^llf i=l, 2, be the end points
of C. We claim that the triangle Opxp2 is an isosceles triangle. If it is not,
choose pi^li such that Op[pf

2 is an isosceles triangle with Length(pζpζ)=
Length(/>i£2). Let C be the curve from pi to pi which is congruent to C. Then
the domain D' enclosed by C and llt l2 has larger area than D. If C lies in
the smaller sector, the existence of C contradicts the optimality of C, and so
our claim follows. Suppose a part C" of C leaves the smaller sector. Let
p'<=lx\Jl2 be the end point of C" which_is not an end point of C . Rotate C"
around p' by 180° and obtain a curve C in the smaller sector. Then (C'^C")
WC is a none on vex curve of the same length as C in the smaller sector which
encloses the same area as C. Hence one could find a convex curve of smaller
length enclosing larger area than C, which is again a contradiction. Therefore
Opλp2 must be an isosceles triangle.

Next we claim that C is a circular arc. C lies on one side of the straight
line / containing px and p2. Find a circle γ through pi and p2 such that an
arc a of γ from p1 to p2 has the same length as C and lies on the same side
of / as C. Then the closed curve {γ^a)\jC gives a solution to the classical
isoperimetric problem. The uniqueness of the solution implies C=a.

So we have infinitely many candidates for the optimal curve: circular arcs
of the same length that are perpendicular to the ray h which bisects the smaller
sector formed by lx and l2. We claim that the arc we want should be perpen-
dicular to the rays lx and l2 too. For any circular arc A perpendicular to /3,
h divides A into two subarcs, Ax and A2. Move Ax and A2 separately to the
opposite side of l3 by the rotations about O by the angles of θ/2 and —θ/2.
Then we obtain a curve A' in the sector which is of the same length as A and
encloses the same area as A does. If A is not perpendicular to lx and /2, then
A' is not smooth at A'Γ\U and hence A' cannot enclose maximal area. Thus
the circular arc perpendicular to lx and l2 and only this arc maximizes the area
of the domain bounded by lx and l2. Since this arc satisfies 2Θ Aτea(D)=
Length(C)2, the desired inequality follows.
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(b) Given any curve C joining lx to l2 in the larger sector, one can increase
the enclosed area of the domain bounded by lu l2 and C by moving (rotating
and translating) C into a curve C in such a way that both the end points of
C lie on llm Therefore part (a) completes the proof.

2. Cones with vertex on the boundary

Some two-dimensional cones in Rn satisfy the classical isoperimetric in-
equality (see [5, Theorem 1]). This follows from the fact that two-dimensional
cones, being flat, can be flattened (i.e., developed) to become a planar domain
provided its density at the vertex is not smaller than 1. However, if the
vertex lies on the boundary of the cone, the density hypothesis can be dropped
[5, Corollary 1].

DEFINITION 1. i) A compound Jordan curve is a one-dimensional rectifiable
connected set in Rn which is the union of finitely many Jordan curves (=home~
omorphic images of a circle).

ii) For p^Rn, p>&C is the cone from p over C, the set of all line
segments from p to the points of C.

LEMMA 2. // C is a compound Jordan curve in Rn and p a point of C, then

Equality holds if and only if p>&C can be developed, by cutting and inserting,
one-to-one onto a disk.

Proof. Choose a point q from C such that its distance from p is the
maximum among all points of C. One can easily find a pair of curves γ', γ"aC
joining p to q and intersecting each other at finitely many points. Let γx~
γ'Uγ". Take γ2, γ*t •••, ̂ C C to be pairwise disjoint curves such that

(2) C = 0 n and Length(C)= 2 Length^).

Now let us define a canonical parameter Θ for each γt. Let li(θ)=dist(p, γi(θ)).
The desired canonical parameter θ is assumed to satisfy the condition that

for any yι(a), γi(b)^γι.

From this condition one can easily understand that θ is the angle parameter
viewed from p. Assume that each curve γt(θ) is defined on an interval [0, at],
and assume γM=γi(a1)=p. But ^(0), i^2, may or may not coincide with
γi(at). With each yx can one associate a curve C t on a plane 77 which is the
polar graph of h{θ): more precisely, C t is the set of all points (/*(#), θ) in
polar coordinates on 77. Then
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(3) Length^ t)^Length(C t), Area(/>*^)=Area(O* C»),

where O is the origin of 77. Geometrically, one can obtain Os&Cι by developing

p%γt on 77, cutting p-%γx along the line segment pγtφ) if γi(0)=γi(aι).
Without loss of generality one can assume that at<π for all i>2, for

otherwise one can divide γt into smaller parametrized curves with the desired
property. By Lemma l(a) there exists a circular arc Axy z^2, on the sector
formed by 0>&Cτ such that

(4) Area(0*C t )=Area(O*i4 t ), Length(C\)^ L e n g t h ^ ) .

Note that since q is a maximum distance away from p,

dist(0, Λ ) e {dist(O, m): meCJ = {άιst(p, s): s^γt}d{άist(p, r):

Hence there exists ^ e ( 0 , ax)y z^2, such that /i(^)=dist(O, Ax). Renumbering

γt if necessary, we can assume b2^b3< ••• tίbk. Define a new function

/:[0, Σ L i f l r l - ^ by

lx(β), if 0<

/1(68), if

/ 1 ( β ~ α 8 ) , if

/1(68), if

θ- Σ at), if bj-!+ Σ aτ£θ<bj+ Σ «t
t=2 / t=2 t=2

l(θ)=lι(bJ), if ΣΣ
z=2

=Uθ- Σ,at), if
\ 1=2 /

max

Geometrically, the cone O^cC, C being the polar graph of / on 77, can be
obtained from O^d by cutting out the line segments Od(bi), widening these
gaps by the angle of au and inserting Os&At in each gap. (See [5, Theorem 1]
and [6, Lemma 4] for similar arguments.)

In the construction of / above, we tacitly assumed that bt are all distinct.
In case bi=bi+1, one can attach At to Aι+1 to obtain a new arc Ai\jAi+1 and
then insert Os&{Ai\jAl+l) into the widened gap of UUJbϊJ,

Since the cutting and inserting process preserves the length of the curve
and the area of the cone, C satisfies
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k

Length(C)=Length(C,)+ Σ Length(Λ,)
2

Area(O*C)=Area(O«:C 1)+ Σ
1 = 2

Here the curve C may have self intersections and the cone OsfrC may have
overlapping parts. In this case Area(O^cC) should count the multiplicity of
the overlapping.

By (2), (3), (4), (5), we have

Area(ί«C)=Area(O«C), Length(C)^Length(C).

Since /(0)=/(Σί=i at)—0, C is a closed curve containing 0. Therefore the
conclusion follows from [5, Corollary 1],

3. Stationary varifolds

Our purpose in this section is to prove the isoperimetric inequality for a
stationary 2-dimensional varifold in Rn. It is known that the restriction of a
stationary varifold V to the set of points of positive density is rectifiable [3, 1].
And Allard proved that if the density of a stationary varifold is essentially
bounded away from zero, then an open dense subset of the support of V is a
continuously differentiable submanifold of Rn [1]. Following [1] and [9], we
briefly introduce varifolds in Rn, define stationary varifolds and their general-
ized boundary, and derive an area estimate of a stationary varifold from the
first variation formula.

m-dimensionaί varifolds in Rn are simply Radon measures on Gm(Rn)=
RnχG(n, m), where G(n, m) is the space of m-dimensional subspaces of Rn.
Given such an ra-varifold V in Rn, there corresponds a Radon measure μv on
Rn defined by

μv(A)=V(π~\A)), AdRn,

where π is the projection (x, S)>-*x of Gm(Rn) onto Rn. The mass M{V) of
V is defined by

If M = s p t μ v is rectifiable, then μv—Sίm\—θy where Mm is the m-dimensional
Hausdorff measure, θ vanishes on Rn^M and is a positive locally Jίm-integrable
function on M. θ is called the multiplicity function of μv. The support M
and multiplicity θ of μv completely determine V when V is rectifiable. So the
varifold V is also denoted by v(M, θ). When θ is integer valued almost every-
where, V is called an integral varifold.

Let f:Rn->Rn be differentiable. Then we define the image varifold / # F
of V by
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f»V(A)=^_iwJaf(x)dV(x, S), A^Gm(Rn),

where F: Gm(Rn)^Gm(Rn) is defined by F(x, S)=(f(x), dfx(S)) and where

(x,

W*|S)* being the adjoint of dfx\S.
The first variation δV of F is a linear functional on the set 3C(Rn) of

continuous vector fields with compact support on Rn, defined by

δV(Y)~M(φt*V)\t=0,

where {φt} _!<*<! is any 1-parameter family of diffeomorphisms in Rn with Y
as the initial velocity vector field. Differentiation under the integral gives

δV(Y)=[ άwsY(x)dV(x, S),

where
m

d i v β r = Σ < τ ι , Dτ.Y>,

?i> -, ?m being an orthonormal basis for 5, and D the Euclidean connection.
V is said to be stationary in U if δV(Y)=0 for any YtΞ3C(Rn) with

Now we want to define ||5V||, the total variation measure of δV. Assume
that V has locally bounded first variation in Rn, that is, for each WmRn there
is a constant c<oo such that \δV(Y)\£c suρ|F| for any Y(Ξ2C(Rn) with
spt|F|C^F. Then the Riesz representation theorem says that there exist a
Radon measure ||3V|| on Rn and a ||3V||-measurable vector field v on Rn such
that | v | = l ||βF||-a.e. and

δV(Y)=\ nv Yd\\δV\\,
JR

where \\δV\\ is characterized by

\\δV\\(W)=snp{δV(Y): YeL3C(Rn), \Y\^1, and s p t | F | c ^ }

for any open WmR71. Differentiating \\δV\\ with respect to μv, we see that

d\\δV\\(,γιm\\δV\\(Bp(x))

dμv P-*O μv(Bp(x))

exists ^F-a.e. and that



SHARP ISOPERIMETRIC INEQUALITIES 183

where

(xMx)f σ
aμv

ψ ^ \ and μv(Z)=0.
dμv

Thus for Y(ΞX(Rn) we can write

(6) δV(Y)=-[ H Ydμv+\ vΎda.

By analogy with the classical first variation formula for a smooth submanifold of
Rn, we call H the generalized mean curvature of V, Z the generalized boundary
of V, a the generalized boundary measure of V, and v | Z the generalized unit
conormal of V. We can easily see that V is stationary in U if and only if
# | ί / = 0 and Zn£/=0.

DEFINITION 2. (a) Let F be an ra-dimensional varifold of locally bounded
first variation in Rn and Z the generalized boundary of V with the generalized
boundary measure σ. Assume Z is (m— l)-rectifiable. Let

Then define the vanfold boundary dV of V to be the varifold v(Z, ψ). In other
words, dV is the (m—l)-dimensional rectifiable varifold with support Z and
multiplicity ^. Clearly μgV=σ.

(b) For an m-varifold V=v(M, θ), the vanfold cone p-^V from /> over V
is the (m+l)-varifold v{p%<M, θ), where θ(y)=θ(x) whenever y lies on the line
segment from p to I G M .

Example. Given a cube / 3 of volume 1 in R3, let F be the union of the
faces of P, E the union of the edges of P. Define V to be the 2-dimensional
varifold with support F and multiplicity 1 everywhere, i.e., V=v(F, 1). Then
one can see that i) the generalized mean curvature H of V vanishes on F^E,
ii) E is the generalized boundary of V, iii) σ—(Mι^—E)^-^/~2 is the generalized
boundary measure of V, and iv) the generalized unit conormal v of V makes an
angle of 45 degrees with the outward unit normals to F along E. It follows
that V is stationary in R3^E, the multiplicity of dV is VT, i.e., dV=v(E, VΊΓ),
and ps&dV=v(pi&E, VT), />e/23. Moreover ilf(Vr)=6, M(37)=12v/T, and if
ίo> ί i a r e the center of gravity and a vertex of / 3 respectively, M(po'%<dV)=6,

In [5, Proposition 1] we have proved a volume estimate for minimal sub-
manifolds in Rn. We extend this estimate to stationary varifolds in Rn as
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follows.

THEOREM 1. Let V be an m-varifold of locally bounded first variation in
Rn. If the generalized boundary Z of V is rectifiable and V is stationary in
Rn~Z, then for any

Proof. We see from (6) that

δV(Y)=[ v Ydσ,
Jz

Take Y to be the radial vector field defined by Y(x)=x — ρ. Then Y is the
initial velocity vector field of the 1-ρarameter family of homothetic expansions
{φt} given by φt(x)=(l+t)(x-p)+p. Hence

M(φt*V)=(X+t)mM(Y),
and so

On the other hand, since Z is rectifiable, Z has tangent spaces almost
everywhere and v is normal to Z. Let η(x) be a unit vector which is perpen-
dicular to Z at X G Z and lies in the subspace of Rn spanned by Y{x)=x — p
and the tangent space to Z at x. Taking the negative of η if necessary, one
can assume η-Y^O. It is not difficult to see that

v-Y^η Y.

Let r(x)=\Y(x)\. Then dr is the 1-form dual to the unit radial vector field
Y/\Y\. Hence

mM(V)=\ vYdσ^\ η Ydσ=\
J Z J Z J

Remark. In Theorem 1 we can see that M(V)=M(pi&dV) if and only if
y—η everywhere on Z, or equivalently, v(x) lies in the subspace spanned by
Y{x) and the tangent space to Z at every x e Z . This is the case in the
example preceding Theorem 1 when />=the center of gravity of P. More
generally, for a stationary integral varifold V arising from the boundary
(—faces) of a regular polyhedron U, M(V)—M(ps&dV), provided p is the center
of gravity of U.

LEMMA 3. Let W=v(Z, ψ) be a rectifiable 1-varifold in Rn with </>7>l and
let p be a point in Z. If Z is a compound Jordan curve, then
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Proof. Lemma 2 is a special case of this lemma with Z—C and ψ—1. So
this lemma will be proved by Lemma 2 if we can construct a compound Jordan
curve C in Rn with p<=C such that

(7) Area(ί*C)=Λf(/>*W), Length(C)^M(^).

Let γu •••, γkClZ be the curves as defined in the proof of Lemma 2, and
let / be the union of end points of γ2, •••, γu- Then Z~J is a union of curves
none of which is a loop. Still let γlf •••, fm denote the components of Z ~ / .
And let p\, p\ be the end points of γτ. Define Wt to be the part of W corre-
sponding to γl} i.e., Wt=v(γt, φ\γt). Parametrize γ% by θ, 0<θ^at. Let l(θ)=
dist(/>, T*<(0)) and φ{θ)—{ψ\γx){θ). Assume, as in the proof of Lemma 2, that θ
is the angle parameter so that ί(θ) satisfies

Define a new parameter φ of γιy 0^φ^bif such that φ=f(θ)=\φ(t)dt, f(at)

=bi. f is monotone increasing and its inverse function exists. Then l(θ)=

l(f~\φί) and hence

(8)

where we used the fact that dφ/dθ=φ^l. In view of the similarity of (8) to
the formulas for the area and arc length in polar coordinates, one can easily
construct a curve ft from p\ to p\ parametrized by the angle parameter φ such
that /(/-1(^))=dist(ί, fi(φ)) and

(9) Area(£ * f t)=M(p *Wt), Length(f ι)^

One can further impose on ft the condition that γiίΛjCZfifΛj. Define C =
\Ju=i?ι Clearly C is a compound Jordan curve, and p^C since 1=0 at p.
Summing up (9) for i, we get (7) as desired.

THEOREM 2. Suppose that V is a 2-varifold of locally bounded first varia-
tion in Rn, the generalized boundary Z of V is rectifiable, and V is stationary
in Rn^Z. If the multiplicity of dV ts 2̂ 1 and Z is a compound Jordan curve,
then

Proof. Apply Theorem 1 and Lemma 3.

We conjecture that the theorem above can be extended in three ways: i)
The theorem should hold without the hypothesis on the multiplicity of dV if
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the multiplicity of V is assumed to be 1 a.e. ii) The optimal case (equality)
should occur only when s p t F is a disk; iii) The theorem should be true even
when the generalized boundary Z of V is a disjoint union of compound Jordan
curves. The difficulty lies in obtaining the angle estimate: The angle of Z
viewed from a point of spt V^Z should be not smaller than 2τr. If the singular
set of spt V is the union of differentiate curves (like J. Taylor's soap-film-like
surfaces [11]) and if spt V is regular up to Z, then the angle estimate easily
follows (see [5, Remarks]). Once we have the angle estimate, we can apply
the arguments of [5, Theorem 1] and prove the isoperimetric inequality for V
if Z is radially connected from a point of spt V^Z.

In case the multiplicity of dV is less than 1, one can modify the theorem
as follows.

COROLLARY 1. Let V be a 2-varifold of locally bounded first variation in Rn

such that V is stationary outside the rectifiable generalized boundary Z. Write
dV=v(Z, θ) and define dV=v(Z, 6), 0=max{0, 1}. If Z is a compound Jordan
curve, then

4. Area minimizing flat chains mod k

In this section we derive a different type of sharp isoperimetric inequality
for certain area minimizing flat chains mod k. Roughly speaking, flat chains,
or currents, are obtained by assigning an orientation to the tangent space of
varifolds. First let us briefly define currents and related terminology.

Let £)m be the space of smooth differential m-forms with compact support
in Rn. An m-dimensional current in Rn is a continuous linear functional on ̂ ) w .
The set of such m-currents will be denoted <Dm. Any oriented m-dimensional
rectifiable set M may be viewed as a current TM in the following way. Let
S(x) denote the unit m-vector associated with the oriented tangent space to M
at x. Then for any differential ra-form ω, define

TM(ω)=\ <S(x),

Furthermore, we will allow TM to carry a positive integer multiplicity Θ{x),
and define

(10) TM,θ(ω)=\ <S(x),ω>θ(x)dMm.
J M

Motivated by the classical Stokes theorem, we are led to define the bound-
ary 3Te^)m_x of an m-current T by

dT(ω)=T(dω),

Again motivated by the example above, TM, we define the mass of T, M(T),
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for TtΞ$m by

M(T)=sup{T(ώ): \ω\^l, ω e Π ,

where |ω|=sup*eΛn<ω(x), o>(x)>1/2. The support of a current T, sptT, is the
complement in /271 of the largest open set on which T = 0 . T is called a
rectifiable current if spt T is rectifiable. The mass of a rectifiable current is
just the Hausdorff* measure of the associated rectifiable support (counting multi-
plicities). The integer multiplicity rectifiable currents TMtθ as defined in (10)
are characterized by the property that they agree, to within a set of arbitrarily
small Mm measure, with m-dimensional C1 singular chains with integer coeffi-
cients. Notice that one can associate TM, θ with the integer multiplicity varifold
Vr=ι;(M, θ) in Rn.

Sίm denotes the set of integer multiplicity rectifiable ra-currents in Rn. And
Sk

m denotes the space of m-dimensional rectifiable flat chains modulo k whose
boundaries are also rectifiable flat chains modulo k, that is,

(see [7, 4.2.26]). We write the same notations spt, 5, M for flat chains mod k
as we do for currents. One says T^Sk

m is area minimizing if

M(T)£M(S) for every S G Λ with 8S=dT.

DEFININION 3. Let YkdR3 be the union of k great semicircles on a sphere
meeting at the north and south poles at equal angles of 2π/k. Define ^/fcul
to be the set of 2-dimensional flat chains T mod k in Rn with multiplicity 1
almost everywhere such that sptdT is homeomorphic to Yk and the associated
varifold V—v{sptT, θ) is locally of bounded first variation in Rn.

THEOREM 3, Suppose that T is a 2-dimensιonal area minimizing flat chain
mod& in Q}\. If d , C2, •••, Ck are the curves that constitute sptdT and have
common end points p, p\ then

And equality holds if and only if spt T is the union of k flat half disks meeting
each other along the common diameter.

LEMMA 4. Let T^^Xbe a 2-dimensional area minimizing flat chain mod& and
V the varifold associated with T. Then sptdVCsptδT and the multiplicity ψ of
dV is less than or equal to 1 almost everywhere on sptδT.

Proof of Lemma 4. Since T is area minimizing, V is stationary in R3^
sptdT. Hence spt dV c spt 3 T. Now let us write dV—v(sptdT, ψ) and suppose
ψ>l on a set UdsptdT with 3Cι{U)>§. As stated in the previous section, the
generalized unit conormal v of V is ||3V|| -measurable. Hence we can approxi-
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mate —v\U by a smooth vector field Y with compact support with respect to
L1 norm on U. Extend F to a smooth vector field F on Rn. Then by (6)
δV(Y) can be made sufficiently close to —σ(U). Note that

(11)

Let {φt}-κt<i be a 1-parameter family of diffeomorphisms in Rn with F as the
initial velocity vector field and with {xesptdT: φt(x)Φx}dU. Then

(12) Λf(^ l # 7)=Λf(7)-ί[cr(t/)+e]+0(ί > )

for some sufficiently small | e | . Now define a 2-dimensional rectifiable set Dt,
t>0, to be the union of the line segments from φo(x) to φt(x) for all xEί/.
Clearly

(13) Area(A)=ί[Jf 1(ί/)+e] + O(ί2),

with | e | sufficiently small. By giving a suitable orientation to Dt, one can
make Dt into a current, still denoted Dt, such that St=φt#T+Dt is a flat chain
mod k with 3St=dT. Moreover we have from (12), (13)

Therefore we can deduce from (11) that for some t, M(St)<M(T), which is a
contradiction.

Proof of Theorem 3. By Theorem 1 and Lemma 4 we have

Since each ps&C% is flat, one can develop it on a plane and apply Lemma l(a)
to get

2π Area(/)^C ι)^Length(C ι)
2.

Hence
k

2πM(T)<L 2 Length(Ct)
2.

1 = 1

Here equality holds if and only if Λί(T)=ΣJ=i Area(^^C t) and if each ^ ^ C t

can be developed onto a half disk. So if equality holds, then the flat chain
mod k, TM, associated with M—\J\=ιp^Cx is area minimizing. Let r{x)— \x—p\.
Then the slice of TM by r at p, (TM, r, p>, is a 1-dimensional flat chain mod k
in dBp(p) for almost all p>0. Furthermore (TM, r, p} is locally length mini-
mizing, i.e., (TM, r, p}<—D is length minimizing for any sufficiently small
domain D in dBp(p). Hence spt<T#, r, p} is the union of part of great circles
in dBpip).^ Therefore M is a polyhedral set and each Ct is a planar curve.
Now let Ct be the semicircle centered at p, ending at pf, and of radius \p'—p\
such that the half disk Bt determined by Ct (i.e., dDtZDCt) contains the half
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disk D% determined by Cτ. Define a new flat chain mod k S such that spt 5 =
spt T\j(\Jk

x=ιφi~Dx)) and spt3S=Uf=iC\. Then we have M(S)=4M(T) since
M(T)=2?= 1Area(Z) ι). Note that Ct is similar to C t and that Length(Ct)=
2Length(Ct). Hence one can easily see that 5 also is area minimizing. Let p"
be the other end point of Ct. Along the open line segment of ppn', the density
of 5 is k/2. Then by the upper semicontinuity of the density, the density of S
at p is at least k/2. And the monotonicity of the mass ratio (a flat chain
version of [7, 5.4.3]) says that

Θ2(S, p, r)—M(Si—B(p, r))/πr2

is a monotonically nondecreasing function of r. But for d=dist(/>, p'),
Θ\S, p, d)=k/2, and limr^06>2(S, p, r)^k/2. Hence θ\S, p, r) is a constant
function and spt 5 is a cone. Therefore spt T={Jk

t==1p>$<Cι whenever equality
holds in the isoperimetric inequality.

Let F be a union of three half disks meeting each other along their
common diameter at equal angles of 120 degrees. Let T be the intersection
with the unit ball BX(O) of an infinite cone from O through the 1-skeleton of
a regular tetrahedron with its center of mass at O. In [11] J. Taylor proved
that the disk, Y, and T are the only three cones that are area minimizing under
Lipschitz maps leaving the boundary fixed. In view of this fact we raise the
following problem as an analogue of Theorem 3.

OPEN PROBLEM. Suppose that V is a 2-varifold with multiplicity 1 almost
everywhere and is locally of bounded first variation in Rn such that V is
stationary outside the rectifiable boundary spt dV. Suppose also that s p t F is
homeomorphic to T. Let Cίf C2, •••, C 6 Cspt3F be the curves that constitute
sptdF and lie between 4 junctions of sptdF. Show that

£ Σ Length(C02,

where equality holds if and only if spt V is a homothetic expansion (or con-
traction) of T.
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