ORTHOGONAL DECOMPOSITION RELATED TO MAGNETIC FIELD, AND GRUNSKY INEQUALITY

Hiroshi Yamaguchi

1. Introduction

Let D be a bounded domain in \boldsymbol{R}^{3} with C^{ω} smooth boundary surfaces Σ. Let $\sigma=a d x+b d y+c d z$ be a C^{∞} closed 1 -form on $\bar{D}(=D \cup \Sigma)$. By putting $\tilde{\sigma}=\sigma$ in \bar{D} and $=0$ outside D, we consider the usual Weyl's orthogonal decomposition : $\tilde{\sigma}=* \omega+d F$ in \boldsymbol{R}^{3}, where ω is a L^{2} closed 2 -form in \boldsymbol{R}^{3} and $d F \in \mathrm{Cl}\left[d C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)\right]$.

In $\S 4$ we shall show that ω is a harmonic 2 -form in $\boldsymbol{R}^{3} \backslash \Sigma$ of the form $\omega=d p$ and that p and F are written into the following integral formulas:

$$
\begin{array}{ll}
p(x)=\left(\frac{1}{4 \pi} \int_{\Sigma} \frac{(a, b, c) \times \boldsymbol{n}_{y}}{\|x-y\|} d S_{y}\right) \cdot d x & \text { for } x \in \boldsymbol{R}^{3}, \\
F(x)=\frac{1}{4 \pi} \int_{\Sigma} \frac{(a, b, c) \cdot \boldsymbol{n}_{y}}{\|x-y\|} d S_{y}-\frac{1}{4 \pi} \int_{D} \frac{\operatorname{div}(a, b, c)}{\|x-y\|} d v_{y} & \text { for } x \in \boldsymbol{R}^{3}
\end{array}
$$

where \boldsymbol{n}_{y} is the unit outer normal vector of Σ at $y, d x=(d x, d y, d z)$, and . means the formal inner product.

In $\S 2$ we briefly recall the definition of surface current densities on Σ and their properties studied in [6]. In $\S 3$ we shall prove an approximation lemma concerning improper integrals. This lemma is not only useful to prove the above integral formulas but also to show the fact that ω is related to the magnetic field. Precisely, if we write $\omega=\alpha d y \wedge d z+\beta d z \wedge d x+\gamma d x \wedge d y$ and define $B=(\alpha, \beta, \gamma)$ in $\boldsymbol{R}^{3} \backslash \Sigma$, then B is a magnetic field induced by a surface current density $J d S_{x}$ on Σ such that B is the strong limit of a sequence of usual magnetic fields $\left\{B_{n}\right\}_{n}$ in $\boldsymbol{R}^{3}: \lim _{n \rightarrow \infty} \int_{R^{3}}\left\|B_{n}(x)-B(x)\right\|^{2} d v_{x}=0$. In $\S 5$ we shall show that this fact implies the existence of equilibrium current densities $\mathscr{g} d S_{x}$ on Σ. The notion of equilibrium current densities were introduced in [6] motivated by the electric solenoid.

In $\S 6$ the integral formulas in \boldsymbol{R}^{3} stated above is extended into those in the complex z-plane. We then obtain a new proof of Grunsky inequality (cf. [4]), which implies a necessary and sufficient condition for the case when the inequality is reduced to equality. It gives us many examples of such cases.

Received October 25, 1994 ; revised May 8, 1995.

The main result (Theorem 4.1) in this paper is motivated by the elementary part of Okabe's fluctuation and dissipation principle in [3]. The author thanks Professors Y. Okabe and Y. Nakano for their conversation. He also appreciates the referee for his kind comments.

2. Surface current density

We shall use the notation: $x=(x, y, z)=\left(x_{1}, x_{2}, x_{3}\right) \in \boldsymbol{R}^{3}$. Let $J=\left(f_{1}, f_{2}, f_{3}\right)$ be a C^{∞} vector field in \boldsymbol{R}^{3} with compact support. If $\operatorname{div} J(x)=\sum_{\imath=1}^{3} \partial f_{i} / \partial x_{\imath}=0$, then $J d v_{x}$, where $d v_{x}$ is a volume element of \boldsymbol{R}^{3}, is called a volume current density in \boldsymbol{R}^{3}. Let γ be a 1-cycle in \boldsymbol{R}^{3}. By taking a 2 -chain Q in \boldsymbol{R}^{3} such that $\partial Q=\gamma$, we set $J[\gamma]=\int_{Q} J(x) \cdot \boldsymbol{n}_{x} d S_{x}$, where \boldsymbol{n}_{x} denotes the unit outer normal vector of Q at x. We call $J[\gamma]$ the total current of Jdvex through $[\gamma]$. We consider the vector valued-integrals:

$$
\begin{array}{ll}
A(x)=\frac{1}{4 \pi} \int_{\boldsymbol{R}^{3}} \frac{J(y)}{\|x-y\|} d v_{y} & \text { for } x \in \boldsymbol{R}^{3} \\
B(x)=\operatorname{rot} A(x)=\frac{1}{4 \pi} \int_{\boldsymbol{R}^{3}} J(y) \times \frac{x-y}{\|x-y\|^{3}} d v_{y} & \text { for } x \in \boldsymbol{R}^{3} . \tag{2.2}
\end{array}
$$

Following Biot-Savart we call $A(x)$ the vector potential for $J d v_{x}$, and $B(x)$ the magnetic field induced by $J d v_{x}$.

Let $D \Subset \boldsymbol{R}^{3}$ be a domain bounded by C^{ω} smooth surfaces Σ. We denote by $d S_{x}$ the surface area element of Σ, and put $D^{\prime}=\boldsymbol{R}^{3} \backslash \bar{D}$. Let $J=\left(f_{1}, f_{2}, f_{3}\right)$ be a C^{∞} vector field on Σ. If there exists a sequence of volume current densities $\left\{J_{n} d v_{x}\right\}_{n}$ in \boldsymbol{R}^{3} which converges to $J d S_{x}$ on Σ in the sense of distribution, then $J d S_{x}$ is called a surface current density on Σ. Precisely speaking, $\left\{\operatorname{Supp} J_{n}\right\}_{n}$ is uniformly bounded and $\lim _{n \rightarrow \infty} \int_{R_{s}} \psi J_{n} d v_{x}=\int_{\Sigma} \psi J d S_{x}$ for $\forall \psi \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)$. For a 1-cycle γ in $\boldsymbol{R}^{3} \backslash \Sigma$, we set $J[\gamma]=\lim _{n \rightarrow \infty} J_{n}[\gamma]$, which is called the total current of $J d S_{x}$ through $[\gamma]$. We consider

$$
\begin{array}{ll}
A(x)=\frac{1}{4 \pi} \int_{\Sigma} \frac{J(y)}{\|x-y\|} d S_{y} & \text { for } x \in \boldsymbol{R}^{3} \\
B(x)=\operatorname{rot} A(x)=\frac{1}{4 \pi} \int_{\Sigma} J(y) \times \frac{x-y}{\|x-y\|^{3}} d S_{y} & \text { for } x \in \boldsymbol{R}^{3} \backslash \Sigma .
\end{array}
$$

We say that $A(x)$ is the vector potential for $J d S_{x}$, and $B(x)$ the magnetic field induced by $J d S_{x}$.

We summarize some results in [7] which we use in this note:
Proposition 2.1. Let $J=\left(f_{1}, f_{2}, f_{3}\right)$ be a C^{∞} vector field on Σ and let $\eta=f_{1} d x+f_{2} d y+f_{3} d z$ on Σ. We put $\boldsymbol{n}_{x} \times J(x)=\left(g_{1}, g_{2}, g_{3}\right)$ for $x \in \Sigma$, and $\star \eta=g_{1} d x+g_{2} d y+g_{3} d z$ on Σ (which is called the conjugate 1 -form of η on Σ). Then $J d S_{x}$ is a surface current density on Σ, if and only if J is tangential on
Σ and $\star \eta$ is a closed 1-form on Σ.
When we regard Σ as a Riemann surface with conformal structure induced by the euclidean metric of \boldsymbol{R}^{3}, the above condition says that η is a co-closed differential on Σ, namely, $\star \eta$ is the conjugate differential of η on Σ such that $d \star \eta=0$ on Σ (which is inherited from condition $\operatorname{div} J_{n}=0(n=1,2, \cdots)$ in \boldsymbol{R}^{3} that $J_{n} d v_{x}$ is a volume current density in \boldsymbol{R}^{3}).

Proposition 2.2. Let $J d S_{x}=\left(f_{1}, f_{2}, f_{3}\right) d S_{x}$ be a surface current density on Σ and, $B(x)=(\alpha, \beta, \gamma)$ the magnetıc field in $\boldsymbol{R}^{3} \backslash \Sigma$ induced by $J d S_{x}$. We put $\eta=f_{1} d x+f_{2} d y+f_{3} d z$ on Σ and $\boldsymbol{\omega}=\alpha d y \wedge d z+\beta d z \wedge d x+\gamma d x \wedge d y$ in $\boldsymbol{R}^{3} \backslash \Sigma$. Then we have
(1) ω is a harmonic 2-form in $\boldsymbol{R}^{3} \backslash \Sigma$ such that $\omega(x)=O\left(1 /\|x\|^{2}\right)$ at $x=\infty$.
(2) We simply write $D^{+}=D$ and $D^{-}=D^{\prime}$. If we put $B(x)=B^{ \pm}(x)$ for $x \in D^{ \pm}$, then $B^{ \pm}(x)$ are continuous up to Σ from $D^{ \pm}$, respectively, and has the following gap: $B^{+}(x)-B^{-}(x)=\boldsymbol{n}_{x} \times J(x)$ for $x \in \Sigma$. In other words, if we put $\omega(x)=\omega^{ \pm}(x)$ for $x \in D^{ \pm}$, then $\omega^{ \pm}(x)$ are continuous up to Σ from $D^{ \pm}$, respectively, in such a way that $* \omega^{+}(x)-* \omega^{-}(x)=\star \eta(x)$ on Σ.
(3) For a 1-cycle $\gamma \subset D \cup D^{\prime}$, we have $J[\gamma]=\int_{\gamma} * \omega=\int_{\gamma^{\prime}} \star \eta$, where $\gamma^{\prime}=Q \cap \Sigma$ and Q is a 2 -chain in \boldsymbol{R}^{3} such that $\partial Q=\gamma$.

Given $x \in \boldsymbol{R}^{2}$ sufficiently close to Σ, we find a unique point $\xi=\xi(x) \in \Sigma$ such that

$$
\begin{equation*}
x-\xi=R(x) \boldsymbol{n}_{\xi} \quad \text { where } R(x) \in \boldsymbol{R}, \tag{2.3}
\end{equation*}
$$

where \boldsymbol{n}_{ξ} is the unit outer normal vector of Σ at ξ. Then $R(x)$ becomes a C^{ω} function in a neighborhood U of Σ in \boldsymbol{R}^{3} such that $\boldsymbol{n}_{x}=\nabla R(x)=$ $\left(\partial R / \partial x_{1}, \partial R / \partial x_{2}, \partial R / \partial x_{3}\right)$ on Σ and

$$
\begin{equation*}
U \cap D\left(\text { resp. } \Sigma, U \cap D^{\prime}\right)=\{x \in U \mid R(x)<(\text { resp. }=,>) 0\}, \tag{2.4}
\end{equation*}
$$

For a given $\delta>0$ we set $U(\boldsymbol{\delta}):=\{x \in U \mid-\delta<R(x)<\delta\}$. We fix an integer n_{0} such that $U\left(1 / n_{0}\right) \Subset U$, and put $\Gamma_{n}:=\{x \in U \mid-1 / n \leqq R(x) \leqq-1 / 2 n\}$ for $n \geqq n_{0}$. We take a sequence of C^{∞} functions $\left\{\chi_{n}(R)\right\}_{n \geq 1}$ on $(-\infty, \infty)$ such that

$$
\begin{array}{ll}
0 \leqq \chi_{n}(R) \leqq 1 & \chi_{n}(R)= \begin{cases}1 & \text { on }(-\infty,-1 / n] \\
0 & \text { on }[-1 / 2 n,+\infty)\end{cases} \tag{2.5}\\
0 \leqq\left|\chi_{n}^{\prime}(R)\right| \leqq n M, & \left|\chi^{\prime \prime}(R)\right| \leqq n^{2} M
\end{array}
$$

where $M>0$ is a constant independent of $n(\geqq 1)$ and $R \in(-\infty, \infty)$. For $n \geqq n_{0}$, we can consider a function $\tilde{\chi}_{n}(x)$ in \boldsymbol{R}^{3} defined by

$$
\tilde{\chi}_{n}(x)= \begin{cases}1 & \text { in } D \backslash U \tag{2.6}\\ \chi_{n}(R(x)) & \text { in } U \\ 0 & \text { in } D^{\prime} \backslash U .\end{cases}
$$

Thus, $\tilde{\chi}_{n}(x) \in C_{0}^{\infty}\left(\boldsymbol{R}^{3}\right)$. The functions $\chi_{n}^{\prime}(R(x))$ and $\chi_{n}^{\prime \prime}(R(x))$ are of class C^{∞} in U with support in $\Gamma_{n}(\Subset U)$, so we extend them to \boldsymbol{R}^{3} by putting 0 in $\boldsymbol{R}^{3} \backslash U$.

Proposition 2.3. Let $f \in C_{0}^{\infty}\left(R^{3}\right)$. Then we have
(1) $\chi_{n}^{\prime}(R(x)) f(x) d v_{x} \rightarrow-f(x) d S_{x}$ on Σ in the sense of distribution.
(2) $\left\{\chi_{n}^{\prime \prime}(R(x)) f(x) d v_{x}\right\}_{n \geq n_{0}}$ is convergent on Σ in the sense of distribution, if and only if $f(x)=0$ on Σ. In this case, the limit is $\left(\partial f / \partial n_{x}\right) d S_{x}$ on Σ.

Assertion (2) followed from the fact that, for $\forall \psi \in C_{0}^{\infty}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{R^{3}} \chi_{n}^{\prime \prime}(R(x)) \phi(x) d v_{x}=\int_{\Sigma}\left\{\frac{\partial \psi}{\partial n_{x}}+\psi H\right\} d S_{x} \tag{2.7}
\end{equation*}
$$

where $H(x)$ denotes the mean curvature of Σ at x (cf. Lemma 1.1 in [7]).
Now let D be a domain in \boldsymbol{R}^{3} (which may be \boldsymbol{R}^{3} itself). For $i=1,2$ we consider the space $L_{i}^{2}(D)$ of all $L^{2} i$-forms in D and their subspace :

$$
\begin{aligned}
& C_{\imath, 0}^{\infty}(D)=\text { the set of } C^{\infty} i \text {-forms with compact support in } D, \\
& Z_{\imath}^{\infty}(\bar{D})=\text { the set of all } C^{\infty} \text { closed } i \text {-forms on } \bar{D}, \\
& B_{i}(D)=\mathrm{Cl}\left[d C_{\imath-1,0}^{\infty}(D)\right], \quad Z_{i}(D)=\mathrm{Cl}\left[Z_{\imath}^{\infty}(\bar{D})\right], \\
& H_{i}(D)=\text { the set of all } L^{2} \text { harmonic } i \text {-forms in } D .
\end{aligned}
$$

Then Weyl's orthogonal decomposition theorems hold :

$$
L_{i}^{2}(D)=* Z_{3-i}(D) \dot{+} B_{i}(D), \quad Z_{i}(D)=H_{i}(D) \dot{+} B_{i}(D)
$$

In case D is a bounded domain in \boldsymbol{R}^{3} with C^{ω} smooth boundary surfaces Σ, we define

$$
H_{20}(D)=\left\{\omega \in H_{2}(D) \mid \omega \text { is of class } C^{\omega} \text { up to } \Sigma \text {, and } \omega=0 \text { along } \Sigma\right\},
$$

where $\omega=0$ along Σ means that the normal component of ω vanishes on Σ. As an analogue to Ahlfors' theorem in [1], we have

Proposition 2.4. Let $\left\{\gamma_{j}\right\}_{j=1, \ldots, q}$ be a 1-dimensional homology base of D. Then, for each $i(1 \leqq i \leqq q)$, there exists a unique $\omega_{i} \in H_{20}(D)$ such that $\int_{r} * \omega_{i}=\delta_{i j}$ $(1 \leqq \forall j \leqq q)$.

3. Approximation lemma

We shall show the following approximation
Lemma 3.1. Let $g(x) \in C^{\infty}(U)$ be given. For $n \geqq n_{0}$, we consider the C^{∞} functions $I_{1, n}(x)$ and $I_{2, n}(x)$ in \boldsymbol{R}^{3} defined by

$$
I_{1, n}(x)=\int_{U} \frac{\chi_{n}^{\prime}(R(y)) g(y)}{\|y-x\|} d v_{y}, \quad I_{2, n}(x)=\int_{U} \frac{\chi_{n}^{\prime \prime}(R(y)) g(y)}{\|y-x\|} d v_{y}
$$

We put

$$
\begin{array}{ll}
I_{1}(x)=-\int_{\Sigma} \frac{g(y)}{\|y-x\|} d S_{y} & \text { for } x \in \boldsymbol{R}^{3} \\
I_{2}(x)=\int_{\Sigma}\left\{\frac{\partial}{\partial n_{y}}\left(\frac{g(y)}{\|y-x\|}\right)+\frac{g(y) H(y)}{\|y-x\|}\right\} d S_{y} & \text { for } x \in \boldsymbol{R}^{3} \backslash \Sigma \tag{3.2}
\end{array}
$$

Then we have
(1) $\lim _{x \rightarrow \infty} I_{1, n}(x)=I_{1}(x)$ uniformly in \boldsymbol{R}^{3}.
(2) $\lim _{x \rightarrow \infty} I_{2, n}(x)=I_{2}(x)$ uniformly on any compact set in $\boldsymbol{R}^{3} \backslash \Sigma$.
(3) Both $\left\{I_{1, n}(x)\right\}_{n \geqq n_{0}}$ and $\left\{I_{2, n}(x)\right\}_{n \geqq n_{0}}$ are unlformly bounded in \boldsymbol{R}^{3}.

Proof. It is clear that $I_{1}(x)$ and $I_{2}(x)$ are continuous in \boldsymbol{R}^{3} and $\boldsymbol{R}^{3} \backslash \Sigma$, respectively, and that $I_{2}(x)$ has the gap $4 \pi g(x)$ for $x \in \Sigma$. (Thus the convergence of (2) is not uniform in U in general.) Since $\operatorname{Supp} \chi_{n}^{\prime}(R(x)) \rightarrow \Sigma(n \rightarrow \infty)$, we see from (1) of Proposition 2.3 that $\lim _{n \rightarrow \infty} I_{1, n}(x)=I(x)$ pointwise in $\boldsymbol{R}^{3} \backslash \Sigma$. For each $n \geqq n_{0}$, the function $I_{1, n}(x)$ is of class C^{∞} in \boldsymbol{R}^{3} such that, for $x \in \boldsymbol{R}^{3}$ and $i=1,2,3$,

$$
\frac{\partial I_{1, n}}{\partial x_{2}}(x)=\int_{U} \frac{\chi_{n}^{\prime \prime}(R(y)) \frac{\partial R}{\partial y_{2}}(y) g(y)}{\|y-x\|} d v_{y}+\int_{U} \frac{\chi_{n}^{\prime}(R(y)) \frac{\partial g(y)}{\partial y_{2}}}{\|y-x\|} d v_{y}
$$

Therefore, if (3) is true, then the family $\left\{\left(\partial I_{1, n} / \partial x_{\imath}\right)(x)\right\}_{n \geqq n_{0}}$ is uniformly bounded in \boldsymbol{R}^{3}. Hence, the family $\left\{I_{1, n}(x)\right\}_{n \geqq n_{0}}$ is bounded and equicontinuous on any compact set K in \boldsymbol{R}^{3}. It follows from Ascoli-Arzelà's theorem that the sequence $\left\{I_{1, n}(x)\right\}_{n \geqq n_{0}}$ uniformly converges to a function $g_{1}(x)$ on K. As K, we take a large closed ball \bar{B}_{0} such that $B_{0} \supset U$. Since $I_{1, n}(x)$ is harmonic in $\boldsymbol{R}^{3} \backslash \Gamma_{n}$, it follows from the expression of $I_{1, n}(x)$ that there exists an $A_{1}>0$ such that $\left|I_{1, n}(x)\right| \leqq A_{1} /\|x\|$ for $\forall n \geqq n_{0}$ and $\forall x \in \boldsymbol{R}^{3} \backslash B_{0}$. Hence, $\left\{I_{1, n}(x)\right\}_{n \geqq n_{0}}$ uniformly converges to a function $g_{1}(x)$ in \boldsymbol{R}^{3}. Since $I_{1}(x)=g_{1}(x)$ in $\boldsymbol{R}^{3} \backslash \Sigma$ and since $I_{1}(x)$ and $g_{1}(x)$ are continuous in \boldsymbol{R}^{3}, we have (1). Following the proof of (2.7), we obtain (2). It rests to prove (3) for $k=1,2$. The proof for $k=1$ is easy as follows : By simple calculation we find a constant $c>0$ such that

$$
\int_{\Gamma_{n}} \frac{1}{\|x-y\|} d v_{y} \leqq \frac{c}{n} \quad \text { for } \mathrm{A} x \in \boldsymbol{R}^{3} \text { and } \forall n \geqq n_{0}
$$

We put $M_{1}:=\sup \left\{|g(y)| \mid y \in U\left(1 / n_{0}\right)\right\}<+\infty$. Since $\left|\chi_{n}^{\prime}(R)\right| \leqq n M$ on $(-\infty,+\infty)$ by (2.5), it follows that $\left|I_{1, n}(x)\right| \leqq c M M_{1}$ for $\forall x \in \boldsymbol{R}^{3}$ and $\forall n \geqq n_{0}$. Thus, the case $k=1$ is proved. The proof for $k=2$ is rather delicate. The proof will be done by use of Morse's theorem concerning regular singular point as follows:

In this proof we take and fix $0<\delta^{*}<1 / n_{0}$, so that $\Sigma \subset U\left(\delta^{*}\right) \Subset U\left(1 / n_{0}\right)$. We simply put $I^{*}=\left(-\delta^{*},+\delta^{*}\right)$. Each $I_{2, n}(x), n \geqq n_{0}$ is a C^{∞} function in \boldsymbol{R}^{3} and harmonic in $\boldsymbol{R}^{3} \backslash \Gamma_{n}$. By the expression of $I_{2, n}(x)$ and (2), we find a constant $A_{2}>0$ (independent of $n \geqq n_{0}$) such that $\left|I_{2, n}(x)\right| \leqq A_{2} /\|x\|$ outside a ball $B_{0} \supset \bar{D}$. It follows from (2) that $\left\{I_{2, n}(x)\right\}_{n \geq n_{0}}$ is uniformly bounded in $\boldsymbol{R}^{3} \backslash U\left(\boldsymbol{\delta}^{*}\right)$. Therefore, it suffices to prove the following

Claim. There exist an integer $n_{1}\left(\geqq n_{0}\right)$ and a constant $C>0$ such that

$$
\left|I_{2, n}\left(p+R^{*} \boldsymbol{n}_{p}\right)\right| \leqq C \quad \text { for } \forall\left(p, R^{*}\right) \in \Sigma \times I^{*} \text { and } \forall n \geqq n_{1} .
$$

$1^{\text {st }}$ step. Let $p \in \Sigma$ be given arbitrarily. By a euclidean motion, we may assume that p is the origin O in the (x, y, z)-space and the unit outer normal vector \boldsymbol{n}_{p} is equal to $(0,0,1)$. We identify p with O in this proof. The tangent plane of Σ at O is thus

$$
\zeta=\phi(\xi, \eta)=a \xi^{2}+2 b \xi \eta+c \eta^{2}+\{\text { higher order terms of } \xi \text { and } \eta\},
$$

where the Taylor series $\left\}\right.$ uniformly converges in a disk $D_{1}=\left\{\xi^{2}+\eta^{2}<\rho_{1}\right\}$ (for future use, we prefer notation (ξ, η, ζ) to (x, y, z)). We consider the following transformation $\mathcal{S}:(\xi, \eta, R) \mapsto y=(x, y, z)$ from a neighborhood W_{1} of the origin $(0,0,0)$ in the (ξ, η, R)-space onto a neighborhood V_{1} of the origin O in the (x, y, z)-space of the form

$$
\begin{equation*}
\mathcal{S}: y=(\xi, \eta, \phi(\xi, \eta))+R \boldsymbol{n}_{\xi}, \tag{3.3}
\end{equation*}
$$

where \boldsymbol{n}_{ξ} denotes the unit outer normal vector of Σ at $(\xi, \eta, \phi(\xi, \eta))$. So, R is equal to $R(y)$ defined by (2.3). Then we have, for $y \in V_{1}$ and $R^{*} \in I^{*}$,

$$
\begin{align*}
l\left(y, R^{*}\right) & :=\left\|y-\left(p+R^{*} \boldsymbol{n}_{p}\right)\right\|^{2} \tag{3.4}\\
& =\left\|(\xi, \eta, \phi(\xi, \eta))+R \boldsymbol{n}_{\xi}-\left(0,0, R^{*}\right)\right\|^{2} \\
& =\left(\xi-K_{\xi, \eta} \phi_{\xi} R\right)^{2}+\left(\eta-K_{\xi, \eta} \phi_{\eta} R\right)^{2}+\left(\phi(\xi, \eta)+K_{\xi, \eta} R-R^{*}\right)^{2},
\end{align*}
$$

where $K_{\xi, \eta}=1 / \sqrt{ } 1+\phi_{\xi}^{2}+\phi_{\eta}^{2}$. It follows that for any (ξ, η) sufficiently close to $(0,0)$, say $(\xi, \eta) \in D_{1}^{\prime}=\left\{\xi^{2}+\eta^{2}<\rho_{1}^{\prime}\right\}$ where $0<\rho_{1}^{\prime}<\rho_{1}$, we have

$$
\begin{aligned}
l\left(y, R^{*}\right)= & \left(R-R^{*}\right)^{2}+(1+A R) \xi^{2}+2 B R \xi \eta+(1+C R) \eta^{2} \\
& +\{\text { higher order terms of } \xi \text { and } \eta\}
\end{aligned}
$$

where A, B, C are C^{ω} functions of ξ, η, R, R^{*}. We thus find an interval $I_{1}:=\left(-\delta_{1},+\delta_{1}\right)$ such that

$$
(1+A R)(1+C R)>|B R|^{2}+1 / 2 \text { for } \forall(\xi, \eta) \in D_{1}^{\prime}, \forall R \in I_{1} \text {, and } \forall R^{*} \in I^{*} \text {. }
$$

First, regarding R and R^{*} as parameters, we apply Morse's theorem to obtain a C^{2} transformation $\mathscr{M}_{R, R^{*}}$ from a neighborhood $\mathscr{D}_{1}^{\prime}\left(R, R^{*}\right)$ of $(0,0)$ in the (X, Y)-plane onto a neighborhood $D_{1}^{\prime}\left(R, R^{*}\right)\left(\subset D_{1}^{\prime}\right)$ of $(0,0)$ in the (ξ, η)-plane such that

$$
\begin{align*}
& \mathscr{M}_{R, R^{*}}:(X, Y) \mapsto(\xi, \eta)=\left(f\left(X, Y, R, R^{*}\right), g\left(X, Y, R, R^{*}\right)\right) \tag{3.5}\\
& l\left(y, R^{*}\right)=\left(R-R^{*}\right)^{2}+X^{2}+Y^{2} .
\end{align*}
$$

By the construction of $\mathscr{M}_{R, R^{*}}$ under the form (3.4) of $l\left(y, R^{*}\right)$, the functions f and g may be chosen to be of class C^{2} for $\left(R, R^{*}\right) \in I_{1} \times I^{*}$. By smoothness we can take a common neighborhood $\mathscr{D}_{2} \subset \mathscr{D}_{1}^{\prime}\left(R, R^{*}\right)$ of $(0,0)$ in the (X, Y)-plane for $\forall\left(R, R^{*}\right) \in I_{1} \times I^{*}$, so that
(3.6) $\quad f\left(X, Y, R, R^{*}\right)$ and $g\left(X, Y, R, R^{*}\right)$ are of class C^{2} in $\mathscr{D}_{2} \times\left(I_{1} \times I^{*}\right)$.

Next, regarding $R^{*} \in I^{*}$ as parameter, we put $\mathcal{M}:(X, Y, R) \mapsto(\xi, \eta, R)=(f, g, R)$, and consider the C^{2} transformation $\mathscr{I}:=\mathcal{S} \circ \mathscr{M}$ from a product neighborhood $\mathcal{C}_{2}:=\mathscr{D}_{2} \times I_{1}$ of the origin O in the (X, Y, R)-space onto a neighborhood V_{2} $\left(\subset V_{1}\right)$ of the origin O in the (x, y, z)-space. We write

$$
\begin{aligned}
& \mathscr{T}:(X, Y, R) \in V_{2} \mapsto y \\
= & \left(F\left(X, Y, R, R^{*}\right), G\left(X, Y, R, R^{*}\right), H\left(X, Y, R, R^{*}\right)\right) \in V_{2} .
\end{aligned}
$$

By differentiability of (3.6) we can find an $L>1$ such that

$$
\begin{align*}
& \text { Modules of }\left\{\frac{\partial F}{\partial \bar{X}}, \frac{\partial F}{\partial Y}, \cdots, \frac{\partial^{2} H}{\partial Y}, \frac{\partial^{2} H}{\partial R^{2}}\right\} \leqq L \\
& \frac{1}{L} \leqq J_{\mathscr{I}}(X, Y, R)=\frac{\partial(x, y, z)}{\partial(X, Y, R)} \leqq L \tag{3.7}
\end{align*}
$$

for $\forall(X, Y, R) \in V_{2}$ and $\forall R^{*} \in I^{*}$. Note that \mathscr{I} depends on $\left(p, R^{*}\right) \in \Sigma \times I^{*}$, so do V_{2} and L. Thus, it should better to write $V_{2}=C V_{2}\left(p, R^{*}\right)$ and $L=L\left(p, R^{*}\right)$. However, since the surface Σ is of C^{ω} smooth, we see from the construction of the mapping \mathscr{I} that there exists a small common product neighborhood $\subset V_{0} \subset V_{2}\left(p, R^{*}\right)$ centered at $(0,0,0)$ in the (X, Y, R)-space and a large common $L_{0}>L\left(p, R^{*}\right)>0$ such that (3.5) and (3.7) are satisfied for $\forall(X, Y, R) \in \mathcal{V}_{0}$ and $\forall\left(力, R^{*}\right) \in \Sigma \times I^{*}$. We write

$$
\mathcal{C} V_{0}=\mathscr{D}_{0} \times I_{0} \quad \text { where } D_{0}=\left\{X^{2}+Y^{2}<\rho_{0}\right\} \text { and } I_{0}=\left(-\delta_{0},+\delta_{0}\right) .
$$

As an integer n_{1} in the claim, we take an $n_{1}\left(\geqq n_{0}\right)$ such that $\Gamma_{n} \subset U\left(\boldsymbol{\delta}_{0}\right)$ for $\forall n \geqq n_{1}$. We put $O_{p, R^{*}}:=\mathscr{T}\left(\mathcal{V}_{0}\right)$, where \mathscr{I} is constructed above depending on $\left(p, R^{*}\right) \in \Sigma \times I^{*}$. Thus, $O_{p, R^{*}}$ is a neighborhood of $\left(p, R^{*}\right)$ in the (x, y, z)-space. From (3.7), we find a small common disk $E_{\tau}:=\left\{\xi^{2}+\eta^{2}<\tau^{2}\right\}$, where $\tau>0$, in the (ξ, η)-plane such that

$$
\begin{equation*}
\mathcal{S}\left(E_{\tau} \times I_{0}\right) \subset O_{p, R^{*}} \text { for } \forall\left(p, R^{*}\right) \in \Sigma \times I^{*}, \tag{3.8}
\end{equation*}
$$

where \mathcal{S} is defined by (3.3) depending on (p, R^{*}).
$2^{\text {nd }}$ ste p. Let $\left(p, R^{*}\right) \in \Sigma \times I^{*}$ and $n \geqq n_{1}$ be given arbitrarily. We set

$$
\begin{align*}
I_{2, n}\left(p+R^{*} \boldsymbol{n}_{p}\right) & =\left\{\int_{o_{p, R^{*}}}+\int_{U \backslash o_{p, R^{*}}}\right\} \frac{\chi_{n}^{\prime \prime}(R(y)) g(y)}{\left\|y-\left(p+R^{*} \boldsymbol{n}_{p}\right)\right\|} d v_{y} \tag{3.9}\\
& \equiv S_{n}\left(p, R^{*}\right)+T_{n}\left(p, R^{*}\right)
\end{align*}
$$

We first show the uniform boundedness of the second terms $\left\{T_{n}\left(p, R^{*}\right)\right\}_{n \geq n_{1}}$ in $\Sigma \times I^{*}$. For $R \in I_{0}$, we consider the level surface: $\Sigma(R)=\{y \in U \mid R(y)=R\}$ in the (x, y, z)-space, where $R(y)$ is defined by (2.3). For $y \in \Sigma(R)$ and $R \in I_{0}$, we set $d v_{y}=j(y) d S_{y} d R$, where $d S_{y}$ denotes the surface area element of $\Sigma(R)$ at y. Thus, $j(y)$ becomes a C^{ω} function in $U\left(\delta_{0}\right)$ such that $j(y)=1$ on Σ. We put, for $\forall R \in I_{0}$,

$$
F_{p, R *}(R):=\int_{\Sigma\left(R \backslash 0_{p, R} *\right.} \frac{g(y) j(y)}{\left\|y-\left(p+R^{*} \boldsymbol{n}_{p}\right)\right\|} d S_{y} .
$$

By (3.8) we have $\left\|y-\left(p+R^{*} \boldsymbol{n}_{p}\right)\right\|>\tau$ for $\forall y \in \Sigma(R) \backslash O_{p, R^{*}}$ and $\forall\left(p, R^{*}\right) \in \Sigma \times I^{*}$. Hence, the integrand is a bounded C^{∞} function for $y \in \Sigma(R) \backslash O_{p, R^{*}}$ such that its boundedness is uniform for $\left(R, p, R^{*}\right) \in I_{0} \times \Sigma \times I^{*}$. Further, since $\Sigma(R) \backslash O_{p, R^{*}}$ varies C^{2} smoothly with respect to $\left(R, p, R^{*}\right) \in I_{0} \times \Sigma \times I^{*}$, it follows that $F_{p, R^{*}}(R)$ varies smoothly with these variables. We thus find an $M_{2}>0$ such that

$$
\left|\frac{\partial F_{p, R}(R)}{\partial R}\right| \leqq M_{2} \quad \text { for } \forall\left(R, p, R^{*}\right) \in I_{0} \times \Sigma \times I^{*} .
$$

Note that $\chi_{n}^{\prime}(-1 / n)=\chi_{n}^{\prime}(-1 / 2 n)=0$ and $\operatorname{Supp} \chi_{n}^{\prime \prime} \subset[-1 / n,-1 /(2 n)]$. By the integration by parts, we have

$$
T_{n}\left(p, R^{*}\right)=\int_{-1 / n}^{-1 / 2 n} \chi_{n}^{\prime \prime}(R) F_{p, R^{*}}(R) d R=-\int_{-1 / n}^{-1 / 2 n} \chi_{n}^{\prime}(R) \frac{\partial F_{p, R *}(R)}{\partial R} d R
$$

Since $\left|\chi_{n}^{\prime}(R)\right| \leqq n M$ by (2.5), it follows that

$$
\left|T_{n}\left(p, R^{*}\right)\right| \leqq C_{1}:=M M_{2} / 2 \text { for } \forall\left(p, R^{*}\right) \in \Sigma \times I^{*} \text { and } \forall n \geqq n_{1} .
$$

We next show the uniform boundedness of the first terms $\left\{S_{n}\left(p, R^{*}\right)\right\}_{n \geqq n_{1}}$ in $\Sigma \times I^{*}$. By the change of variables from $y=(x, y, z)$ to (X, Y, R) by \mathcal{I} (depending on (p, R^{*})), we have

$$
S_{n}\left(p, R^{*}\right)=\int_{\mathscr{D}_{0} \times I_{0}} \frac{\chi_{n}^{\prime \prime}(R) \tilde{g}(X, Y, R)}{\sqrt{\left(R-R^{*}\right)^{2}+X^{2}+Y^{2}}} J_{\mathcal{T}}(X, Y, R) d X d Y d R,
$$

where $\tilde{g}=g \# \mathscr{T}$. We use the polar coordinates $(X, Y)=(r \cos \theta, r \sin \theta)$ in \mathscr{D}_{0} and put $\tilde{G}(r, \theta, R):=\tilde{g}(X, Y, R) J_{g}(X, Y, R)$. Note that \tilde{G} depends on (p, R^{*}) $\in \Sigma \times I^{*}$. By (3.7) we find an $L_{1}>0$ such that

$$
\text { Modules of }\left\{\tilde{G}(r, \theta, R), \frac{\partial \tilde{G}}{\partial r}, \cdots, \frac{\partial^{2} \tilde{G}}{\partial \theta \partial R}, \frac{\partial^{2} \tilde{G}}{\partial R^{2}}\right\} \leqq L_{1}
$$

for $\forall(r, \theta) \in\left[0, \rho_{0}\right] \times[0,2 \pi]$ and $\forall\left(R, p, R^{*}\right) \in I_{0} \times \Sigma \times I^{*}$. Since $\chi^{\prime}(-1 / n)=$ $\chi^{\prime}(-1 / 2 n)=0$ and Supp $\chi_{n}^{\prime \prime}(R) \subset[-1 / n,-1 /(2 n)]$, we use the integration by parts for R to obtain

$$
\begin{aligned}
S_{n}\left(p, R^{*}\right) & =\int_{0}^{2 \pi} \int_{0}^{\rho_{0}} r\left\{\int_{-1 / n}^{-1 / 2 n} \chi_{n}^{\prime \prime}(R) \frac{\tilde{G}(r, \theta, R)}{\sqrt{\left(R-R^{*}\right)^{2}+r^{2}}} d R\right\} d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\rho_{0}} r\left\{-\int_{-1 / n}^{-1 / 2 n} \chi_{n}^{\prime}(R) \frac{\partial}{\partial R}\left(\frac{\tilde{G}(r, \theta, R)}{\sqrt{\left(R-R^{*}\right)^{2}+r^{2}}}\right) d R\right\} d r d \theta .
\end{aligned}
$$

We conveniently put $Z=Z\left(r, R, R^{*}\right)=1 / \sqrt{\left(R-R^{*}\right)^{2}+r^{2}}$. It follows from $r(\partial Z / \partial R)=\left(R-R^{*}\right) \partial Z / \partial r$ that

$$
\begin{aligned}
S_{n}\left(p, R^{*}\right)= & -\int_{0}^{2 \pi} \int_{-1 / n}^{-1 / 2 n} \int_{0}^{\rho_{0}}\left\{r \chi_{n}^{\prime}(R)\left(\frac{\partial Z}{\partial R} \tilde{G}+Z \frac{\partial \tilde{G}}{\partial R}\right)\right\} d r d R d \theta \\
= & -\int_{0}^{2 \pi} \int_{-1 / n}^{-1 / 2 n} \int_{0}^{\rho_{0}}\left\{\left(R-R^{*}\right) \chi_{n}^{\prime}(R) \frac{\partial Z}{\partial r} \tilde{G}\right\} d r d R d \theta \\
& -\int_{0}^{2 \pi} \int_{-1 / n}^{-1 / 2 n} \int_{0}^{\rho_{0}}\left\{r Z \chi_{n}^{\prime}(R) \frac{\partial \tilde{G}}{\partial R}\right\} d r d R d \theta \\
\equiv & S_{n}^{(1)}\left(p, R^{*}\right)+S_{n}^{(2)}\left(p, R^{*}\right) .
\end{aligned}
$$

Since $|r Z| \leqq 1$ and $\left|\chi_{n}^{\prime}(R)\right| \leqq n M$, we have $\left|S_{n}^{(2)}\left(p, R^{*}\right)\right| \leqq 2 \pi(1 / 2 n)(n M) L_{1} \rho_{0}=$ $\pi M L_{1} \rho_{0}$ for $\forall\left(r, R^{*}\right) \in \Sigma \times I^{*}$ and $\forall n \geqq n_{1}$. Using the integration by parts for r in $S_{n}^{(1)}\left(p, R^{*}\right)$, we have from $\left|\left(R-R^{*}\right) Z\right| \leqq 1$ and $\left|\chi_{n}^{\prime}(R)\right| \leqq n M$,

$$
\begin{aligned}
\left|S_{n}^{(1)}\left(p, R^{*}\right)\right| & =\left|\int_{0}^{2 \pi} \int_{-1 / n}^{-1 / 2 n}\left(R-R^{*}\right) \chi_{n}^{\prime}(R)\left\{\int_{0}^{\rho_{0}} \frac{\partial Z}{\partial r} \tilde{G} d r\right\} d R d \theta\right| \\
& =\left|\int_{0}^{2 \pi} \int_{-1 / n}^{-1 / 2 n}\left(R-R^{*}\right) \chi_{n}^{\prime}(R)\left\{\left[Z \tilde{G}^{-}\right] \rho_{0}^{\rho_{0}}-\int_{0}^{\rho_{0}} Z \frac{\partial \tilde{G}}{\partial r} d r\right\} d R d \theta\right| \\
& \leqq 2 \pi \frac{1}{2 n}(n M)\left(2 L_{1}+\rho_{0} L_{1}\right)=\pi M L_{1}\left(2+\rho_{0}\right)
\end{aligned}
$$

for $\forall\left(r, R^{*}\right) \in \Sigma \times I^{*}$ and $\forall n \geqq n_{1}$. Hence, $\left|S_{n}\left(p, R^{*}\right)\right| \leqq C_{2}:=\pi M L_{1}\left(3+\rho_{0}\right)$ in $\Sigma \times I^{*}$ for $\forall n \geqq n_{1}$. It follows from (3.9) that $\left|I_{2, n}\left(p+R^{*} \boldsymbol{n}_{p}\right)\right| \leqq C:=C_{1}+C_{2}$ in $\Sigma \times I *$ for $\forall n \geqq n_{1}$. Our claim is thus proved.

Corollary 3.1. Let $J d S_{x}$ be a surface current density on Σ and denote by $A(x)$ and $B(x)$ its vector potential in \boldsymbol{R}^{3} and its magnetic field in $\boldsymbol{R}^{3} \backslash \Sigma$. Then there exists a sequence of volume current densities $\left\{J_{n} d v_{x}\right\}_{n}$ with the following properties: If we denote by $A_{n}(x)$ and $B_{n}(x)$ the vector potential and the magnetic field for $J_{n} d v_{x}$ respectiveiy, then it holds
(1) $\left\{A_{n}(x)\right\}_{n}$ converges $A(x)$ uniformly in \boldsymbol{R}^{3}.
(2) $\left\{B_{n}(x)\right\}_{n}$ converges $B(x)$ uniformly on any compact set in $\boldsymbol{R}^{3} \backslash \Sigma$.
(3) $\left\{B_{n}(x)\right\}_{n}$ is uniformly bounded in \boldsymbol{R}^{3}.
(4) $\lim _{n \rightarrow \infty} \int_{R_{3}}\left\|B_{n}(x)-B(x)\right\|^{2} d v_{x}=0$.

Proof. In Corollary 1.1 in [7] we constructed a sequence of volume current densities $\left\{J_{n} d v_{x}\right\}_{n}$ converging the given $J d S_{x}$ on Σ in the sense of distribution such that their $\{A(x)\}_{n}$ and $\{B(x)\}_{n}$ converge $A(x)$ and $B(x)$ uniformly on any compact set in $\boldsymbol{R}^{3} \backslash \Sigma$. In that proof, $J_{n} d v_{x}=\left(f_{1 n}, f_{2 n}, f_{3 n}\right) d v_{x}$ was of the form

$$
f_{1 n}(x)=\chi_{n}^{\prime}(R(x))\left(\tilde{g}_{3}(x) \frac{\partial R(x)}{\partial x_{2}}-\tilde{g}_{2}(x) \frac{\partial R(x)}{\partial x_{3}}\right) \text { etc., }
$$

where $\tilde{g}_{2}(x)$ and $\tilde{g}_{3}(x)$ are C^{∞} functions in $U\left(\supset \Gamma_{n}\right)$ and are independent of n $\left(\geqq n_{0}\right)$. We shall show this $\left\{J_{n} d v_{x}\right\}_{n}$ satisfies (1)~(4) of Corollary 3.1. In fact, (2) is already proved in [7]. Applying (1) of Lemma 3.1 to definition (2.1) of $A_{n}(x)$, we have (1). Since $B_{n}(x)=\operatorname{rot} A_{n}(x)$, we see that each component of $B_{n}(x)$ is of the form

$$
\begin{equation*}
\int_{R^{3}} \frac{\chi_{n}^{\prime}(R(y)) h(y)+\chi_{n}^{\prime \prime}(\boldsymbol{R}(y)) k(y)}{\|x-y\|} d v_{y} \tag{3.10}
\end{equation*}
$$

where $h(y)$ and $k(y)$ are functions of class C^{∞} in U and independent of n ($\geqq n_{0}$). Hence, (3) of Lemma 3.1 implies (3). From (2) and definition (2.2) of $B_{n}(x)$ we can find an $M_{1}>0$ such that $\left\|B_{n}(x)\right\| \leqq M_{1} /\|x\|^{2}$ outside a ball $B_{0} \supset \bar{D}$ for $\forall n \geqq n_{0}$. This together with (3) implies (4).

4. Main theorem

Given a C^{∞} 1-form $\sigma=\sum_{i=1}^{3} f_{i} d x_{2}$ in a domain $U \subset \boldsymbol{R}^{3}$, we put $\|\boldsymbol{\sigma}\|(x)=$ $\left(\sum_{i=1}^{3} f_{i}(x)^{2}\right)^{1 / 2} \geqq 0, \Delta \sigma=\sum_{l=1}^{3}\left(\Delta f_{i}\right) d x_{\imath}$, and $\delta=* d *$, where Δ is Laplacian and the operator $*$ is determined by $\sigma \wedge * \sigma=\|\sigma\|^{2}(x) d v_{x}$ in U. When $\sigma \in C_{1,0}^{\infty}\left(\boldsymbol{R}^{3}\right)$, we put

$$
\operatorname{N} \boldsymbol{\sigma}(x) \text { or } \frac{1}{4 \pi} \int_{\boldsymbol{R}^{3}} \frac{\sigma(y)}{\|x-y\|} d v_{y}:=\frac{1}{4 \pi} \sum_{i=1}^{3}\left(\int_{\boldsymbol{R}^{3}} \frac{f_{i}(y)}{\|x-y\|} d v_{y}\right) d x_{i} .
$$

This as well as $\Delta \sigma$ is a 1 -form. We analogously define the corresponding ones for $C^{\infty} i$-form $\sigma_{i}(i=0,1,2,3)$. By the symmetry of the Newton kernel $1 /\|x-y\|$ with respect to x and y in \boldsymbol{R}^{3}, we easily obtain, for $\sigma_{i} \in C_{i, 0}^{\infty}\left(\boldsymbol{R}^{3}\right)$,

Further we have (see, for example, [5])

$$
\Delta \sigma_{\imath}=(-1)^{\imath}(\delta d-d \delta) \sigma_{\imath} \quad \text { and } \quad \Delta \mathscr{N} \sigma_{\imath}=-\sigma_{\imath} \text { (Poisson's equation). }
$$

We use the following Maxwell's theorem in the time independent case (see [7]):

Proposition 4.1. Let $\eta \in * Z_{20}^{\infty}\left(\boldsymbol{R}^{3}\right)\left(=*\left[Z_{2}\left(\boldsymbol{R}^{3}\right) \cap C_{2,0}^{\infty}\left(\boldsymbol{R}^{3}\right)\right]\right)$. If we put $p(x)$ $=গ \eta \eta(x)$ and $\boldsymbol{\omega}(x)=d p(x)$ in \boldsymbol{R}^{3}, then $\delta \boldsymbol{\omega}=\eta$ holds in \boldsymbol{R}^{3}.

We shall show the following main theorem which gives a new interpretation of Weyl's orthogonal decomposition theorem related to magnetic fields induced by surface current densities on Σ :

Theorem 4.1. Let $\sigma=a d x+b d y+c d z$ be a C^{∞} closed 1 -form on \bar{D}. We put $\boldsymbol{a}(x)=(a, b, c)$ for $x \in \bar{D}$. Then we have
(1) $J d S_{x}:=\boldsymbol{a}(x) \times \boldsymbol{n}_{x} d S_{x}$ is a surface current density on Σ.

We denote by $B(x)=(\alpha, \beta, \gamma)$ in $D \cup D^{\prime}$ the magnetic field induced by $J d S_{x}$, and put $\omega=\alpha d y \wedge d z+\beta d z \wedge d x+\gamma d x \wedge d y$ in $D \cup D^{\prime}$.
(2) If we put $\tilde{\sigma}=\sigma$ in D and $=0$ in D^{\prime}, then it holds

$$
\begin{equation*}
\tilde{\sigma}=* \omega \dot{+} d F \quad \text { in } D \cup D^{\prime}, \tag{4.1}
\end{equation*}
$$

where

$$
F(x)=\frac{1}{4 \pi} \int_{\Sigma} \frac{\boldsymbol{a}(y) \cdot \boldsymbol{n}_{y}}{\|x-y\|} d S_{y}-\frac{1}{4 \pi} \int_{D} \frac{\operatorname{div} \boldsymbol{a}(y)}{\|x-y\|} d v_{y} \quad \text { for } x \in \boldsymbol{R}^{3} .
$$

(3) Formula (4.1) is the Weyl's orthogonal decomposition of $\tilde{\boldsymbol{\sigma}}$ in $\Gamma_{1}^{2}\left(\boldsymbol{R}^{3}\right)$, that is, $\omega \in Z_{2}\left(\boldsymbol{R}^{3}\right)$ and $d F \in B_{1}\left(\boldsymbol{R}^{3}\right)$. In our case, $F \in C\left(\boldsymbol{R}^{3}\right) \cap C^{\infty}\left(\boldsymbol{R}^{3} \backslash \Sigma\right)$ and $\omega \in H_{2}\left(\boldsymbol{R}^{3} \backslash \Sigma\right)$ such that $F(x)=O\left(1 /\|x\|^{2}\right)$ and $\omega(x)=O\left(1 /\|x\|^{3}\right)$ at $x=\infty$.

Proof. Although (1) is clear from Proposition 2.1, we verify it again for the proof of (2) and (3). Using the function $\tilde{\chi}_{n}(x)$ in \boldsymbol{R}^{3} defined by (2.6) for $n \geqq n_{0}$, we consider $\tilde{\chi}_{n} \sigma \in C_{1,0}^{\infty}\left(\boldsymbol{R}^{3}\right)$ with support in D. If we put

$$
\begin{array}{ll}
\eta_{n}(x)=* d\left(\tilde{\chi}_{n} \boldsymbol{\sigma}\right)=f_{1 n} d x+f_{2 n} d y+f_{3 n} d z & \text { in } \boldsymbol{R}^{3} \tag{4.2}\\
J_{n} d v_{x}=\left(f_{1 n}, f_{2 n}, f_{3 n}\right) d v_{x} & \text { in } \boldsymbol{R}^{3},
\end{array}
$$

then $J_{n} d v_{x}$ is a volume current density in \boldsymbol{R}^{3}. Since σ is closed on \bar{D}, we get

$$
\begin{equation*}
f_{1 n}(x)=\chi_{n}^{\prime}(R(x))\left\{\frac{\partial R}{\partial y} c-\frac{\partial R}{\partial z} b\right\} \quad \text { etc. } \tag{4.3}
\end{equation*}
$$

It follows from (1) of Proposition 2.3 and $\nabla R(x)=\boldsymbol{n}_{x}$ on Σ that $J_{n} d v_{x} \rightarrow J d S_{x}$ $(n \rightarrow \infty)$ on Σ in the sense of distribution. Thus (1) is proved. Denoting by $B_{n}=\left(\alpha_{n}, \beta_{n}, \gamma_{n}\right)$ the magnetic field in \boldsymbol{R}^{3} induced by $J_{n} d v_{x}$, we have $B_{n}(x) \rightarrow B(x)$ $(n \rightarrow \infty)$ pointwise in $D \cup D^{\prime}$. We put $\omega_{n}(x)=\alpha_{n} d y \wedge d z+\beta_{n} d z \wedge d x+\gamma_{n} d x \wedge d y$ in \boldsymbol{R}^{3}, so that

$$
\begin{equation*}
\boldsymbol{\omega}_{n}(x)=d\left(\frac{1}{4 \pi} \int_{\boldsymbol{R}^{3}} \frac{\eta_{n}(y)}{\|x-y\|} d v_{y}\right) \text { for } x \in \boldsymbol{R}^{3}, \tag{4.4}
\end{equation*}
$$

and $\omega_{n}(x) \rightarrow \omega(x)(n \rightarrow \infty)$ pointwise.

We here note that $\delta\left(* \tilde{\chi}_{n} \boldsymbol{\sigma}\right)=\eta_{n}$ in \boldsymbol{R}^{3}. By Proposition 4.1, we have $\delta \omega_{n}=\eta_{n}$ in \boldsymbol{R}^{3}. Since $d \boldsymbol{\omega}_{n}=0$ in \boldsymbol{R}^{3}, we have the orthogonal decomposition: $* \tilde{\chi}_{n} \boldsymbol{\sigma}=\boldsymbol{\omega}_{n}+$ ($* \tilde{\chi}_{n} \sigma-\omega_{n}$) in \boldsymbol{R}^{3}. Since $\Delta=\delta d-d \delta$ for 2 -forms, it follows from (4.2) and Poisson's equation that, for any fixed $x \in \boldsymbol{R}^{3}$,

$$
\begin{align*}
\omega_{n}(x) & =d \delta\left(\frac{1}{4 \pi} \int_{R^{3}} \frac{* \tilde{\chi}_{n} \sigma}{\|x-y\|} d v_{y}\right) \tag{4.5}\\
& =(-\Delta+\delta d)\left(\frac{1}{4 \pi} \int_{R^{3}} \frac{* \tilde{\chi}_{n} \sigma}{\|x-y\|} d v_{y}\right) \\
& =* \tilde{\chi}_{n} \sigma(x)+* d F_{n}(x)
\end{align*}
$$

where

$$
\begin{aligned}
F_{n}(x) & =\frac{1}{4 \pi} \int_{R^{3}} \frac{* d\left(* \tilde{\chi}_{n} \boldsymbol{\sigma}\right)}{\|x-y\|} d v_{y} \\
& =\frac{1}{4 \pi} \int_{D} \frac{\chi_{n}^{\prime}(R(y)) \nabla R(y) \cdot \boldsymbol{a}(y)+\tilde{\chi}_{n}(y) \operatorname{div} \boldsymbol{a}(y)}{\|x-y\|} d v_{y}
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\tilde{\chi}_{n} \sigma=* \omega_{n}(x) \dot{+} d\left(-F_{n}\right) \quad \text { in } \boldsymbol{R}^{3} . \tag{4.6}
\end{equation*}
$$

By its expression, $F_{n}(x)$ is of class C^{∞} in \boldsymbol{R}^{3} and harmonic in $\boldsymbol{R}^{3} \backslash \bar{D}$. Moreover, since $\tilde{\chi}_{n}(x)=0$ on Σ, we have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{F_{n}(x)}{\|x\|} & =\frac{1}{4 \pi} \int_{D}\left\{\chi_{n}^{\prime}(R(y)) \nabla R(y) \cdot \boldsymbol{a}(y)+\tilde{\chi}_{n}(y) \operatorname{div} \boldsymbol{a}(y)\right\} d v_{y} \\
& =\frac{1}{4 \pi} \int_{D} d\left[\tilde{\chi}_{n}(y) * \sigma\right]=\frac{1}{4 \pi} \int_{\partial D} \tilde{\chi}_{n}(y) * \sigma=0,
\end{aligned}
$$

so that $F_{n}(x)=O\left(1 /\|x\|^{2}\right)$ at $x=\infty$. Since $\omega_{n} \in Z_{2}^{\infty}\left(\boldsymbol{R}^{3}\right)$ and $d F_{n} \in B_{1}\left(\boldsymbol{R}^{3}\right)$, formula (4.6) for each $n \geqq n_{0}$ is the Weyl's orthogonal decomposition of $\tilde{\chi}_{n} \sigma$ in $\Gamma_{1}^{2}\left(\boldsymbol{R}^{3}\right)$. By (1) of Lemma 3.1, $F_{n}(x) \rightarrow-F(x)(n \rightarrow \infty)$ uniformly in \boldsymbol{R}^{3}. Therefore, there exists an $M_{1}>0$ (independent of $n \geqq n_{0}$) such that $\left|F_{n}(x)\right|,|F(x)| \leqq M_{1} /\|x\|^{2}$ outside a ball $B_{0} \supset \bar{D}$. By (4.6) we may assume that $\left\|\omega_{n}\right\|(x),\|\omega\|(x) \leqq M_{1} /\|x\|^{3}$ outside B_{0}. From (4.2), (4.3) and (4.4), each component α_{n}, β_{n} or γ_{n} of $\omega_{n}(x)$ is of the same form as (3.10). Hence, (3) of Lemma 3.1 implies that $\left\{\left\|\omega_{n}\right\|(x)\right\}_{n \gtrsim n_{0}}$ is uniformly bounded in \boldsymbol{R}^{3}. It follows that $\lim _{n \rightarrow \infty}\left\|\omega_{n}-\omega\right\|_{\boldsymbol{R}^{3}}^{2}=0$, and hence $\lim _{n \rightarrow \infty}\left\|d F_{n}+d F\right\|_{\boldsymbol{R}^{3}}^{2}=0$. In particular, $\omega \in Z_{2}\left(\boldsymbol{R}^{3}\right)$ and $d F \in B_{1}\left(\boldsymbol{R}^{3}\right)$. Letting $n \rightarrow \infty$ in (4.6), we get (2) and (3) of Theorem 4.1.

Corollary 4.1. Let $J d S_{x}$ be a surface current density on Σ and, $B(x)$ the magnetic field induced by $J d S_{x}$. We use the same notations $\omega, \eta, \star \eta$ as in Proposition 2.2. Assume that $\star \eta$ on Σ is extended to a C^{∞} closed 1-form σ on \bar{D}. If we put $\tilde{\sigma}:=\sigma$ in D and $=0$ in D^{\prime}, then $* \omega$ is identıcal with the projection of $\tilde{\sigma} \in L_{1}^{2}\left(\boldsymbol{R}^{3}\right)$ to $* Z_{2}\left(\boldsymbol{R}^{3}\right)$ in the Weyl's orthogonal decomposition.

In fact, we put $\star \eta=g_{1} d x+g_{2} d y+g_{3} d z$ on Σ and $\sigma=a d x+b d y+c d z$ on \bar{D}, then $J d S_{x}=\left(g_{1}, g_{2}, g_{3}\right) \times \boldsymbol{n}_{x} d S_{x}=(a, b, c) \times \boldsymbol{n}_{x} d S_{x}$ for $x \in \Sigma$. Applying Theorem 4.1 to this σ, we have the corollary.

5. Equilibrium surface density on Σ

If a surface current density $J d S_{x}$ on Σ induces a magnetic field $B_{J}(x)$ in $D \cup D^{\prime}$ such that $B_{J}(x)$ vanishes identically in D^{\prime}, we said in [6] that $J d S_{x}$ is an equilibrium current density on Σ. In this case, (2) of Proposition 2.2 is reduced to $B_{J}^{+}(x)=\boldsymbol{n}_{x} \times J(x)$ and $\omega^{+}(x)=\star \eta(c)$ on Σ, which is called Fleming's law. In [7] we proved the following existence

Theorem 5.1. Let $\left\{\gamma_{j}\right\}_{j=1, \ldots, q}$ be a base of the 1-dimensional homology group of D. Then there exist q equilibrium current densities $\left\{J_{2} d S_{x}\right\}_{l=1, \ldots, q}$ on Σ such that $J_{i}\left[\gamma_{j}\right]=\delta_{i,}(1 \leqq \forall \jmath \leqq q)$.

We give another proof of this theorem by use of Theorem 4.1.
Proof. For each $\imath=1, \cdots, q$, we consider the 2-form $\omega_{i}=\alpha_{i} d y \wedge d z+\beta_{i} d z \wedge d x$ $+\gamma_{i} d x \wedge d x \in H_{20}(D)$ defined in Proposition 2.4. As a C^{∞} closed 1-form σ on \bar{D} in Theorem 4.1, we can take $\sigma=* \omega_{i}$ on \bar{D}. We denote by $J_{i} d S_{x}, B_{\imath}, \Omega_{\imath}$ and $F_{i}(x)$ things obtained through $* \widetilde{\omega}_{i}$ which correspond to $J d S_{x}, B, \omega$ and $F(x)$ obtained through $\tilde{\sigma}$ in Theorem 4.1. Therefore,

$$
* \widetilde{\mathscr{\omega}}_{i}=* \Omega_{i}+d F_{\imath} \quad \text { in } D \cup D^{\prime}, \quad J_{i} d S_{x}=\left(\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right) \times \boldsymbol{n}_{x}\right) d S_{x} \quad \text { on } \Sigma .
$$

Since $\left(\alpha_{\imath}, \beta_{\imath}, \gamma_{\imath}\right) \perp \boldsymbol{n}_{x}$ on Σ and $\operatorname{div}\left(\alpha_{2}, \beta_{\imath}, \gamma_{2}\right)=0$ in D, we have $F_{i}(x)=0$ in \boldsymbol{R}^{3}, so that $* \widetilde{\omega}_{i}=* \Omega_{\imath}$ in $D \cup D^{\prime}$, that is, $\Omega_{\imath}=\omega_{i}$ in D and $\Omega_{\imath}=0$ in D^{\prime}, which is equivalent to $B_{i}(x)=\left(\alpha_{\imath}, \beta_{\imath}, \gamma_{2}\right)$ in D and $=0$ in D^{\prime}. Hence $J_{i} d S_{x}$ is an equilibrium current density on Σ. By (3) of Proposition 2.2, we have $J_{i}\left[\gamma_{j}\right]=$ $\int_{r,} * \omega_{i}=\delta_{i j}$.

Let $u(x)$ be a harmonic function on \bar{D}. Applying Theorem 4.1 for $\sigma=d u$, we see that $J d S_{x}:=\left(\nabla u(x) \times \boldsymbol{n}_{x}\right) d S_{x}$ is a surface current density on Σ and that

$$
\begin{equation*}
\widetilde{d u}=* \omega+d\left(\frac{1}{4 \pi} \int_{\Sigma} \frac{\partial u / \partial n_{y}}{\|x-y\|} d S_{y}\right) \text { in } \boldsymbol{R}^{3}, \tag{5.1}
\end{equation*}
$$

where $\omega \in Z_{2}\left(\boldsymbol{R}^{3}\right)$ with the following property: If we set $\omega(x)=\alpha d y \wedge d z+$ $\beta d z \wedge d x+\gamma d x \wedge d y$ in $D \cup D^{\prime}$, then (α, β, γ) is the magnetic field induced by $J d S_{x}$. On the other hand, it is well known (cf. [2]) that, if we put

$$
\begin{equation*}
c=1,1 / 2,0 \text { on } D, \Sigma, D^{\prime} \text {, respectively, } \tag{5.2}
\end{equation*}
$$

then it holds

$$
\begin{align*}
c u(x) & =\frac{1}{4 \pi} \int_{\Sigma} \frac{\partial u / \partial n_{y}}{\|x-y\|} d S_{y}-\frac{1}{4 \pi} \int_{\Sigma} u(y) \frac{\partial}{\partial n_{y}} \frac{1}{\|x-y\|} d S_{y} \tag{5.3}\\
& \equiv p_{1}(x)-p_{2}(x)
\end{align*}
$$

for $x \in \boldsymbol{R}^{3}$. We thus obtain
Corollary 5.1. Under notations (5.1) and (5.3), we have

$$
\begin{align*}
& \omega(x)=* d\left(-\frac{1}{4 \pi} \int_{\Sigma} u(y) \frac{\partial}{\partial n_{y}} \frac{1}{\|x-y\|} d S_{y}\right) \text { in } D \cup D^{\prime} \tag{5.4}\\
& \|d u\|_{D}^{2}=\left\|d p_{1}\right\|_{R^{3}}^{2}+\left\|d p_{2}\right\|_{R^{3}}^{2} .
\end{align*}
$$

The former formula physically means that the gradient of the double layer potential with density $u(x) d S_{x}$ on Σ is equal to the magnetic field induced by the surface current density $\left(\boldsymbol{n}_{x} \times \nabla u(x)\right) d S_{x}$ on Σ. The latter says $d p_{1} \perp d p_{2}$ in \boldsymbol{R}^{3} (not in $D!$).

Corollary 5.2. Let $V(x)=(a, b, c)$ be a C^{ω} vector field on \bar{D} such that $\operatorname{div} V(x)=\operatorname{rot} V(x)=0$ in D. Then there exists a surface current density $J d S_{x}$ on Σ whose magnetic field restricted to D is equal to $V(x)$, if and only if $\int_{\Sigma_{\imath}} V(x) \cdot \boldsymbol{n}_{x} d S_{x}=0$ for each component $\Sigma_{\imath}(i=1, \cdots, m)$ of Σ.

Proof. Let $V(x)=(a, b, c)$ be given as above. We put $\omega=a d y \wedge d z+$ $b d z \wedge d x+c d x \wedge d y$ on \bar{D}, so that $* \omega \in H_{1}(\bar{D})$. First, assume that $\int_{\Sigma_{2}} V(x) \cdot \boldsymbol{n}_{x} d S_{x}$ $=0(i=1, \cdots, m)$. By Proposition 2.4 we find $\omega_{0}=\alpha d y \wedge d z+\beta d z \wedge d x+\gamma d x \wedge d y \in$ $H_{20}(D)$ such that $\int_{r_{j}} * \omega_{0}=\int_{r_{j}} * \omega(1 \leqq \forall j \leqq q)$. By the same reasoning as in the proof of Theorem 5.1, we see that $J_{0} d S_{x}:=\left((\alpha, \beta, \gamma) \times \boldsymbol{n}_{x}\right) d S_{x}$ is an equilibrium current density on Σ which induces the magnetic field (α, β, γ) in D and 0 in D^{\prime}. We can find a harmonic function $h(x)$ on \bar{D} such that $* \omega-* \omega_{0}=d h$. Since $\int_{\Sigma i} \frac{\partial h}{\partial n_{x}} d S_{x}=0(i=1, \cdots, m)$, it follows from Fredholm theory of integral equations that there exists a C^{ω} function ϕ on Σ such that

$$
h(x)=\frac{1}{4 \pi} \int_{\Sigma} \phi(y) \frac{\partial}{\partial n_{y}} \frac{1}{\|x-y\|} d S_{y} \quad \text { for } x \in D
$$

We here solve the Dirichlet problem on \bar{D} with boundary values $\phi(x)$ on Σ and denote by $u(x)$ its solution on \bar{D}. By (5.1), $J_{1} d S_{x}=\left(\boldsymbol{n}_{x} \times \nabla u(x)\right) d S_{x}$ is a surface current density on Σ which induces the magnetic field $\nabla h(x)$ in D. It follows that the surface current density $J d S_{x}:=J_{0} d S_{x}+J_{1} d S_{x}$ on Σ induces the magnetic field $B_{J}(x)$ whose restriction to D is identical with $V(x)$.

Next, assume that there exists $J d S_{x}$ on Σ which induces the magnetic field $B_{J}=(\alpha, \beta, \gamma)$ in $\boldsymbol{R}^{3} \backslash \Sigma$ such that $B_{J}=V$ in D. If we put $\omega_{J}=\alpha d y \wedge d z+\beta d z \wedge d x$
$+d x \wedge d y$ in $\boldsymbol{R}^{3} \backslash \Sigma$, then $\omega_{J} \in Z_{2}\left(\boldsymbol{R}^{3}\right)$ by Corollary 4.1. We draw a closed smooth surface Σ_{\imath}^{\prime} in D homologous to $\Sigma_{\imath}(i=1, \cdots, m)$. Since div $V=0$ on \bar{D}, it follows that

$$
\int_{\Sigma_{\imath}} V(x) \cdot \boldsymbol{n}_{x} d S_{x}=\int_{\Sigma_{\imath}^{\prime}} V(x) \cdot \boldsymbol{n}_{x} d S_{x}=\int_{\Sigma_{\imath}^{\prime}} \boldsymbol{\omega}_{J}=0 .
$$

6. Grunsky inequality

In this section we consider the kernel $\log 1 /|z-\zeta|$ in the complex plane C instead of $1 /\|x-y\|$ in \boldsymbol{R}^{3} in the previous section. Let D be a bounded domain in \boldsymbol{C} with a C^{∞} boundary smooth contour L. We recall the remarkable contrast between the properties of the single and double layer potentials as

Proposition 6.1. For $f_{1}, f_{2} \in C^{1}(L)$, we denote by v_{1} and v_{2} the single and double layer potentials with density $f_{1} d s_{z}$ and $f_{2} d s_{z}$ on L, respectively:

$$
\begin{array}{ll}
v_{1}(z)=\frac{1}{2 \pi} \int_{L} f_{1}(\zeta) \log \frac{1}{|z-\zeta|} d s_{\zeta} \quad \text { for } z \in \boldsymbol{C} \\
v_{2}(z)=\frac{1}{2 \pi_{L}} f_{2}(\zeta)-\frac{\partial}{\partial n_{\zeta}} \log \frac{1}{|z-\zeta|} d s_{\zeta} \quad \text { for } z \in \boldsymbol{C} \backslash L
\end{array}
$$

where $d s_{\zeta}$ is the arc length element of L at ζ. We conveniently put $D^{+}=D$, $D^{-}=\boldsymbol{C} \backslash \bar{D}, \partial D^{ \pm}=L^{ \pm}$(where $L^{+}=L$ and $\left.L^{-}=-L\right)$. If we write $v_{i}(z)=v_{i}^{ \pm}(z)(i=$ 1,2) for $z \in D^{ \pm}$, then we have
(1) Both $v_{\bar{i}}^{ \pm}(z), i=1,2$, are harmonic functions in $D^{ \pm}$and continuous up to $L^{ \pm}$, in such a way that, for $z^{ \pm} \in L^{ \pm}$over $z \in L$,

$$
\left\{\begin{array} { l }
{ v _ { 1 } ^ { + } (z ^ { + }) = v _ { 1 } ^ { - } (z ^ { - }) } \\
{ \frac { \partial v _ { 1 } ^ { + } } { \partial n _ { z } } (z ^ { + }) - \frac { \partial v _ { 1 } ^ { - } } { \partial n _ { z } } (z ^ { - }) = f _ { 1 } (z) }
\end{array} \left\{\begin{array}{l}
v_{2}^{+}\left(z^{+}\right)-v_{2}^{-}\left(z^{-}\right)=-f_{2}(z) \\
\frac{\partial v_{2}^{+}}{\partial n_{z}}\left(z^{+}\right)=\frac{\partial v_{2}^{-}}{\partial n_{z}}\left(z^{-}\right),
\end{array}\right.\right.
$$

where both n_{2} denote the same unit outer normal vector of L at z.
(2) $v_{1}(z)=O(\log 1 /|z|)$ and $v_{2}(z)=O(1 /|z|)$ at $z=\infty$. Moreover, three conditions $v_{1}(z)=O(1 /|z|)$ at $z=\infty, \int_{L} f_{1}(z) d s_{z}=0$, and $\int_{L} \frac{\partial v_{1}}{\partial n_{z}} d S_{z}=0$ are equivalent.

Let $u(z)$ be a harmonic function in D and of class C^{1} up to the boundary
L. By use of notation c of (5.2), it is well known (cf. [2]) that

$$
\begin{align*}
c u(z) & =\frac{1}{2 \pi} \int_{L} \frac{\partial u}{\partial n_{\zeta}} \log \frac{1}{|z-\zeta|} d s_{\zeta}-\frac{1}{2 \pi} \int_{L} u(\zeta) \frac{\partial}{\partial n_{\zeta}} \log \frac{1}{|z-\zeta|} d s_{\zeta} \tag{6.1}\\
& \equiv q_{1}(z)-q_{2}(z) .
\end{align*}
$$

for $z \in \boldsymbol{C}$. Formula (5.4) changes to the following one:

$$
\begin{equation*}
\|d u\|_{D}^{2}=\left\|d q_{1}\right\|_{C}^{2}+\left\|d q_{2}\right\|_{C}^{2} . \tag{6.2}
\end{equation*}
$$

Proof. Since $\int_{L} \partial u / \partial n_{z} d s_{z}=0$, (2) of Proposition 6.1 implies $\left\|d q_{i}\right\|_{C}^{2}<\infty$ for $i=1,2$. If we put $q_{i}(z)=q_{i}^{ \pm}(z)$ for $x \in D^{ \pm}$, then it also implies $\lim _{R \rightarrow \infty} \int_{|\zeta|=R} q_{1}^{-}(z)$. $\frac{\partial q_{2}^{-}}{\partial n_{\zeta}} d s_{\zeta}=0$. It follows from (1) of Proposition 6.1 that

$$
\begin{aligned}
\left(d q_{1}, d q_{2}\right)_{c} & =\left(d q_{1}, d q_{2}\right)_{D}+\left(d q_{1}, d q_{2}\right)_{D^{\prime}} \\
& =\int_{L} q_{1}^{+}(z) \frac{\partial q_{2}^{+}}{\partial n_{\zeta}}(z) d s_{\zeta}-\int_{L} q_{1}^{-}(z) \frac{\partial q_{2}^{-}}{\partial n_{\zeta}}(z) d s_{\zeta}=0 .
\end{aligned}
$$

This together with (6.1) proves (6.2).
Proposition 6.1 implies

$$
\begin{equation*}
\left\|d q_{1}\right\|_{C}^{2}=\frac{1}{2 \pi} \int_{L} \int_{L} \frac{\partial u}{\partial n_{z}} \frac{\partial u}{\partial n_{\zeta}} \log \frac{1}{|z-\zeta|} d s_{z} d s_{\zeta} \equiv I_{L}(u), \tag{6.3}
\end{equation*}
$$

which is called the energy of $\left(\partial u / \partial n_{z}\right) d s_{z}$ on L in the potential theory. Hence,

$$
\begin{equation*}
\|d u\|_{D}^{2}=I_{L}(u)+\left\|d q_{2}\right\|_{C}^{2} . \tag{6.4}
\end{equation*}
$$

We consider the case when D is the unit disk D_{0} of center the origin and L is the unit circle $L_{0}=\left\{e^{i \theta} \mid 0 \leqq \theta \leqq 2 \pi\right\}$. Let $u(z)$ be a harmonic function $u(z)$ in D_{0} and of class C^{1} up to L_{0}. Then we have

Lemma 6.1.

$$
I_{L_{0}}(u)=\frac{1}{2}\|d u\|_{D_{0}}^{2} .
$$

Proof. For any fixed $z \in L_{0}$, we have from Stokes' formula

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{L_{0}} \frac{\partial u}{\partial n_{\zeta}} \log \frac{1}{|z-\zeta|} d s_{\zeta} \\
= & \frac{1}{2 \pi}\left(\pi u(z)+\int_{L_{0}} u(\zeta) \frac{\partial}{\partial n_{\zeta}} \log \frac{1}{|z-\zeta|} d s_{\zeta}\right) \\
= & \frac{1}{2 \pi}\left(\pi u(z)-\int_{0}^{2 \pi} u(\zeta) \frac{d \theta}{2}\right)=\frac{1}{2}(u(z)-u(0)) .
\end{aligned}
$$

It follows that $I_{L_{0}}(u)=\frac{1}{2} \int_{L_{0}}(u(z)-u(0)) \frac{\partial u}{\partial n_{z}} d s_{z}=\frac{1}{2}\|d u\|_{D_{0}}^{2}$.
We similarly verify that (6.4) and Lemma 6.1 are true for the unbounded domain D and the exterior $E_{0}=\{|z|>1\}$ of D_{0} as follows: Let D be a unbounded domain with C^{∞} smooth boundary contours L. We determine the orientation of L by $\partial D=L$. Let $U(w)$ be a harmonic function on $D \cup\{\infty\}$ which is of class C^{1} up to L. Then we have

$$
\|d U\|_{D}^{2}=\frac{1}{2 \pi} \int_{L} \int_{L} \frac{\partial U}{\partial n_{w}} \frac{\partial U}{\partial n_{\xi}} \log \frac{1}{|w-\xi|} d s_{w} d s_{\xi}+\left\|d P_{2}\right\|_{C}^{2},
$$

where $P_{2}(w)$ is the double layer potential with density $U(w) d s_{w}$ on L. Let $V(z)$ be a harmonic function in $E_{0} \cup\{\infty\}$ which is of class C^{1} up to the unit circle L_{0} (where $\partial E_{0}=-L_{0}$), we have

$$
\frac{1}{2 \pi} \int_{L_{0}} \int_{L_{0}} \frac{\partial V}{\partial n_{z}} \frac{\partial V}{\partial n_{\zeta}} \log _{\frac{1}{|z-\zeta|} d s_{z} d s_{\zeta}=\frac{1}{2}\|d V\|_{E_{0}}^{2}}
$$

We write these two formulas into the following simple forms:

$$
\begin{equation*}
\|d U\|_{D}^{2}=I_{L}(U)+\left\|d P_{2}\right\|_{C}^{2}, \quad I_{L_{0}}(V)=\frac{1}{2}\|d V\|_{E_{0}}^{2} \tag{6.5}
\end{equation*}
$$

We shall show that these imply the following Grunsky inequality. We consider a univalent function $g(z)$ in E_{0} such that $g(z)=z+c_{0}+c_{1} / z+c_{2} / z^{2}+\cdots$ at $z=\infty$, and denote by G the set of all such univalent functions $g(z)$ in E_{0}.

Theorem 6.1 (see [4]). Let $g(z) \in \mathcal{G}$. If we set

$$
\log \frac{g(z)-g(\zeta)}{z-\zeta}=-\sum_{k, l=1}^{\infty} \frac{b_{k l}}{z^{k} z^{l}} \quad \text { for }(z, \zeta) \in E_{0} \times E_{0},
$$

then we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left|\lambda_{n}\right|^{2}}{n} \geqq \lim _{N \rightarrow \infty}\left|\sum_{k, l=1}^{N} b_{k} \lambda_{k} \lambda_{l}\right| \tag{6.6}
\end{equation*}
$$

for any complex numbers $\left\{\lambda_{n}\right\}_{n=1,2, \ldots}$. We call $\left\{b_{k, l}\right\}_{k, l}$ the Grunsky coefficients of $g(z)$.

Proof. It suffices to prove the case when $g(z)$ is univalent on \bar{E}_{0}. We put $D=g\left(E_{0}\right)$ and $L=g\left(-L_{0}\right)$ so that $\partial D=L$. For $N \geqq 1$ we consider the following functions:

$$
\begin{equation*}
V_{N}(z)=2 \Re\left\{\sum_{n=1}^{N} \frac{\bar{\lambda}_{n}}{n z^{n}}\right\} \quad \text { on } \bar{E}_{0}, \quad U_{N}(w)=V_{N}\left(g^{-1}(w)\right) \text { on } \bar{D} . \tag{6.7}
\end{equation*}
$$

Thus, $V_{N}(z)$ and $U_{N}(w)$ are harmonic functions on $\bar{E}_{0} \cup\{\infty\}$ and $\bar{D} \cup\{\infty\}$, respectively. Since $\left(\partial / \partial n_{z}\right) d s_{z}$ and the Dirichlet integral are invariant under the conformal mapping $w=g(z)$, we have

$$
\begin{aligned}
& \left\|d V_{N}\right\|_{E_{0}}^{2}=\left\|d U_{N}\right\|_{D}^{2} \\
& I_{L}\left(U_{N}\right)=\frac{1}{2 \pi} \int_{L_{0}} \int_{L_{0}} \frac{\partial V_{N}}{\partial n_{z}} \frac{\partial V_{N}}{\partial n_{\zeta}} \log \left|\frac{1}{g(z)-g(\zeta)}\right| d s_{z} d s_{\zeta} .
\end{aligned}
$$

We denote by $P_{N_{2}}(w)$ the double layer potential with density $U_{N}(w) d s_{w}$ on L. Applying equations (6.5) for $U=U_{N}, V=V_{N}$ and $P_{2}=P_{N_{2}}$, we have

$$
\begin{aligned}
\frac{1}{2}\left\|d V_{N}\right\|_{E_{0}}^{2} & =-\frac{1}{2}\left\|d V_{N}\right\|_{E_{0}}^{2}+\left\|d U_{N}\right\|_{D}^{2} \\
& =-I_{L_{0}}\left(V_{N}\right)+I_{L}\left(U_{N}\right)+\left\|d P_{N_{2}}\right\|_{C}^{2} \\
& =\frac{1}{2 \pi} \int_{L_{0}} \int_{L_{0}} \frac{\partial V_{N}}{\partial n_{z}} \frac{\partial V_{N}}{\partial n_{\zeta}} \log \left|\frac{z-\zeta}{g(z)-g(\zeta)}\right| d s_{z} d s_{\zeta}+\left\|d P_{N_{2}}\right\|_{C}^{2} \\
& =\frac{1}{2 \pi} \Re\left\{\int_{L_{0}} \int_{L_{0}} \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \frac{b_{k l}}{z^{k} \zeta^{l}} \frac{\partial V_{N}}{\partial n_{z}} \frac{\partial V_{N}}{\partial n_{\zeta}} d s_{z} d s_{\zeta}\right\}+\left\|d P_{N_{2}}\right\|_{C}^{2} .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \frac{\partial V_{N}}{\partial z}=-\sum_{n=1}^{N} \frac{\bar{\lambda}_{n}}{z^{n+1}}, \quad\left\|d V_{N}\right\|_{E_{0}}^{2}=4\left\|\frac{\partial V_{N}}{\partial z}\right\|_{E_{0}}^{2}, \\
& \frac{\partial V_{N}}{\partial n_{z}} d s_{z}=\frac{1}{i}\left(\frac{\partial V_{N}}{\partial z} d z-\frac{\partial V_{N}}{\partial \bar{z}} d \bar{z}\right),
\end{aligned}
$$

it follows that

$$
\begin{align*}
2 \pi \sum_{n=1}^{N} \frac{\left|\lambda_{n}\right|^{2}}{n} & =\frac{1}{2 \pi} \Re\left\{\left\{_{k, l=1}^{N} b_{k l}\left(\int_{L_{0}} \frac{\partial V_{N}}{\partial \bar{z}} \frac{d \bar{z}}{z^{k}}\right)\left(\int_{L_{0}} \frac{\partial V_{N}}{\partial \bar{\zeta}} \frac{d \bar{\zeta}}{\zeta^{l}}\right)\right\}+\left\|d P_{N_{2}}\right\|_{\boldsymbol{C}}^{2}\right. \tag{6.8}\\
& =2 \pi \Re\left\{\sum_{k, l=1}^{N} b_{k l} \lambda_{k} \lambda_{l}\right\}+\left\|d P_{N_{2}}\right\|_{C}^{2} \\
& \geqq 2 \pi \Re\left\{\sum_{k, l=1}^{N} b_{k l} \lambda_{k} \lambda_{l}\right\} .
\end{align*}
$$

Since $\left\{\lambda_{n}\right\}_{n}$ is arbitrary, we can replace $\}$ by $|\mid$ in the last inequality. By letting $n \rightarrow \infty$, we obtain Theorem 6.1.

In [4], when Grunsky inequality is reduced to equality is studied in the case that at most a finite number of $\{\lambda\}_{n}$ do not vanish. We shall give a necessary and sufficient condition for this problem under the conditions that
(i) $g(z) \in G$ is holomorphically extended $u p$ to L_{0} except for a finite point set $\left\{P_{i}\right\}$.
(ii) $\sum_{n=1}^{\infty}\left|\lambda_{n}\right|<\infty$.

We set $D=g\left(E_{0}\right), L=g\left(-L_{0}\right)$ and $K=\boldsymbol{C} \backslash D$. By (i), the set K is compact in \boldsymbol{C} and its boundary $\partial E=-L$ is a piecewise real analytic smooth curve with a finite number of edge points $\left\{Q_{i}\right\}=\left\{g\left(P_{2}\right)\right\}$. It may happen that the interior K° of K is empty : $K^{\circ}=\emptyset$. In this case, as a point set, L is a piecewise real analytic smooth $\operatorname{arc} \mathcal{L}$. We write

$$
\begin{equation*}
L=\mathcal{L}^{+}+\mathcal{L}^{-} \quad \text { and } \quad \mathcal{L}^{+}=-\mathcal{L}^{-} . \tag{6.9}
\end{equation*}
$$

Precisely, for $w \in \mathcal{L}$ (except for two end points), we find two points $w^{ \pm} \in \mathcal{L}^{+}$ over w. We denote by $\left\{b_{k l}\right\}_{k, l}$ the Grunsky coefficients of $g(z)$. By Grunsky inequality we have $1 / k+1 / l \geqq\left|b_{k l}\right|$ for all $k, l \geqq 1$. This together with (ii) imply $\sum_{k, l=1}^{\infty}\left|b_{k l} \lambda_{k} \lambda_{l}\right|<\infty$. We put $\Theta=1 / 2 \operatorname{Arg}\left\{\sum_{k, l=1}^{\infty} b_{k l} \lambda_{k} \lambda_{l}\right\}$ and consider the following functions:

$$
\begin{equation*}
V(z)=2 \Re\left\{\sum_{n=1}^{\infty} \frac{\bar{\lambda}_{n} e^{i \theta}}{n z^{n}}\right\} \quad \text { in } E_{0}, \quad U(w)=V\left(g^{-1}(w)\right) \text { in } D . \tag{6.10}
\end{equation*}
$$

By (ii), $V(z)$ is of class C^{1} up to L_{0} and $U(w)$ is continuous up to L and of class C^{1} up to L except for the edge points $\left\{Q_{i}\right\}$. Under these situations we shall prove

Corollary 6.1. Assume that $g(z) \in G$ and $\left\{\lambda_{n}\right\}_{n}$ satisfies conditions (i) and (ii). Then Grunsky inequality (6.6) for $g(z)$ and $\left\{\lambda_{n}\right\}_{n}$ is reduced equality, if and only if

$$
\begin{equation*}
K^{\circ}=\emptyset \quad \text { and } \quad U\left(w^{+}\right)=U\left(w^{-}\right) \quad \text { for } w \in \mathcal{L} . \tag{6.11}
\end{equation*}
$$

Proof. We denote by $P_{2}(w)$ the double layer potential with density $U(w) d s_{w}$ on L. In the proof of Theorem 6.1 we can use the function $V(z)$ of (6.10) instead of $V_{N}(z)$ of (6.7) to obtain the following formula corresponding to (6.8):

$$
2 \pi \sum_{n=1}^{\infty} \frac{\left|\lambda_{n}\right|^{2}}{n}=2 \pi\left|\sum_{k, l=1}^{\infty} b_{k l} \lambda_{k} \lambda_{l}\right|+\left\|d P_{2}\right\|_{\boldsymbol{C}}^{2} .
$$

It follows that equality holds in (6.6) if and only in $\left\|d P_{2}\right\|_{\boldsymbol{C}}^{2}=0$, or equivalently,

$$
\begin{equation*}
P_{2}(w)=\text { const. } a, 0 \text { on } K^{\circ}, D \text {, respectively. } \tag{6.12}
\end{equation*}
$$

Note that this formula is true even when $K^{\circ}=\emptyset$. It thus suffices for Corollary 6.1 to prove that (6.11) $\Leftrightarrow(6.12)$. We first assume (6.11). Since $U\left(w^{+}\right)=U\left(w^{-}\right)$ for $\forall w \in \mathcal{L}$, it follows from (6.9) that

$$
P_{2}(w)=\frac{1}{2 \pi} \int_{L} U(\xi)-\frac{\partial}{\partial n_{\xi}} \log \frac{1}{|w-\xi|} d s_{\xi}=0 \quad \text { for } \forall w \in D .
$$

Thus (\Rightarrow) is proved. For the converse we may assume some $\lambda_{n} \neq 0(n \geqq 1)$, so that $U(w)$ is non-constant in D by (6.10). If $K^{\circ} \neq \emptyset$, formula (6.12) and (1) of Proposition 6.1 imply $U(w)=a$ on $\partial K(=-L)$. Consequently, $U(w)$ is the constant a on D, which is a contradiction. We thus have $K^{\circ}=\emptyset$, and (6.9). Therefore,

$$
P_{2}(w)=\int_{\mathcal{L}^{+}} U\left(\xi^{+}\right) \frac{\partial}{\partial n_{\xi}} \log \frac{1}{|\xi-w|} d s_{\xi}+\int_{\mathcal{L}^{-}} U\left(\xi^{-}\right) \frac{\partial}{\partial n_{\xi}} \log \frac{1}{|\xi-w|} d s_{\xi}
$$

for $w \in \boldsymbol{C}$. Let $w_{0} \in \mathcal{L} \backslash\{$ two edge points $\}$. We find a small disk \mathbb{Q} in \boldsymbol{C} centered at w_{0}, and denote by $\mathbb{V}^{+}\left(w_{0}\right)$ and $\mathcal{V}^{-}\left(w_{0}\right)$ the left and right half sides of \mathcal{V} along \mathcal{L}^{+}, respectively. From (6.12) and (1) of Proposition 6.1, we have,

$$
U\left(w_{0}^{+}\right)-U\left(w_{0}^{-}\right)=\lim _{\substack{w \rightarrow w^{+} \\ w \in \mathcal{Q}^{+}\left(w_{0}\right)}} \frac{\partial P_{2}}{\partial n_{w_{0}}}(w)-\lim _{\substack{w \rightarrow w_{0}^{-} \\ w \in \mathcal{Q}^{-}\left(w_{0}\right)}} \frac{\partial P_{2}}{\partial n_{w_{0}}}(w)=0 .
$$

Thus (\Leftarrow) is proved.

Examples. By the above consideration we can construct many exemples $g(z) \in G$ and $\left\{\lambda_{n}\right\}_{n}$ for which equality holds in (6.6): First consider a piecewise C^{ω} smooth $\operatorname{arc} \mathcal{L}$ in the w-plane with a finite number of edge points $\left\{Q_{i}\right\}$. We put $D=\boldsymbol{C} \backslash \mathcal{L}$, so that $D \cup\{\infty\}$ is simply connected and $\partial D=\mathcal{L}^{+}+\mathcal{L}^{-}$such that there exist $w^{ \pm} \in \mathcal{L}^{ \pm}$for $w \in \mathcal{L}$ (except for two end points). We have a unique $g(z) \in G$ which transforms E_{0} onto D. So, $g(z)$ satisfy condition (i). Next let $\psi(w)$ be a C^{∞} real-valued function in a neighborhood of \mathcal{L} in the w-plane such that $\psi(w)$ is a constant c_{2} near each Q_{2}. We construct the harmonic function $U(w)$ in $D \cup\{\infty\}$ with boundary values $\psi(w)$ at $w^{ \pm} \in \mathcal{L}^{ \pm}$. We set $V(z)=U(g(z))$ in E_{0} and consider the Taylor series: $V(z)=2 \Re\left\{\sum_{n=0}^{\infty} a_{n} / z^{n}\right\}$ in E_{0}. If we set $\lambda_{n}=n \bar{a}_{n}(n=1,2, \cdots)$, then equality holds in (6.6) for these $g(z)$ and $\left\{\lambda_{n}\right\}_{n}$:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left|\lambda_{n}\right|^{2}}{n}=\left|\sum_{k, l=1}^{\infty} b_{k l} \lambda_{k} \lambda_{l}\right| \tag{6.13}
\end{equation*}
$$

In fact, it is clear that

$$
V(z)=2 \Re\left\{\sum_{n=1}^{\infty} \frac{\bar{\lambda}_{n}}{n z^{n}}\right\} \quad \text { in } E_{0}, \quad U(w)=V\left(g^{-}(w)\right) \quad \text { in } D
$$

Since $U(z)$ is of class C^{3} up to the boundary L_{0}, it follows that $+\infty>\left\|\partial^{3} U / \partial z^{3}\right\|_{E_{0}}^{2}$ $=\pi \sum_{n=1}^{\infty} n^{2}(n+1)^{2}(n+2)\left|a_{n}\right|^{2}$, so that $\sum_{n=1}^{\infty}\left|\lambda_{n}\right|<\infty$. Consequently, the same argument as (6.8) is available for this $V(z)$ instead of $V_{N}(z)$, and we obtain

$$
2 \pi \sum_{n=1}^{\infty} \frac{\left|\lambda_{n}\right|^{2}}{n}=2 \pi \Re\left\{\sum_{k, l=1}^{\infty} b_{k l} \lambda_{k} \lambda_{l}\right\}+\left\|d P_{2}\right\|_{\boldsymbol{C}}^{2}
$$

where $P_{2}(w)$ is the double layer potential with density $U(w) d s_{w}$ for $w \in \partial D$. Since $\partial D=\mathcal{L}^{+}+\mathcal{L}^{-}$and $U\left(w^{+}\right)=U\left(w^{-}\right)=\psi(w)$ for $w \in \mathcal{L}$, we have $P_{2}(w)=0$ in D, and $\left\|d P_{2}\right\|_{\boldsymbol{C}}^{2}=0$. This and Grunsky inequality imply (6.13).

References

[1] L.V. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions, Comment. Math. Helv., 24 (1950), 100-129.
[2] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. II, 3rd edition, Wiley, 1968.
[3] Y. Okabe and Y. Nakano, The theory of $\mathrm{KM}_{2} \mathrm{O}$-Langevin equations and its applications to data analysis (I) : Stationary analysis, Hokkaido Math. J., 20 (1991), 45-90.
[4] C. Pommerenke, Univalent Functions, Vandenhoeck-Ruprecht, 1975.
[5] R.M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Graduate Texts in Math., 108, Springer-Verlag, 1986.
[6] H. Yamaguchi, Equilibrium vector potentials in \boldsymbol{R}^{3}, Proc. Japan Acad., 68 (1992), 164-166.
[7] H. Yamaguchi, Equilibrium vector potentials in \boldsymbol{R}^{3} (in full length), to appear in Hokkaido Math. J.

Faculty of Education
Shiga University
Ohtsu, Shiga 520, Japan

