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ORTHOGONAL DECOMPOSITION RELATED TO
MAGNETIC FIELD, AND GRUNSKY INEQUALITY

HIROSHI YAMAGUCHI

1. Introduction

Let D be a bounded domain in R® with C® smooth boundary surfaces 2.
Let 0=adx+bdy+cdz be a C closed l-form on D (=DUZX). By putting
d=c¢ in D and =0 outside D, we consider the usual Weyl’s orthogonal
decomposition : §=x*w+dF in R? where w is a L? closed 2-form in R’ and
dFeCI[dC3(R®)].

In §4 we shall show that @ is a harmonic 2-form in R®\2 of the form
w=dp and that p and F are written into the following integral formulas:

_(1¢( (a, b c)Xn, ) s
p(x)—(ESE————”x_y” ds,)-dx for xeR?,
_1¢ (a,b,0¢)ny _LS div(a, b, ¢) s
F(x)= in SS T ) P e dv, for xeR?

where n, is the unit outer normal vector of X at y, dx=(dx, dy, dz), and -
means the formal inner product.

In §2 we briefly recall the definition of surface current densities on X and
their properties studied in [6]. In §3 we shall prove an approximation lemma
concerning improper integrals. This lemma is not only useful to prove the
above integral formulas but also to show the fact that w is related to the
magnetic field. Precisely, if we write w=adyAdz+-BdzAdx+ydxAdy and
define B=(a, B, 7) in R\, then B is a magnetic field induced by a surface
current density JdS, on 2 such that B is the strong limit of a sequence of

usual magnetic fields {B,}, in R%limnMS 3HBn(x)—B(x)“zdvzzo. In §5 we
R

shall show that this fact implies the existence of equilibrium current densities
FdS, on Y. The notion of equilibrium current densities were introduced in
[6] motivated by the electric solenoid.

In §6 the integral formulas in R?® stated above is extended into those in
the complex z-plane. We then obtain a new proof of Grunsky inequality (cf.
[4]), which implies a necessary and sufficient condition for the case when the
inequality is reduced to equality. It gives us many examples of such cases.
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The main result (Theorem 4.1) in this paper is motivated by the elementary
part of Okabe’s fluctuation and dissipation principle in [3]. The author thanks
Professors Y. Okabe and Y. Nakano for their conversation. He also appreciates
the referee for his kind comments.

2. Surface current density

We shall use the notation: x=(x, y, 2)=(x;, x, x5)ER. Let J=(f4, fo, f3)
be a C* vector field in R® with compact support. If div J(x)=33.,0f;/0x,=0,
then Jdv., where dv, is a volume element of R? is called a volume current
density in R®. Let y be a l-cycle in R® By taking a 2-chain @ in R® such
that 0Q=y, we set ][r]=gqj(x)-nxdsx, where n, denotes the unit outer

normal vector of Q at x. We call J[y] the total current of Jdv, through [r].
We consider the vector valued-integrals :

1 J() 3
2.1 A(x)= 4n§m“x y”dv for xR
@2.2) B(x)= rotA(x)——S j(y)xnx ” dv, for x&R".

Following Biot-Savart we call A(x) the vector potential for [dv,, and B(x) the
magnetic field induced by Jdv,.

Let DER?® be a domain bounded by C® smooth surfaces . We denote by
dS. the surface area element of ¥, and put D’=R\D. Let J=(f, f, f:) be a
C= vector field on Y. If there exists a sequence of volume current densities
{/ndvg}, in R® which converges to JdS, on X in the sense of distribution,
then JdS, is called a surface current density on X. Precisely speaking, {Supp J.}=

is uniformly bounded and limnngsgb],,dv,:gng]de for V¢ C7(R?). For a

l-cycle y in RN\Y, we set J[y]=lima.»Ja[y], which is called the total current
of JdS. through [y]. We consider

___1_, J() 3
A(x)_4ngzllx—ylld5” for xeR

B(x)=rot A(x)=_ S ](y)XH;C y“ dS, for xeR\S.
We say that A(x) is the vector potential for JdS., and B(x) the magnetic field
induced by JdS;.
We summarize some results in [7] which we use in this note:

PROPOSITION 2.1. Let J=(fi, fs fs) be a C*= vector field on X and let
n=frdx+fody+fidz on 3. We put n.X]J(x)=(g, 8 &) for x&X, and
*n=g1dx+g:dy+gsdz on 3 (which is called the conjugate 1-form of 5 on 2).
Then JdS. is a surface current denmsity on X, if and only if J 1s tangential on
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2 and %y is a closed 1-form on X.

When we regard 2 as a Riemann surface with conformal structure induced by
the euclidean metric of R? the above condition says that 7 is a co-closed
differential on X, namely, %7 is the conjugate differential of » on X such that
d*7p=0 on X (which is inherited from condition div /,=0 (n=1, 2, ---) in R?
that J,dv, is a volume current density in R?).

PROPOSITION 2.2. Let JdS.=(f1, f2 f3)dS. be a surface current density on

3 and, B(x)=(a, B, ) the magnetic field in R\2X induced by JdS.,. We put

n=f1dx+fdy+fsdz on X and w=ady ANdz+BdzAdx+ydx Ndy in R\X. Then

we have

(1) o is a harmonic 2-form in R\2X such that w(x)=0(1/||x|®) at x=co.

(2) We ssmply write D*=D and D =D’. If we put B(x)=B*(x) for xeD*,
then B*(x) are continuous up to 2 from D*, respectively, and has the fol-
lowing gap: B*(x)—B (x)=n.X J(x) for x€X. In other words, if we put
o(x)=w*(x) for x&D*, then w*(x) are continuous up to 2 from D*, respec-
tively, in such a way that *@*(x)—+*w (x)=%7p(x) on 2.

(3) For a l-cycle y”DUD', we have ][ﬂ:gr*wzgr*p, where y'=QN2Y and
Q is a 2-chain in R® such that 0Q=y.

Given x< R? sufficiently close to 2, we find a unique point §=&(x)e2 such
that

(2.3) x—&=R(x)n; where R(x)eR,

where n; is the unit outer normal vector of X at & Then R(x) becomes
a C¢ function in a neighborhood U of X in R® such that n,=VR(x)=
(0R/0x,, OR/0x,, 0R/0x;) on X and

(2.4) UND (resp. 2, UND")={xc€U|R(x)<(resp. =, >)0},

For a given >0 we set U(0):={xeU|—0<R(x)<d}. We fix an integer n,
such that U(l/n,&U, and put [, :={x€U|—1/n<R(x)<—1/2n} for n=n,.
We take a sequence of C= functions {X,(R)},=; on (—oo, o) such that

1 on (—o, —1/n]

0=X,(R)=1 xn(R):{
0 on [—1/2n, 4o0),

(2.5)
0= X(R) [ =nM, |X"(R)|=n*M,

where M>0 is a constant independent of n (=1) and Re(—o, ). For n=n,,
we can consider a function Z,(x) in R?® defined by
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1 in D\U
(2.6) Ta(x)={ Xo(R(x)) in U
0 in D\U.

Thus, I,(x)eC3(R*. The functions X4(R(x)) and X%4(R(x)) are of class C= in
U with support in I, (EU), so we extend them to R® by putting 0 in R*\U.

PROPOSITION 2.3. Let f€C¥(R?). Then we have

1) Xp(R(x)f(x)dv.——f(x)dS, on 2 in the sense of distribution.
@) {MUR(x)S(x)dvs} nzn, is convergent on 2 in the sense of distribution, if and
only if f(x)=0 on 2. In this case, the limit 1s (3f/0n,)dS, on X.

Assertion (2) followed from the fact that, for V¢=C¥,
. a
@.7) mgmxg(ze(x))gb(x)dvx:SZ{%wﬂ}dsx,

where H(x) denotes the mean curvature of Y at x (cf. Lemma 1.1 in [7]).
Now let D be a domain in R® (which may be R?® itself). For /=1, 2 we
consider the space L% D) of all L? i-forms in D and their subspace :

% o(D)=the set of C* i-forms with compact support in D,
Z2(D)=the set of all C* closed i-forms on D,
B(D)=CI[dC1,o(D)], Zy(D)=CI[Z3(D)],
H,(D)=the set of all L? harmonic i-forms in D.
Then Weyl’s orthogonal decomposition theorems hold :
LyD)=+Z,_ D)+ By«(D), ZD)=HyD)+B;(D).

In case D is a bounded domain in R® with C? smooth boundary surfaces %,
we define

H,y(D)={we HyD)|w is of class C® up to Y, and w=0 along X},

where w=0 along X means that the normal component of @ vanishes on 2.
As an analogue to Ahlfors’ theorem in [1], we have
PROPOSITION 2.4. Let {y;}s=1...q be a l-dimensional homology base of D.
Then, for each i (1=:<gq), there exists a unique @;< H,(D) such that Sr *@; =0,
7
AZVi=g).
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3. Approximation lemma

We shall show the following approximation

LEMMA 3.1. Let g(x)eC=(U) be given. For n=n, we consider the C=
Sfunctions I, ,(x) and I, ,(x) in R® defined by

[ Xa(R()&®) _ [ X(R(»)g®)
1"”(")'Sv“uy—x|| v ’2'"“‘)‘&; Cly—xl T
We put
(3.0) Il(x)z—gxﬁ(_%”dsy for xeR
(10 8\, gWHY) \
3.2) Iz(x)—gz{ggy(””y':‘}E”)'f'—“y_x” }dS,, for xE—R\Z.

Then we have

(1) liglo I, o (x)=1,(x) unsformly in R®.

(2) fll’r; I, o(x)=1,(x) unaformly on any compact set in R*\2.

(3) %oth {11, 2(X)} nzn, and {Iy 2(X)} nzn, are umiformly bounded in R°.

Proof. It is clear that I,(x) and I,(x) are continuous in R® and R*J%,
respectively, and that /,(x) has the gap 47rg(x) for x2. (Thus the convergence
of (2) is not uniform in U in general.) Since Supp Z,(R(x))—2 (n—o0), we see
from (1) of Proposition 2.3 that lim,.. [, ,(x)=1I(x) pointwise in R*\Y. For
each n>=n,, the function I, ,(x) is of class C* in R® such that, for x&R® and
i=1,2, 3,

1R ()g() X (R(»)) 282)
»a!""(x)zg 9. dv +S L Wy,
P i P pra A Py o

Therefore, if (3) is true, then the family {(0,./0x.)(x)}nza, is uniformly
bounded in R® Hence, the family {/; (%)} 2z, is bounded and equicontinuous
on any compact set K in R®. It follows from Ascoli-Arzeld’s theorem that the
sequence {I »(¥)},2s, uniformly converges to a function g,(x) on K. As K,
we take a large closed ball B, such that B,DU. Since I, ,(x) is harmonic in
RA\T,, it follows from the expression of I, ,(x) that there exists an A,>0
such that |7, .(x)|<A/|x| for Vnz=n, and Yx&R\B, Hence, {I, .(x)}rzn,
uniformly converges to a function g,(x) in R®. Since /,(x)=g,(x) in R*\2 and
since I,(x) and g,(x) are continuous in R?, we have (1). Following the proof
of (2.7), we obtain (2). It rests to prove (3) for £=1, 2. The proof for k=1
is easy as follows: By simple calculation we find a constant ¢>0 such that

c
_ _du, <= 8 >
an ”x__y”dvyz " for Ax&éR® and Vnzn,.
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We put M, :=sup{|g(¥)||yeUd/ny,)} <+oo. Since |[X(R)|<nM on (—oo, +0o0)
by (2.5), it follows that |I, ,(x)|<cMM, for VxR® and Vn=n,. Thus, the
case k=1 is proved. The proof for £=2 is rather delicate. The proof will be
done by use of Morse’s theorem concerning regular singular point as follows:

In this proof we take and fix 0<d*<<1/n,, so that YCU(@*)&U(/n,). We
simply put [*=(—0%, +0*). Each I, .(x), n=n, is a C* function in R*® and
harmonic in R®\I’,. By the expression of I, ,(x) and (2), we find a constant
A,>0 (independent of n=mn,) such that |/, .(x)| <A./| x| outside a ball B,DD.
It follows from (2) that {I, »(x)}n2n, is uniformly bounded in R:\U(0%). There-
fore, it suffices to prove the following

CLAIM. There exist an integer n, (=n,) and a constant C>0 such that

|, o(p+R*n,) | <C  for ¥(p, RHEZXI* and Nn=n,.

1%t step. Let peX be given arbitrarily. By a euclidean motion, we may
assume that p is the origin O in the (x, y, z)-space and the unit outer normal
vector n, is equal to (0,0,1). We identify p with O in this proof. The
tangent plane of 2 at O is thus

(=@, n)=a&*+2béy+cn’+ {higher order terms of & and %},

where the Taylor series { } uniformly converges in a disk D,={&+%*<p.}
(for future use, we prefer notation (§, 5, {) to (x, y,2). We consider the
following transformation S: (§, 5, R)—y=(x, y, 2) from a neighborhood W, of
the origin (0, 0, 0) in the (&, », R)-space onto a neighborhood V, of the origin
O in the (x, y, z)-space of the form
where n; denotes the unit outer normal vector of 2 at (&, %, ¢, 5)). So, R is
equal to R(y) defined by (2.3). Then we have, for yeV, and R*sI*,
B.4) v, R*):=ly—(p+R*n,)|*

=&, 5, #&, 9)+Rn~(0, 0, R*)|?

Z(E—Ks’,77¢$R)2+(7]—K€.77¢'ﬂR)2+(¢(E; 7))+K5.77R_R*)2y
where K¢ ,=1/+/1+¢¢+¢2. It follows that for any (&, 5) sufficiently close to
0, 0), say (¢, p)eDi=1{8"+9°<p1} where 0<pi{<p,, we have

I(y, RY)=(R—R*)*+(1+AR)§*+2BREy+(1+ CR)y?
+ {higher order terms of £ and 7},

where A, B, C are C* functions of & 3, R, R*. We thus find an interval
I, :=(—a,, +4,) such that
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(I+AR)A+CR)>|BR|*+1/2 for V&, p)eD;, VR, and VR*<I*

First, regarding R and R* as parameters, we apply Morse’s theorem to obtain
a C® transformation Mgz z« from a neighborhood 9{(R, R*) of (0, 0) in the
(X, Y)-plane onto a neighborhood Di(R, R*) (CD}) of (0, 0) in the (&, »)-plane
such that

Meret (X, V)= )=(fX, Y, R, R¥), gX, Y, R, R¥)
Iy, R*)=(R—R*)*+X*+Y"

(3.5)

By the construction of Hg g+« under the form (3.4) of I(y, R*), the functions f
and g may be chosen to be of class C? for (R, R¥)el, X I*. By smoothness we
can take a common neighborhood 9,C D{(R, R*) of (0, 0) in the (X, Y)-plane for
V(R, R¥)el,x I* so that

3.6) fX,Y, R, R*) and g(X, Y, R, R*) are of class C? in @, X([;XI*).

Next, regarding R*< [* as parameter, we put #: (X, Y, R)—(&, 5, R)=(f, &, R),
and consider the C? transformation g :=S-H# from a product neighborhood
W, :=D,x1I; of the origin O in the (X, Y, R)-space onto a neighborhood V,
(CV,) of the origin O in the (x, y, z)-space. We write

T:X,Y, Ry eV,—y
=(F(X,Y, R, R¥), GX,Y, R, R%), HX, Y, R, R*))EV,.

By differentiability of (3.6) we can find an L>1 such that

oF OF 0*H o°H
Modules of {7, 50, gy am ot =L
3.7 1 ax, y, 2)
—L—é.]sr(X, Y, R)-—-"a(X’ Y, R')*éL
for V(X, Y, R)eV, and YR*<I*. Note that I depends on (p, R*)eX X I* so
do <V, and L. Thus, it should better to write V,=<V,(p, R*) and L=L(p, R*).
However, since the surface Y is of C® smooth, we see from the construction
of the mapping g that there exists a small common product neighborhood
Y, CVy(p, R*) centered at (0, 0, 0) in the (X, Y, R)-space and a large common
L,>L(p, R*)>0 such that (3.5) and (3.7) are satisfied for V(X, Y, R)e<V, and
V(p, R¥)eXxI*. We write

V=D, X[, where Dy={X*+Y*<p,} and [,=(—0,, +0,).

As an integer 7, in the claim, we take an n, (=n,) such that I",CU(9, for
Vn=n,. We put O, re :=9(V,), where T is constructed above depending on
(p, R¥)e X xI*. Thus, O, g« is a neighborhood of (p, R*) in the (x, v, z)-space.
From (3.7), we find a small common disk E.:={§*+7*<z?, where >0, in the
(¢, n)-plane such that
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(3.8) S(EXI1))CO0p g for Y(p, R¥)eX X I*,
where & is defined by (3.3) depending on (p, R*).

2nd step. Let (p, R¥)&3 X I* and n=n, be given arbitrarily. We set

- _Xa(R(y)e(y)
&9 e I P o =

We first show the uniform boundedness of the second terms {T.(p, R*)}nzn, in
2XI*. For Rel, we consider the level surface: Y(R)={yU|R(y)=R} in
the (x, y, z)-space, where R(y) is defined by (2.3). For yeZ2(R) and Rel,, we
set dv,=j(y)dS,dR, where dS, denotes the surface area element of J(R) at y.
Thus, 7(y) becomes a C¢ function in U(d,) such that j(y)=1 on 2. We put,
for YRe],,
_80NB)  g
S@N0, gy —(p+R*np)| "

By (3.8) we have |y —(p+R*n,)||>7 for YyeI(R\O,, r and V(p, R¥)EX X I*.
Hence, the integrand is a bounded C*= function for yeX(R)\O, r+ such that its
boundedness is uniform for (R, p, R*)el,X Y X I*. Further, since Y(R)\Op, r+
varies C? smoothly with respect to (R, p, R¥)el,X Y X I*, it follows that F, g«(R)
varies smoothly with these variables. We thus find an M,>0 such that

Fpm(R):=|

|Mi<m for V(R, p, R¥)eIyx I X I*.

Note that Xp(—1/n)=Xn(—1/2n)=0 and Supp X,C[—1/n, —1/(2n)]. By the inte-
gration by parts, we have
8F,, rx(R)

3R ~dR.

—-1/2n —1/2n
Tulp, RO={_ "WRIFyme(RAR=— (" "1:(R) ™~

Since |X(R)|<nM by (2.5), it follows that
| To(p, R¥)|<C:=MM,/2 for Y(p, R¥*)€X X I* and Yn=n,.

We next show the uniform boundedness of the first terms {S,(p, R*)}nza, in
XY xI*. By the change of variables from y=(x, v, z) to (X,Y, R) by I (de-
pending on (p, R*)), we have
Xi(R)EX, Y, R)
*)—
Sios RO=, R
where §=g#9. We use the polar coordinates (X,Y)=(rcosd, r sinf) in 9,

and put G(r 0, R):=§X,Y, R)J«(X,Y, R). Note that G depends on (p, R*)
eXxI*. By (3.7) we find an L,>0 such that

Jo(X, Y, R)dXdY dR,
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G &G

"2 sgoR oref =L

for V(r, 0)[0, po1X[0, 2x] and V(R, p, R¥)e[,x 2 xI*. Since X' (—1/n)=

X' (—1/2n)=0 and Supp X4(R)C[—1/n, —1/(2n)], we use the integration by parts
for R to obtain

Sa(p, R*)ZSjES:Or{S:ZnXZ(R)% AR} drdf

=TT e (e arao.

We conveniently put Z=Z(r, R, R*)=1/+/(R—R*?*+»%. It follows from
7(0Z /OR)=(R—R*)0Z/dr that

Modules of {é(r, 0, R), %(:

s = [T (22 2 arawan

:_52"5"”“55"{(1? R, (R)——G}drdeﬁ

0J-1/n

—S”X'””S plezAt oG o hardras

0J-1/n

=S:"(p, R*)+SP(p, R*).

Since |#Z|<1 and |¥(R)|<nM, we have |SP(p, R*)|<2r(1/2n)(nM)L,p,=
aML,p, for ¥(r, R¥)eXYXI* and VYn=n,. Using the integration by parts for r
in SP(p, R*), we have from |(R—R*)Z|<1 and |%,(R)|<nM,

o9 6Z

S5 =171 R— R R[5 C dr}drao|

S Z%—Gd }deel

[T R Remr{ 263
g27r—2%(nM)(2Ll—i—poLl):n’ML,(Z—{-po)

for V(», RMeX¥xI* and Ynz=n,. Hence, |S.(p, R*)|<C,:=aML,(3+p,) in
YXI* for Yn=n,. It follows from (3.9) that |[, .(p+R*n,)|<C:=C;+C, in
XX I* for Yn=n,. Our claim is thus proved. 0

COROLLARY 3.1. Let JdS, be a surface current density on X and denote by
A(x) and B(x) its vector potential in R® and its magnetic field in R*\2. Then
there exists a sequence of volume current densities {J,dv.}, with the following
properties: If we denote by A,(x) and B,(x) the vector potential and the mag-
netic field for J.dv. respectivery, then it holds

1) {An(x)} s converges A(x) uniformly in R®.
(2) {Ba(x)}n converges B(x) uniformly on any compact set in R*\2.
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3) {Bn(x)}n 2s uniformly bounded in R®.
@ tim|_ | Ba(0)— B[ dv,=0.

Proof. In Corollary 1.1 in [7] we constructed a sequence of volume current
densities {J,dv.}, converging the given JdS, on 2 in the sense of distribution
such that their {A(x)}, and {B(x)}, converge A(x) and B(x) uniformly on any
compact set in R®\2. In that proof, J,dv.=(fia, fon, fsn)dv, was of the form
aR(x) O0R(x)

)

&a(x) 9%,

Fun(®) =Y R &:(2) 75 etc.,
where g,(x) and gy(x) are C* functions in U (D/",;) and are independent of =
(=n,). We shall show this {J,dv.}, satisfies (1)~(4) of Corollary 3.1. In fact,
(2) is already proved in [7]. Applying (1) of Lemma 3.1 to definition (2.1) of
An(x), we have (1). Since B,(x)=rot A,(x), we see that each component of
B.,(x) is of the form

Xa(RNA () +25(R(y)k(y)
lx—xl

where A(y) and k(y) are functions of class C* in U and independent of n

(=n,). Hence, (3) of Lemma 3.1 implies (3). From (2) and definition (2.2) of

B,(x) we can find an M,>0 such that | B.(x)|<M,/||x||* outside a ball B,DD

for YVn=n, This together with (3) implies (4). ]

(3.10) Sm dv,,

4. Main theorem

Given a C> l-form =3} f:dx, in a domain UCR? we put |o|(x)=
R fu(0))2=0, Ao=333_,(Af,)dx,, and d=x*d*, where A is Laplacian and the
operator * is determined by o Axe=|a|*(x)dv, in U. When d=C3(R?), we
put

1 a(y) N Jiy)
Jla(x) or _4?51:3 - y||d ?; (SRS e y”dv )dxl.

This as well as Ag is a 1-form. We analogously define the corresponding ones
for C= i-form o, /=0, 1, 2, 3). By the symmetry of the Newton kernel 1/| x—y]||
with respect to x and y in R® we easily obtain, for g;& CS (R?),

dfNe,=qNde,, *Je,=Jlxc,, 0Jl6,=N00,.
Further we have (see, for example, [5])
Ac,=(—1)(0d—dd)e, and AJle,=—a, (Poisson’s equation).

We use the following Maxwell’s theorem in the time independent case (see [7]):
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PROPOSITION 4.1. Let nexZ5(R°) (=+x[Z,(R)NCSo(R)]). If we put p(x)
=Jn(x) and w(x)=dp(x) in R? then dw=y holds in R®.

We shall show the following main theorem which gives a new interpreta-
tion of Weyl’s orthogonal decomposition theorem related to magnetic fields
induced by surface current densities on X :

THEOREM 4.1. Let o=adx+bdy+cdz be a C= closed 1-form on D. We
put a(x)=(a, b, ¢) for x€D. Then we have

(1) JdS.:=a(x)Xn,dS, is a surface current density on X.
We denote by B(x)=(a, B, v) in D\UD’ the magnetic jield induced by JdS.,
and put w=ady ANdz+BdzAdx+ydxAdy in DUD’.

2) If we put =0 in D and =0 in D’, then it holds

4.1) é=+w+dF in DUD’,

where

a(y)-n, div a(y)
Fo=4 PR e ey

(3) Formula (4.1) is the Weyl's orthogonal decomposition of & in ['3(R?), that
is, w=Z,(R* and dF=B,R®. In our case, FECR)INC(RN\ZY) and
w< H,(R\2Y) such that F(x)=0(1/|x|? and o(x)=0(1/|x|®) at x=o0

dv, for x&R®.

Proof. Although (1) is clear from Proposition 2.1, we verify it again for
the proof of (2) and (3). Using the function ¥,(x) in R?® defined by (2.6) for
n=n,, we consider ¥,0<C?,(R?* with support in D. If we put

Na(X)=%d(Xn0)=f1ndX+fondy+fsndz in R®
]ndvz:(fln: fzn: f&n)dvx in Ra,
then J,dv, is a volume current density in R®. Since ¢ is closed on D, we get

«3) ful) =R Geo— G 8} et

4.2)

It follows from (1) of Proposition 2.3 and VR(x)=n, on X that J,dv.—JdS,
(n—o0) on Y in the sense of distribution. Thus (1) is proved. Denoting by
Bp,=(an, Bx, y») the magnetic field in R® induced by [,dv., we have B,(x)—B(x)
(n—oo) pointwise in DUD’. We put w,(x)=a,dyNdz+B.dzAdx+71.dxAdy
in R?® so that

1 Na(¥) .
(4.4) w,(x)= d<4ﬂgm e y”dv ) for xeR?,

and w,(x)—w(x) (n—oo) pointwise.
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We here note that 5(*ina)=77n in R*. By Proposition 4.1, we have dw,=7,
in R®. Since dw,=0 in R? we have the orthogonal decomposition: *¥,0=w,+
(*X,0—w,) in R® Since A=dd—dd for 2-forms, it follows from (4.2) and
Poisson’s equation that, for any fixed xR,

1 Xn
4.5) wa(e)=do( 5= ﬁxj;-ﬂduy)
1 *Xn0
:(—A—I—éd)(Z;Sm ”x__y”dvy)
=#1,0(x)+*d Fo(x)
where
_1 *d(xX,0)
F"(x)*éln'gus lx—2y] dvy
:ig H(RGHVRD)-e()+1:()div aly)
4z Jp lx—yl v
Consequently,
(4.6) ¥.0=xw,(x)+d(—F,) in R:

By its expression, F,(x) is of class C* in R® and harmonic in R*\D. Moreover,
since %,(x)=0 on X, we have
Fux) 1

lim _Egp{xm(y»we(y)-a<y>+in<y>div a(y)} dv,

1
T Arm

so that F,(x)=0(1/|x||?) at x=co. Since w,=Z5(R?) and dF,<B,(R?), formula
(4.6) for each n=n, is the Weyl’s orthogonal decomposition of ¥, in I"}(R?).
By (1) of Lemma 3.1, F,(x)—»—F(x) (n—o0) uniformly in R®. Therefore, there
exists an M,>0 (independent of n=n,) such that |F,(x)|, |F(x)|<M,/|x|®
outside a ball B,DD. By (4.6) we may assume that ||@,[(x), [ol(x)<M,/|x|?
outside B,. From (4.2), (4.3) and (4.4), each component a,, B, or 7, of @,(x)
is of the same form as (3.10). Hence, (3) of Lemma 3.1 implies that {||@,[|(x)} nza,
is uniformly bounded in R3:. It follows that lim,_.|w,—|%:=0, and hence
limyoelld Fr+dF|%3=0. In particular, weZ,(R®) and dF=B,(R®). Letting n—oo
in (4.6), we get (2) and (3) of Theorem 4.1. O

[ dttma= (. nomo=0,

COROLLARY 4.1. Let JdS, be a surface current density on X and, B(x) the
magnetic field induced by JdS.. We use the same notations o, 7, *n as in
Proposition 2.2. Assume that xy on X is extended to a C* closed 1-form ¢ on
D. If we put 5:=0 in D and =0 mn D', then *w is identical with the projection
of 6 LUR®) to xZ,(R®) in the Weyl’s orthogonal decomposition.
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In fact, we put xp=g,dx+g,dy+g:dz on 3 and 6=adx+bdy+cdz on D,
then JdS,=(gi, &3 Zs)Xn,dS.=(a, b, c)Xn.dS, for x€¥. Applying Theorem
4.1 to this ¢, we have the corollary. O

5. Equilibrium surface density on X

If a surface current density JdS, on X induces a magnetic field Bs(x) in
DUD’ such that B,(x) vanishes identically in D’, we said in [6] that JdS, is
an equilibrium current density on 2. In this case, (2) of Proposition 2.2 is
reduced to Bj(x)=n,X J(x) and o*(x)=xx(c) on X, which is called Fleming’s
law. In [7] we proved the following existence

THEOREM 5.1.  Let {y;};=1....q be a base of the 1-dimensional homology group
of D. Then there exist q equilibrium current densities {],dS.:}.=1,..q on X such
that Ji[y,1=3, (1=Y)=<q).

We give another proof of this theorem by use of Theorem 4.1.

Proof. For each:=1, ---, ¢, we consider the 2-form w;=a,dy ANdz+p:;dzA\dx
+7:dx Ndx € Hyo(D) defined in Proposition 2.4. As a C* closed 1-form ¢ on D
in Theorem 4.1, we can take o=*w; on D. We denote by J:dS., B, . and
Fi(x) things obtained through *@&; which correspond to JdS,, B, o and F(x)
obtained through & in Theorem 4.1. Therefore,

+3,=+Q+dF, in DUD',  J.dS.=(a, B, 7)Xn.)dS. on .
Since (a,, 8., y.)Ln, on ¥ and div(a,, B, 7.)=0 in D, we have F;(x)=0 in R?
so that *@,=x8, in DUD’, that is, Q,=w; in D and £,=0 in D’, which is
equivalent to By(x)=(a,, B, 7.) in D and =0 in D’. Hence [;dS. is an equi-
librium current density on 2. By (3) of Proposition 2.2, we have [J;[r;]1=
S *(()1;:51']. O
7y

Let u(x) be a harmonic function on D. Applying Theorem 4.1 for o=du,
we see that JdS,:=(Vu(x)Xn,)dS, is a surface current density on 2 and that
1 (¢ ou/on,

6.1 du=xw-+ d(ESS Tyl

ds,) in R,

where weZ,(R* with the following property: If we set w(x)=adyAdz+
BdzAdx+ydxNdy in DUD’, then (a, B, 7) is the magnetic field induced by
JdS.. On the other hand, it is well known (cf. [2]) that, if we put

(5.2) c=1,1/2,0 on D, ¥, D’, respectively,

then it holds
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Bu/anyd 1 S 0 1

STyl 45 4w )5, ey

5.3) cu(x)= 4n§
= py(x)— pa(x)
for xeR:. We thus obtain

COROLLARY b5.1. Under notations (5.1) and (5.3), we have

wx)=xd(— S ()any ”xly” )) in DUD’

I dullp=Ild p:llzs+1ld pellfs -

5.4

The former formula physically means that the gradient of the double layer
potential with density u(x)dS, on X is equal to the magnetic field induced by
the surface current density (n,XVu(x))dS, on 2. The latter says dp,1dp, in
R?® (not in D).

COROLLARY 5.2. Let V(x)=(a, b, ¢) be a C*® vector field on D such that
div V(x)=rot V(x)=0 in D. Then there exists a surface current density JdS.
on 2 whose magnetic field restricted to D is equal to V(x), if and only if

Sz V(x)-n,dS,=0 for each component ¥, (=1, ---, m) of 2.

Proof. Let V(x)=(a, b, ¢) be given as above. We put w=adyAdz+
bdzAdx+cdxAdy on D, so that sec H,(D). First, assume thatS V(x)-n.dS,
=0 (=1, ---, m). By Proposition 2.4 we find coo—ady/\dz+/9dz/\dx+7dx/\dye
H,,(D) such that g *wo—jr xw (1=Vj<q). By the same reasoning as in the

proof of Theorem 5 1, we see that J,dS.:=((a, B, y)Xn.)dS, is an equilibrium
current density on 2 which induces the magneg_ic field (@, B, 7) in D and 0 in
D’. We can find a harmonic function 2(x) on D such that *w—*w,=dh. Since

Szz aa h dS,=0 (=1, ---, m), it follows from Fredholm theory of integral equa-
tions that there exists a C* function ¢ on X such that
1
h(x)= 47:5 oy )871 i yll for xeD.

We here solve the Dirichlet problem on D with boundary values é(x) on X and
denote by u(x) its solution on D. By (5.1), [idS.=(n,xVu(x))dS, is a surface
current density on X which induces the magnetic field VA(x) in D. It follows
that the surface current density JdS, :=/,dS,;+/1dS. on Y induces the magnetic
field B,(x) whose restriction to D is identical with V(x).

Next, assume that there exists /dS, on X which induces the magnetic field
By=(a, B, y) in R\Y such that B,=V in D. If we put w,=ady Adz+BdzAdx
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+dxAdy in R®\2Y, then w;= Z,(R?) by Corollary 4.1. We draw a closed smooth

surface Y/ in D homologous to 3, (=1, ---, m). Since div V=0 on D, it follows
that

Ss, V(x).nzdS,=Szlz V(x).nzdsngﬁ(wzo_ -

6. Grunsky inequality

In this section we consider the kernel log1l/|z—{| in the complex plane C
instead of 1/|x—y]|| in R® in the previous section. Let D be a bounded domain
in C with a C* boundary smooth contour L. We recall the remarkable contrast
between the properties of the single and double layer potentials as

PROPOSITION 6.1. For f,, f,=CY L), we denote by v, and v, the single and
double layer potentials with density fids, and f.ds, on L, respectively:

7)1(Z)=%SLfI(C) log%_mdsc for zeC

1 0 1
Vz(Z)ZQ;sz(C)b—%lOgmdSC for zeC\L,

where ds¢ is the arc length element of L at {. We conveniently put D*=D,
D~=C\D, dD*=L* (where L*=L and L-=—L). If we write v;(2)=vi(z) (i=
1, 2) for zeD*, then we have

(1) Both vi(z), 1=1, 2, are harmonic functions in D* and continuous up to L*,
in such a way that, for z*<L* over z€L,
vi(z)=vi(z7) vH(z")—v;(27)=—fx(2)
avf ovy ovi ovy

on. (z")— on, (z7)=f(2) on, (%)= on, (z7),

where both n, denote the same unit outer normal vector of L at z.
(2) vi(2)=0(ogl/|z]) and vy(2)=0(/|z|) at z=oo. Moreover, three conditions

v,(z)=0(1/|z]) at z=oo, Sfo(Z)dSz‘—‘O, and SL—gi:l—'—dS,=O are equivalent.

Let u(z) be a harmonic function in D and of class C! up to the boundary
L. By use of notation ¢ of (5.2), it is well known (cf. [2]) that
1 ou 1 1 0 1
(6.1) cu(z)—ESLWlogmds;—%SLu(C)a—nclogmdsc

=q(2)—qx(2) .

for z&C. Formula (5.4) changes to the following one:
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(6.2) ldulp=ldaqle+dg.lz.

Proof. Since S 0u/on,ds,=0, (2) of Proposition 6.1 implies [|dg;||z<<oo for

i=1,2. If we put ¢.(2)=qi(z) for x=D* then it also implies EmSICI_Rq;(z)

—a—idsc =0. It follows from (1) of Proposition 6.1 that

ong
(dl]b dt]z)cz(d(]u d%)p"‘(d(]u df]z)D

~[ @ 3E @5 @3 @0,

This together with (6.1) proves (6.2). O
Proposition 6.1 implies
1 ou Ou
2

6.3) ldg.z= S SLan, an OB C!ds Jdse=1w),

which is called the energy of (0u/dn,)ds, on L in the potential theory. Hence,
6.4) ldullp=1I(u)+ldg.ll%.

We consider the case when D is the unit disk D, of center the origin and L is
the umit circle L,=1{e??|0<6§<2xn}. Let u(z) be a harmonic function u(z) in D,
and of class C! up to L,. Then we have

1
LEMMA 6.1. ILO(u):-2~||du|[%o.
Proof. For any fixed zeL,, we have from Stokes’ formula
1 ou 1
%SLomloglz—Cldsc

1 9
:E(nu(z)—l-SLOu(C)WlogFiﬁdsO
=§1;(7”‘(2)-"S:"u(C)%>=%(u(2)—u(O)) )

I _1 ou 1 \
¢ follows that 13,)=5, (u(e)=uO) 5 ~ds,=51dulh, 0

We similarly verify that (6.4) and Lemma 6.1 are true for the unbounded
domain D and the exterior E,= {|z|>1} of D, as follows: Let D be a unbounded
domain with C* smooth boundary contours L. We determine the orientation of
L by aD=L. Let U(w) be a harmonic function on DU {oo} which is of class
C! up to L. Then we have
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—_—— - - 2
”dU“”“zn Lony one logiw_éldswdse-i-”szllc,
where P,(w) is the double layer potential with density U(w)ds, on L. Let V(2)
be a harmonic function in E,\U{c} which is of class C' up to the unit circle
L, (where 0E,=—L,), we have
1 S S av aov 1

Lo

1 .
‘i;c‘ Lo'arz a—nglog‘z—_—adszd‘?c—flldvugo

We write these two formulas into the following simple forms:

lng oUu oU 1

1
(6.5) 12UlZ=1.U)+dPulE, ILO(V)=§HdVH%0-
We shall show that these imply the following Grunsky inequality. We consider
a univalent function g(z) in E, such that g(z)=z+c,+c,;/z+¢s/2*+ -+ at z=o0,

and denote by ¢ the set of all such univalent functions g(z) in E,.

THEOREM 6.1 (see [4]). Let g(z)4. If we set

R 2k

logg—(zz)—:'cggz: 5 L for (2, 0B E,,

then we have

1Aal® o | &
(66) 2 gllm E buzklz
n=1 n Noowo| k,l=1
for any complex numbers {An}n=1.9.... We call {by..}r.. the Grunsky coefficients

of g(2).

Proof. It suffices to prove the case when g(z) is univalent on £,. We put
D=g(E,) and L=g(—L,) so that dD=L. For N=1 we consider the following
functions :

67 Vi@=2a{Z 2} on B, Usw)=Vye"w) on D.

Thus, Vy(z) and Uy(w) are harmonic functions on E,\U{co} and DU {eo}, re-
spectively. Since (d/0n.)ds, and the Dirichlet integral are invariant under the
conformal mapping w=g(z), we have

14V wlz,=1dUxl5,

LS S AWVy dVy ’ 1
2r )iy, On, Ong g g(z)—g®

We denote by Py,(w) the double layer potential with density Uy(w)ds, on L.
Applying equations (6.5) for U=Uy, V=V and P,=Py,, we have

I Uw)=

lds,ds;.
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1 1
S laVale,=—51dVulz,+1dUnlb

=~1L(,<VN>+1L<UN>+ndPNznzc
1 Wy Vy
ﬁ?” on, ong l°g| e g<c>

1 © = b aVy oV
Zym{SLOSL g g kkéz aniv an Nds,dsc}‘+|idPN2||c.

|dsidsc+d Py,

Since
aVN_ N in a‘[/'N
== 2 e 1avals=4| 2
Vy 10V WV
“om, 45— z(@z de—=52"dz),

it follows that

6.8) 2m nél L:zlj:% {kélbkl(gLo 6;; g)(SLO agCN ‘é—‘é)}-‘_”dﬂvz”%

N
=2r 9‘1{ > bkzlklz}+l|dPN2'|%'
TI=1
oz 3 b
= ﬂm{k%l kil l}'
Since {4,}. is arbitrary, we can replace { } by | | in the last inequality. By
letting n—oo, we obtain Theorem 6.1. O

In [4], when Grunsky inequality is reduced to equality is studied in the case
that at most a finite number of {1}, do not vanish. We shall give a necessary
and sufficient condition for this problem under the conditions that

(i) g(z)=3 is holomorphically extended up to L, except for a finite point set {P;}.
(i) 34| <eo.

We set D=g(E,), L=g(—L,) and K=C\D. By (i), the set K is compact in C
and its boundary dE=—L is a piecewise real analytic smooth curve with a
finite number of edge points {Q;}={g(P,)}. It may happen that the interior
K° of K is empty: K°=(. In this case, as a point set, L is a piecewise real
analytic smooth arc .L. We write

(6.9) L=LY+L" and Lr=—.L".

Precisely, for we.L (except for two end points), we find two points w*e.L’
over w. We denote by {b::}. . the Grunsky coefficients of g(z). By Grunsky
inequality we have 1/k+1/1=|b;,| for all k, [=1. This together with (ii) imply
S 11| brided| <oo. We put O@=1/2 Arg{3% 1=1bw:14:4;} and consider the follow-
ing functions :
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© 1,29 . , } .
(6.10) va=20{ 3 2t in By, U)=V(gw) in D.

By (ii), V(z) is of class C* up to L, and U(w) is continuous up to L and of class
C! up to L except for the edge points {Q,}. Under these situations we shall
prove

COROLLARY 6.1. Assume that g(z)€8 and {A.}. satisfies conditions (i) and
(ii). Then Grunsky wnequality (6.6) for g(z) and {A,}. is reduced equality, if
and only if

(6.11) K°=0 and Uw*)=Uw") for we.l.

Proof. We denote by P,(w) the double layer potential with density U(w)ds.
on L. In the proof of Theorem 6.1 we can use the function V(z) of (6.10)
instead of V y(z) of (6.7) to obtain the following formula corresponding to (6.8):

|4 |?

g —zn'kil";:lbklz,,zlj+||sznz.

It follows that equality holds in (6.6) if and only in || dP.|%=0, or equivalently,
(6.12) P,(w)=const.a, 0 on K°, D, respectively.

Note that this formula is true even when K°=@. It thus suffices for Corollary
6.1 to prove that (6.11)&(6.12). We first assume (6.11). Since U(w*)=U(w")
for Ywe L, it follows from (6.9) that

Pyw)= SU(E)a log——dse=0 for YweD.

|w El
Thus (=) is proved. For the converse we may assume some A,#0 (n=1), so
that U(w) is non-constant in D by (6.10). If K°+0, formula (6.12) and (1) of
Proposition 6.1 imply U(w)=a on 0K (=—L). Consequently, U(w) is the
constant a on D, which is a contradiction. We thus have K°=0, and (6.9).
Therefore,

Paw=( UE) 0B e dset | UG >5-log

[§—w] |§— wl

for weC. Let woe,f\{two edge points}. We find a small disk <V in C
centered at w,, and denote by V*(w,) and %V (w,) the left and right half sides
of <V along L%, respectively. From (6.12) and (1) of Proposition 6.1, we have,

. aP, . oP,
Uwi)— (W)= lim ~*(w)=0.
wowg IMNw wowg anwo
weW* (wy) wWEV ™ (wp)

Thus (&) is proved. O
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Examples. By the above consideration we can construct many exemples
g(z)eg and {4,}, for which equality holds in (6.6): First consider a piecewise
C?® smooth arc .£ in the w-plane with a finite number of edge points {Q;}. We
put D=C\.C, so that D\ {co} is simply connected and dD=.L*+.L~ such that
there exist w*e.L* for we.L (except for two end points). We have a unique
g(z)e¢ which transforms E, onto D. So, g(z) satisfy condition (i). Next let
¢(w) be a C* real-valued function in a neighborhood of .£ in the w-plane such
that ¢(w) is a constant ¢, near each @,. We construct the harmonic function
U(w) in DU {c} with boundary values ¢(w) at w*e.L*. We set V(2)=U(g(2))
in E, and consider the Taylor series: V(2)=2R {Z5-0a./2z"} in E,. If we set
A.=nd, (n=1, 2, ---), then equality holds in (6.6) for these g(z) and {A.},:

[2n|?
n

(6.13) 21

3 budeks

k.l=1

In fact, it is clear that

ve=20{ 3 :2} in E,, Uw)=V(g-w)) in D.

=1 n

Since U(z) is of class C* up to the boundary L,, it follows that +co>[|0°U/0z%%,
= e n¥(n+1)4(n+2)|a,|? so that 35_,|2,|<<oo. Consequently, the same
argument as (6.8) is available for this V(z) instead of V y(z), and we obtain

2 12a |

2z 3 l=2n 9 33 budati+IdPiE,

where P,(w) is the double layer potential with density U(w)ds, for weaD.
Since dD=_*+.L~ and Ulw*)=U(w )=¢(w) for we.L, we have Pyw)=0 in
D, and ||dP,||2=0. This and Grunsky inequality imply (6.13). O
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