H. YAMAGUCHI KODAI MATH. J. 19 (1996), 117–136

ORTHOGONAL DECOMPOSITION RELATED TO MAGNETIC FIELD, AND GRUNSKY INEQUALITY

HIROSHI YAMAGUCHI

1. Introduction

Let D be a bounded domain in \mathbb{R}^3 with C^{ω} smooth boundary surfaces Σ . Let $\sigma = adx + bdy + cdz$ be a C^{∞} closed 1-form on \overline{D} $(=D \cup \Sigma)$. By putting $\tilde{\sigma} = \sigma$ in \overline{D} and =0 outside D, we consider the usual Weyl's orthogonal decomposition: $\tilde{\sigma} = *\omega + dF$ in \mathbb{R}^3 , where ω is a L^2 closed 2-form in \mathbb{R}^3 and $dF \in Cl[dC_0^{\infty}(\mathbb{R}^3)]$.

In §4 we shall show that ω is a harmonic 2-form in $\mathbb{R}^3 \setminus \Sigma$ of the form $\omega = dp$ and that p and F are written into the following integral formulas:

$$p(x) = \left(\frac{1}{4\pi} \int_{\Sigma} \frac{(a, b, c) \times \boldsymbol{n}_{y}}{\|x - y\|} dS_{y}\right) \cdot dx \qquad \text{for } x \in \boldsymbol{R}^{3},$$

$$F(x) = \frac{1}{4\pi} \int_{\Sigma} \frac{(a, b, c) \cdot \boldsymbol{n}_{y}}{\|x - y\|} dS_{y} - \frac{1}{4\pi} \int_{D} \frac{\operatorname{div}(a, b, c)}{\|x - y\|} dv_{y} \quad \text{for } x \in \boldsymbol{R}^{3},$$

where n_y is the unit outer normal vector of Σ at y, dx = (dx, dy, dz), and \cdot means the formal inner product.

In §2 we briefly recall the definition of surface current densities on Σ and their properties studied in [6]. In §3 we shall prove an approximation lemma concerning improper integrals. This lemma is not only useful to prove the above integral formulas but also to show the fact that ω is related to the magnetic field. Precisely, if we write $\omega = \alpha dy \wedge dz + \beta dz \wedge dx + \gamma dx \wedge dy$ and define $B = (\alpha, \beta, \gamma)$ in $\mathbb{R}^{\mathfrak{s}} \setminus \Sigma$, then B is a magnetic field induced by a surface current density JdS_x on Σ such that B is the strong limit of a sequence of usual magnetic fields $\{B_n\}_n$ in $\mathbb{R}^{\mathfrak{s}}: \lim_{n\to\infty} \int_{\mathbb{R}^{\mathfrak{s}}} ||B_n(x) - B(x)||^2 dv_x = 0$. In §5 we shall show that this fact implies the existence of equilibrium current densities $\mathcal{J}dS_x$ on Σ . The notion of equilibrium current densities were introduced in [6] motivated by the electric solenoid.

In §6 the integral formulas in \mathbb{R}^3 stated above is extended into those in the complex z-plane. We then obtain a new proof of Grunsky inequality (cf. [4]), which implies a necessary and sufficient condition for the case when the inequality is reduced to equality. It gives us many examples of such cases.

Received October 25, 1994; revised May 8, 1995.

The main result (Theorem 4.1) in this paper is motivated by the elementary part of Okabe's fluctuation and dissipation principle in [3]. The author thanks Professors Y. Okabe and Y. Nakano for their conversation. He also appreciates the referee for his kind comments.

2. Surface current density

We shall use the notation: $x = (x, y, z) = (x_1, x_2, x_3) \in \mathbb{R}^3$. Let $J = (f_1, f_2, f_3)$ be a C^{∞} vector field in \mathbb{R}^3 with compact support. If div $J(x) = \sum_{i=1}^3 \partial f_i / \partial x_i = 0$, then Jdv_x , where dv_x is a volume element of \mathbb{R}^3 , is called a volume current density in \mathbb{R}^3 . Let γ be a 1-cycle in \mathbb{R}^3 . By taking a 2-chain Q in \mathbb{R}^3 such that $\partial Q = \gamma$, we set $J[\gamma] = \int_Q J(x) \cdot n_x dS_x$, where n_x denotes the unit outer normal vector of Q at x. We call $J[\gamma]$ the total current of Jdv_x through $[\gamma]$. We consider the vector valued-integrals:

(2.1)
$$A(x) = \frac{1}{4\pi} \int_{\mathbf{R}^3} \frac{J(y)}{\|x - y\|} dv_y \quad \text{for } x \in \mathbf{R}^3$$

(2.2)
$$B(x) = \operatorname{rot} A(x) = \frac{1}{4\pi} \int_{\mathbf{R}^3} J(y) \times \frac{x - y}{\|x - y\|^3} dv_y \quad \text{for } x \in \mathbf{R}^3.$$

Following Biot-Savart we call A(x) the vector potential for Jdv_x , and B(x) the magnetic field induced by Jdv_x .

Let $D \Subset \mathbb{R}^3$ be a domain bounded by C^{ω} smooth surfaces Σ . We denote by dS_x the surface area element of Σ , and put $D' = \mathbb{R}^3 \setminus \overline{D}$. Let $J = (f_1, f_2, f_3)$ be a C^{∞} vector field on Σ . If there exists a sequence of volume current densities $\{J_n dv_x\}_n$ in \mathbb{R}^3 which converges to $J dS_x$ on Σ in the sense of distribution, then $J dS_x$ is called a surface current density on Σ . Precisely speaking, $\{\text{Supp } J_n\}_n$ is uniformly bounded and $\lim_{n\to\infty} \int_{\mathbb{R}^3} \psi J_n dv_x = \int_{\Sigma} \psi J dS_x$ for $\forall \psi \in C_0^{\infty}(\mathbb{R}^3)$. For a 1-cycle γ in $\mathbb{R}^3 \setminus \Sigma$, we set $J[\gamma] = \lim_{n\to\infty} J_n[\gamma]$, which is called the total current of $J dS_x$ through $[\gamma]$. We consider

$$A(x) = \frac{1}{4\pi} \int_{\Sigma} \frac{J(y)}{\|x - y\|} dS_y \quad \text{for } x \in \mathbb{R}^3$$
$$B(x) = \text{rot } A(x) = \frac{1}{4\pi} \int_{\Sigma} J(y) \times \frac{x - y}{\|x - y\|^3} dS_y \quad \text{for } x \in \mathbb{R}^3 \setminus \Sigma$$

We say that A(x) is the vector potential for JdS_x , and B(x) the magnetic field induced by JdS_x .

We summarize some results in [7] which we use in this note:

PROPOSITION 2.1. Let $J=(f_1, f_2, f_3)$ be a C^{∞} vector field on Σ and let $\eta=f_1dx+f_2dy+f_3dz$ on Σ . We put $\mathbf{n}_x \times J(x)=(g_1, g_2, g_3)$ for $x \in \Sigma$, and $\star \eta=g_1dx+g_2dy+g_3dz$ on Σ (which is called the conjugate 1-form of η on Σ). Then JdS_x is a surface current density on Σ , if and only if J is tangential on

 Σ and $\star \eta$ is a closed 1-form on Σ .

When we regard Σ as a Riemann surface with conformal structure induced by the euclidean metric of \mathbb{R}^3 , the above condition says that η is a co-closed differential on Σ , namely, $\star \eta$ is the conjugate differential of η on Σ such that $d\star \eta=0$ on Σ (which is inherited from condition div $J_n=0$ $(n=1, 2, \cdots)$ in \mathbb{R}^3 that $J_n dv_x$ is a volume current density in \mathbb{R}^3).

PROPOSITION 2.2. Let $JdS_x = (f_1, f_2, f_3)dS_x$ be a surface current density on Σ and, $B(x) = (\alpha, \beta, \gamma)$ the magnetic field in $\mathbb{R}^3 \setminus \Sigma$ induced by JdS_x . We put $\eta = f_1 dx + f_2 dy + f_3 dz$ on Σ and $\omega = \alpha dy \wedge dz + \beta dz \wedge dx + \gamma dx \wedge dy$ in $\mathbb{R}^3 \setminus \Sigma$. Then we have

- (1) $\boldsymbol{\omega}$ is a harmonic 2-form in $\mathbb{R}^3 \setminus \Sigma$ such that $\boldsymbol{\omega}(x) = O(1/||x||^2)$ at $x = \infty$.
- (2) We simply write D⁺=D and D⁻=D'. If we put B(x)=B[±](x) for x∈D[±], then B[±](x) are continuous up to Σ from D[±], respectively, and has the following gap: B⁺(x)-B⁻(x)=n_x×J(x) for x∈Σ. In other words, if we put ω(x)=ω[±](x) for x∈D[±], then ω[±](x) are continuous up to Σ from D[±], respectively, in such a way that *ω⁺(x)-*ω⁻(x)=*η(x) on Σ.
- (3) For a 1-cycle $\gamma \subset D \cup D'$, we have $J[\gamma] = \int_{\gamma} *\omega = \int_{\gamma'} *\eta$, where $\gamma' = Q \cap \Sigma$ and Q is a 2-chain in \mathbb{R}^3 such that $\partial Q = \gamma$.

Given $x \in \mathbb{R}^2$ sufficiently close to Σ , we find a unique point $\xi = \xi(x) \in \Sigma$ such that

(2.3)
$$x - \xi = R(x)\boldsymbol{n}_{\xi}$$
 where $R(x) \in \boldsymbol{R}$,

where n_{ξ} is the unit outer normal vector of Σ at ξ . Then R(x) becomes a C^{ω} function in a neighborhood U of Σ in \mathbb{R}^3 such that $n_x = \nabla R(x) = (\partial R/\partial x_1, \partial R/\partial x_2, \partial R/\partial x_3)$ on Σ and

(2.4)
$$U \cap D \text{ (resp. } \Sigma, \ U \cap D') = \{x \in U \mid R(x) < (\text{resp. } =, >)0\},\$$

For a given $\delta > 0$ we set $U(\delta) := \{x \in U \mid -\delta < R(x) < \delta\}$. We fix an integer n_0 such that $U(1/n_0) \Subset U$, and put $\Gamma_n := \{x \in U \mid -1/n \le R(x) \le -1/2n\}$ for $n \ge n_0$. We take a sequence of C^{∞} functions $\{\chi_n(R)\}_{n\ge 1}$ on $(-\infty, \infty)$ such that

(2.5)
$$0 \leq \chi_n(R) \leq 1 \qquad \chi_n(R) = \begin{cases} 1 & \text{on } (-\infty, -1/n] \\ 0 & \text{on } [-1/2n, +\infty), \\ 0 \leq |\chi'_n(R)| \leq nM, \quad |\chi''(R)| \leq n^2M, \end{cases}$$

where M>0 is a constant independent of $n (\geq 1)$ and $R \in (-\infty, \infty)$. For $n \geq n_0$, we can consider a function $\tilde{\chi}_n(x)$ in \mathbb{R}^3 defined by

(2.6)
$$\tilde{\chi}_n(x) = \begin{cases} 1 & \text{in } D \setminus U \\ \chi_n(R(x)) & \text{in } U \\ 0 & \text{in } D' \setminus U \end{cases}$$

Thus, $\tilde{\chi}_n(x) \in C_0^{\infty}(\mathbb{R}^3)$. The functions $\chi'_n(\mathbb{R}(x))$ and $\chi''_n(\mathbb{R}(x))$ are of class C^{∞} in U with support in Γ_n ($\subseteq U$), so we extend them to \mathbb{R}^3 by putting 0 in $\mathbb{R}^3 \setminus U$.

PROPOSITION 2.3. Let $f \in C_0^{\infty}(\mathbb{R}^3)$. Then we have

- (1) $\chi'_n(R(x))f(x)dv_x \rightarrow -f(x)dS_x$ on Σ in the sense of distribution.
- (2) $\{\chi_n''(R(x))f(x)dv_x\}_{n\geq n_0}$ is convergent on Σ in the sense of distribution, if and only if f(x)=0 on Σ . In this case, the limit is $(\partial f/\partial n_x)dS_x$ on Σ .

Assertion (2) followed from the fact that, for $\forall \psi \in C_0^{\infty}$,

(2.7)
$$\lim_{n \to \infty} \int_{\mathbf{R}^3} \mathcal{X}''_n(R(x)) \psi(x) dv_x = \int_{\Sigma} \left\{ \frac{\partial \psi}{\partial n_x} + \psi H \right\} dS_x ,$$

where H(x) denotes the mean curvature of Σ at x (cf. Lemma 1.1 in [7]).

Now let D be a domain in \mathbb{R}^3 (which may be \mathbb{R}^3 itself). For i=1, 2 we consider the space $L_i^2(D)$ of all L^2 *i*-forms in D and their subspace:

 $C^{\infty}_{i,0}(D)$ =the set of C^{∞} *i*-forms with compact support in D,

 $Z^{\infty}_{i}(\overline{D})$ =the set of all C^{∞} closed *i*-forms on \overline{D} ,

$$B_i(D) = \operatorname{Cl}[dC^{\infty}_{i-1,0}(D)], \quad Z_i(D) = \operatorname{Cl}[Z^{\infty}_i(\overline{D})],$$

 $H_i(D)$ =the set of all L^2 harmonic *i*-forms in D.

Then Weyl's orthogonal decomposition theorems hold:

$$L_{i}^{2}(D) = *Z_{3-i}(D) + B_{i}(D), \quad Z_{i}(D) = H_{i}(D) + B_{i}(D).$$

In case D is a bounded domain in \mathbb{R}^{3} with C^{ω} smooth boundary surfaces Σ , we define

 $H_{20}(D) = \{ \boldsymbol{\omega} \in H_2(D) | \boldsymbol{\omega} \text{ is of class } C^{\boldsymbol{\omega}} \text{ up to } \boldsymbol{\Sigma}, \text{ and } \boldsymbol{\omega} = 0 \text{ along } \boldsymbol{\Sigma} \},$

where $\omega=0$ along Σ means that the normal component of ω vanishes on Σ . As an analogue to Ahlfors' theorem in [1], we have

PROPOSITION 2.4. Let $\{\gamma_j\}_{j=1,\dots,q}$ be a 1-dimensional homology base of D. Then, for each i $(1 \le i \le q)$, there exists a unique $\omega_i \in H_{20}(D)$ such that $\int_{\gamma_j} *\omega_i = \delta_{ij}$ $(1 \le \forall j \le q)$.

3. Approximation lemma

We shall show the following approximation

LEMMA 3.1. Let $g(x) \in C^{\infty}(U)$ be given. For $n \ge n_0$, we consider the C^{∞} functions $I_{1,n}(x)$ and $I_{2,n}(x)$ in \mathbb{R}^3 defined by

$$I_{1,n}(x) = \int_{U} \frac{\chi'_{n}(R(y))g(y)}{\|y - x\|} dv_{y}, \quad I_{2,n}(x) = \int_{U} \frac{\chi''_{n}(R(y))g(y)}{\|y - x\|} dv_{y}.$$

We put

(3.1)
$$I_1(x) = -\int_{\Sigma} \frac{g(y)}{\|y - x\|} dS_y \qquad \text{for } x \in \mathbb{R}^3$$

(3.2)
$$I_2(x) = \int_{\Sigma} \left\{ \frac{\partial}{\partial n_y} \left(\frac{g(y)}{\|y - x\|} \right) + \frac{g(y)H(y)}{\|y - x\|} \right\} dS_y \quad for \ x \in \mathbb{R}^3 \backslash \Sigma.$$

Then we have

- (1) $\lim_{n \to \infty} I_{1,n}(x) = I_1(x)$ uniformly in \mathbb{R}^3 .
- (2) $\lim_{x\to\infty} I_{2,n}(x) = I_2(x)$ uniformly on any compact set in $\mathbb{R}^3 \setminus \Sigma$.
- (3) Both $\{I_{1,n}(x)\}_{n \ge n_0}$ and $\{I_{2,n}(x)\}_{n \ge n_0}$ are uniformly bounded in \mathbb{R}^3 .

Proof. It is clear that $I_1(x)$ and $I_2(x)$ are continuous in \mathbb{R}^3 and $\mathbb{R}^3 \setminus \Sigma$, respectively, and that $I_2(x)$ has the gap $4\pi g(x)$ for $x \in \Sigma$. (Thus the convergence of (2) is not uniform in U in general.) Since $\operatorname{Supp} \mathcal{X}'_n(\mathbb{R}(x)) \to \Sigma$ $(n \to \infty)$, we see from (1) of Proposition 2.3 that $\lim_{n \to \infty} I_{1,n}(x) = I(x)$ pointwise in $\mathbb{R}^3 \setminus \Sigma$. For each $n \ge n_0$, the function $I_{1,n}(x)$ is of class C^{∞} in \mathbb{R}^3 such that, for $x \in \mathbb{R}^3$ and i=1, 2, 3,

$$\frac{\partial I_{1,n}}{\partial x_{i}}(x) = \int_{U} \frac{\chi_{n}''(R(y)) \frac{\partial R}{\partial y_{i}}(y)g(y)}{\|y - x\|} dv_{y} + \int_{U} \frac{\chi_{n}'(R(y)) \frac{\partial g(y)}{\partial y_{i}}}{\|y - x\|} dv_{y}.$$

Therefore, if (3) is true, then the family $\{(\partial I_{1,n}/\partial x_i)(x)\}_{n\geq n_0}$ is uniformly bounded in \mathbb{R}^3 . Hence, the family $\{I_{1,n}(x)\}_{n\geq n_0}$ is bounded and equicontinuous on any compact set K in \mathbb{R}^3 . It follows from Ascoli-Arzelà's theorem that the sequence $\{I_{1,n}(x)\}_{n\geq n_0}$ uniformly converges to a function $g_1(x)$ on K. As K, we take a large closed ball \overline{B}_0 such that $B_0 \supset U$. Since $I_{1,n}(x)$ is harmonic in $\mathbb{R}^3 \setminus \Gamma_n$, it follows from the expression of $I_{1,n}(x)$ that there exists an $A_1 > 0$ such that $|I_{1,n}(x)| \leq A_1/||x||$ for $\forall n \geq n_0$ and $\forall x \in \mathbb{R}^3 \setminus B_0$. Hence, $\{I_{1,n}(x)\}_{n\geq n_0}$ uniformly converges to a function $g_1(x)$ in \mathbb{R}^3 . Since $I_1(x) = g_1(x)$ in $\mathbb{R}^3 \setminus \Sigma$ and since $I_1(x)$ and $g_1(x)$ are continuous in \mathbb{R}^3 , we have (1). Following the proof of (2.7), we obtain (2). It rests to prove (3) for k=1, 2. The proof for k=1is easy as follows : By simple calculation we find a constant c > 0 such that

$$\int_{\Gamma_n} \frac{1}{\|x-y\|} dv_y \leq \frac{c}{n} \quad \text{for } Ax \in \mathbf{R}^3 \text{ and } \forall n \geq n_0.$$

We put $M_1:=\sup\{|g(y)||y\in U(1/n_0)\}<+\infty$. Since $|\chi'_n(R)|\leq nM$ on $(-\infty, +\infty)$ by (2.5), it follows that $|I_{1,n}(x)|\leq cMM_1$ for $\forall x\in \mathbb{R}^3$ and $\forall n\geq n_0$. Thus, the case k=1 is proved. The proof for k=2 is rather delicate. The proof will be done by use of Morse's theorem concerning regular singular point as follows:

In this proof we take and fix $0 < \delta^* < 1/n_0$, so that $\Sigma \subset U(\delta^*) \Subset U(1/n_0)$. We simply put $I^* = (-\delta^*, +\delta^*)$. Each $I_{2,n}(x)$, $n \ge n_0$ is a C^{∞} function in \mathbb{R}^3 and harmonic in $\mathbb{R}^3 \setminus \Gamma_n$. By the expression of $I_{2,n}(x)$ and (2), we find a constant $A_2 > 0$ (independent of $n \ge n_0$) such that $|I_{2,n}(x)| \le A_2/||x||$ outside a ball $B_0 \supset \overline{D}$. It follows from (2) that $\{I_{2,n}(x)\}_{n\ge n_0}$ is uniformly bounded in $\mathbb{R}^3 \setminus U(\delta^*)$. Therefore, it suffices to prove the following

CLAIM. There exist an integer $n_1 (\geq n_0)$ and a constant C > 0 such that

$$|I_{2,n}(p+R^*\boldsymbol{n}_p)| \leq C \quad for \ \forall (p, R^*) \in \Sigma \times I^* \ and \ \forall n \geq n_1.$$

1st step. Let $p \in \Sigma$ be given arbitrarily. By a euclidean motion, we may assume that p is the origin O in the (x, y, z)-space and the unit outer normal vector \mathbf{n}_p is equal to (0, 0, 1). We identify p with O in this proof. The tangent plane of Σ at O is thus

 $\zeta = \phi(\xi, \eta) = a\xi^2 + 2b\xi\eta + c\eta^2 + \{\text{higher order terms of } \xi \text{ and } \eta\},\$

where the Taylor series $\{ \}$ uniformly converges in a disk $D_1 = \{\xi^2 + \eta^2 < \rho_1\}$ (for future use, we prefer notation (ξ, η, ζ) to (x, y, z)). We consider the following transformation $S: (\xi, \eta, R) \mapsto y = (x, y, z)$ from a neighborhood W_1 of the origin (0, 0, 0) in the (ξ, η, R) -space onto a neighborhood V_1 of the origin O in the (x, y, z)-space of the form

(3.3)
$$\mathcal{S}: y = (\xi, \eta, \phi(\xi, \eta)) + R\boldsymbol{n}_{\xi},$$

where n_{ξ} denotes the unit outer normal vector of Σ at $(\xi, \eta, \phi(\xi, \eta))$. So, R is equal to R(y) defined by (2.3). Then we have, for $y \in V_1$ and $R^* \in I^*$,

$$(3.4) l(y, R^*) := ||y - (p + R^* n_p)||^2 = ||(\xi, \eta, \phi(\xi, \eta)) + R n_{\xi} - (0, 0, R^*)||^2 = (\xi - K_{\xi, \eta} \phi_{\xi} R)^2 + (\eta - K_{\xi, \eta} \phi_{\eta} R)^2 + (\phi(\xi, \eta) + K_{\xi, \eta} R - R^*)^2,$$

where $K_{\xi,\eta} = 1/\sqrt{1+\phi_{\xi}^2+\phi_{\eta}^2}$. It follows that for any (ξ, η) sufficiently close to (0, 0), say $(\xi, \eta) \in D'_1 = \{\xi^2 + \eta^2 < \rho'_1\}$ where $0 < \rho'_1 < \rho_1$, we have

$$\begin{split} l(y, \ R^*) &= (R - R^*)^2 + (1 + AR)\xi^2 + 2BR\xi\eta + (1 + CR)\eta^2 \\ &+ \{ \text{higher order terms of } \xi \text{ and } \eta \}, \end{split}$$

where A, B, C are C^{ω} functions of ξ , η , R, R^{*}. We thus find an interval $I_1 := (-\delta_1, +\delta_1)$ such that

 $(1+AR)(1+CR) > |BR|^2 + 1/2 \quad \text{for } \forall (\xi, \eta) \in D'_1, \ \forall R \in I_1, \text{ and } \forall R^* \in I^*.$

First, regarding R and R^* as parameters, we apply Morse's theorem to obtain a C^2 transformation \mathcal{M}_{R,R^*} from a neighborhood $\mathcal{D}'_1(R, R^*)$ of (0, 0) in the (X, Y)-plane onto a neighborhood $D'_1(R, R^*)$ $(\subset D'_1)$ of (0, 0) in the (ξ, η) -plane such that

(3.5)
$$\mathcal{M}_{R,R^*}: (X, Y) \mapsto (\xi, \eta) = (f(X, Y, R, R^*), g(X, Y, R, R^*)) \\ l(y, R^*) = (R - R^*)^2 + X^2 + Y^2.$$

By the construction of \mathcal{M}_{R,R^*} under the form (3.4) of $l(y, R^*)$, the functions fand g may be chosen to be of class C^2 for $(R, R^*) \in I_1 \times I^*$. By smoothness we can take a common neighborhood $\mathcal{D}_2 \subset \mathcal{D}'_1(R, R^*)$ of (0, 0) in the (X, Y)-plane for $\forall (R, R^*) \in I_1 \times I^*$, so that

(3.6)
$$f(X, Y, R, R^*)$$
 and $g(X, Y, R, R^*)$ are of class C^2 in $\mathcal{D}_2 \times (I_1 \times I^*)$.

Next, regarding $R^* \in I^*$ as parameter, we put $\mathcal{M}: (X, Y, R) \mapsto (\xi, \eta, R) = (f, g, R)$, and consider the C^2 transformation $\mathcal{I}:=\mathcal{S} \circ \mathcal{M}$ from a product neighborhood $CV_2:=\mathcal{D}_2 \times I_1$ of the origin O in the (X, Y, R)-space onto a neighborhood V_2 $(\subset V_1)$ of the origin O in the (x, y, z)-space. We write

$$\begin{aligned} & \mathcal{I}: (X, Y, R) \in \mathcal{O}_2 \to y \\ = & (F(X, Y, R, R^*), G(X, Y, R, R^*), H(X, Y, R, R^*)) \in V_2. \end{aligned}$$

By differentiability of (3.6) we can find an L>1 such that

(3.7)

$$\frac{\partial F}{\partial X}, \frac{\partial F}{\partial Y}, \cdots, \frac{\partial^2 H}{\partial Y \partial R}, \frac{\partial^2 H}{\partial R^2} \leq L$$

$$\frac{1}{L} \leq J_{\mathcal{I}}(X, Y, R) = \frac{\partial(x, y, z)}{\partial(X, Y, R)} \leq L$$

for $\forall (X, Y, R) \in \mathbb{CV}_2$ and $\forall R^* \in I^*$. Note that \mathcal{T} depends on $(p, R^*) \in \Sigma \times I^*$, so do \mathbb{CV}_2 and L. Thus, it should better to write $\mathbb{CV}_2 = \mathbb{CV}_2(p, R^*)$ and $L = L(p, R^*)$. However, since the surface Σ is of \mathbb{C}^{ω} smooth, we see from the construction of the mapping \mathcal{T} that there exists a small common product neighborhood $\mathbb{CV}_0 \subset \mathbb{CV}_2(p, R^*)$ centered at (0, 0, 0) in the (X, Y, R)-space and a large common $L_0 > L(p, R^*) > 0$ such that (3.5) and (3.7) are satisfied for $\forall (X, Y, R) \in \mathbb{CV}_0$ and $\forall (p, R^*) \in \Sigma \times I^*$. We write

$$\mathcal{O}_0 = \mathcal{D}_0 \times I_0$$
 where $D_0 = \{X^2 + Y^2 < \rho_0\}$ and $I_0 = (-\delta_0, +\delta_0)$.

As an integer n_1 in the claim, we take an $n_1 (\geq n_0)$ such that $\Gamma_n \subset U(\delta_0)$ for $\forall n \geq n_1$. We put $O_{p,R^*} := \mathcal{I}(\mathcal{CV}_0)$, where \mathcal{I} is constructed above depending on $(p, R^*) \in \mathcal{I} \times I^*$. Thus, O_{p,R^*} is a neighborhood of (p, R^*) in the (x, y, z)-space. From (3.7), we find a small common disk $E_{\tau} := \{\xi^2 + \eta^2 < \tau^2\}$, where $\tau > 0$, in the (ξ, η) -plane such that

(3.8)
$$\mathcal{S}(E_{\tau} \times I_0) \subset \mathcal{O}_{p,R^*} \text{ for } \forall (p, R^*) \in \Sigma \times I^*,$$

where S is defined by (3.3) depending on (p, R^*) .

2nd step. Let $(p, R^*) \in \Sigma \times I^*$ and $n \ge n_1$ be given arbitrarily. We set

(3.9)
$$I_{2,n}(p+R^*\boldsymbol{n}_p) = \left\{ \int_{o_{p,R^*}} + \int_{U \setminus o_{p,R^*}} \right\} \frac{\chi_n''(R(y))g(y)}{\|y-(p+R^*\boldsymbol{n}_p)\|} dv_y$$
$$\equiv S_n(p,R^*) + T_n(p,R^*).$$

We first show the uniform boundedness of the second terms $\{T_n(p, R^*)\}_{n \ge n_1}$ in $\Sigma \times I^*$. For $R \in I_0$, we consider the level surface: $\Sigma(R) = \{y \in U \mid R(y) = R\}$ in the (x, y, z)-space, where R(y) is defined by (2.3). For $y \in \Sigma(R)$ and $R \in I_0$, we set $dv_y = j(y)dS_ydR$, where dS_y denotes the surface area element of $\Sigma(R)$ at y. Thus, j(y) becomes a C^{ω} function in $U(\delta_0)$ such that j(y)=1 on Σ . We put, for $\forall R \in I_0$,

$$F_{p,R*}(R) := \int_{\mathcal{L}(R) \setminus \mathcal{O}_{p,R*}} \frac{g(y)j(y)}{\|y - (p + R^* \boldsymbol{n}_p)\|} dS_y.$$

By (3.8) we have $||y-(p+R*n_p)|| > \tau$ for $\forall y \in \Sigma(R) \setminus O_{p,R*}$ and $\forall (p, R*) \in \Sigma \times I^*$. Hence, the integrand is a bounded C^{∞} function for $y \in \Sigma(R) \setminus O_{p,R*}$ such that its boundedness is uniform for $(R, p, R^*) \in I_0 \times \Sigma \times I^*$. Further, since $\Sigma(R) \setminus O_{p,R*}$ varies C^2 smoothly with respect to $(R, p, R^*) \in I_0 \times \Sigma \times I^*$, it follows that $F_{p,R*}(R)$ varies smoothly with these variables. We thus find an $M_2 > 0$ such that

$$\left|\frac{\partial F_{p,R*}(R)}{\partial R}\right| \leq M_2 \quad \text{for } \forall (R, p, R^*) \in I_0 \times \Sigma \times I^*.$$

Note that $\chi'_n(-1/n) = \chi'_n(-1/2n) = 0$ and $\operatorname{Supp} \chi''_n \subset [-1/n, -1/(2n)]$. By the integration by parts, we have

$$T_{n}(p, R^{*}) = \int_{-1/n}^{-1/2n} \chi_{n}''(R) F_{p,R^{*}}(R) dR = -\int_{-1/n}^{-1/2n} \chi_{n}'(R) \frac{\partial F_{p,R^{*}}(R)}{\partial R} dR.$$

Since $|\chi'_n(R)| \leq nM$ by (2.5), it follows that

$$|T_n(p, R^*)| \leq C_1 := MM_2/2$$
 for $\forall (p, R^*) \in \Sigma \times I^*$ and $\forall n \geq n_1$.

We next show the uniform boundedness of the first terms $\{S_n(p, R^*)\}_{n \ge n_1}$ in $\Sigma \times I^*$. By the change of variables from y = (x, y, z) to (X, Y, R) by \mathcal{I} (depending on (p, R^*)), we have

$$S_n(p, R^*) = \int_{\mathcal{D}_0 \times I_0} \frac{\chi_n'(R)\widetilde{g}(X, Y, R)}{\sqrt{(R-R^*)^2 + X^2 + Y^2}} J_{\mathfrak{T}}(X, Y, R) dX dY dR,$$

where $\tilde{g} = g \# \mathfrak{T}$. We use the polar coordinates $(X, Y) = (r \cos \theta, r \sin \theta)$ in \mathcal{D}_0 and put $\tilde{G}(r, \theta, R) := \tilde{g}(X, Y, R) J_{\mathfrak{T}}(X, Y, R)$. Note that \tilde{G} depends on $(p, R^*) \in \Sigma \times I^*$. By (3.7) we find an $L_1 > 0$ such that

ORTHOGONAL DECOMPOSITION

Modules of
$$\left\{ \widetilde{G}(r, \theta, R), \frac{\partial \widetilde{G}}{\partial r}, \cdots, \frac{\partial^2 \widetilde{G}}{\partial \theta \partial R}, \frac{\partial^2 \widetilde{G}}{\partial R^2} \right\} \leq L_1$$

for $\forall (r, \theta) \in [0, \rho_0] \times [0, 2\pi]$ and $\forall (R, p, R^*) \in I_0 \times \Sigma \times I^*$. Since $\chi'(-1/n) = \chi'(-1/2n) = 0$ and $\operatorname{Supp} \chi''_n(R) \subset [-1/n, -1/(2n)]$, we use the integration by parts for R to obtain

$$S_{n}(p, R^{*}) = \int_{0}^{2\pi} \int_{0}^{\rho_{0}} r \left\{ \int_{-1/n}^{-1/2n} \chi_{n}''(R) \frac{G(r, \theta, R)}{\sqrt{(R - R^{*})^{2} + r^{2}}} dR \right\} dr d\theta$$

= $\int_{0}^{2\pi} \int_{0}^{\rho_{0}} r \left\{ - \int_{-1/n}^{-1/2n} \chi_{n}'(R) \frac{\partial}{\partial R} \left(\frac{\widetilde{G}(r, \theta, R)}{\sqrt{(R - R^{*})^{2} + r^{2}}} \right) dR \right\} dr d\theta$.

We conveniently put $Z = Z(r, R, R^*) = 1/\sqrt{(R-R^*)^2 + r^2}$. It follows from $r(\partial Z/\partial R) = (R-R^*)\partial Z/\partial r$ that

$$S_{n}(p, R^{*}) = -\int_{0}^{2\pi} \int_{-1/n}^{-1/2n} \int_{0}^{\rho_{0}} \left\{ r \mathcal{X}_{n}'(R) \left(\frac{\partial Z}{\partial R} \tilde{G} + Z \frac{\partial \tilde{G}}{\partial R} \right) \right\} dr dR d\theta$$

$$= -\int_{0}^{2\pi} \int_{-1/n}^{-1/2n} \int_{0}^{\rho_{0}} \left\{ (R - R^{*}) \mathcal{X}_{n}'(R) \frac{\partial Z}{\partial r} \tilde{G} \right\} dr dR d\theta$$

$$- \int_{0}^{2\pi} \int_{-1/n}^{-1/2n} \int_{0}^{\rho_{0}} \left\{ r Z \mathcal{X}_{n}'(R) \frac{\partial \tilde{G}}{\partial R} \right\} dr dR d\theta$$

$$\equiv S_{n}^{(1)}(p, R^{*}) + S_{n}^{(2)}(p, R^{*}).$$

Since $|rZ| \leq 1$ and $|\chi'_n(R)| \leq nM$, we have $|S_n^{(2)}(p, R^*)| \leq 2\pi(1/2n)(nM)L_1\rho_0 = \pi M L_1\rho_0$ for $\forall (r, R^*) \in \Sigma \times I^*$ and $\forall n \geq n_1$. Using the integration by parts for r in $S_n^{(1)}(p, R^*)$, we have from $|(R-R^*)Z| \leq 1$ and $|\chi'_n(R)| \leq nM$,

$$|S_{n}^{(1)}(p, R^{*})| = \left| \int_{0}^{2\pi} \int_{-1/n}^{-1/2n} (R - R^{*}) \chi_{n}'(R) \left\{ \int_{0}^{\rho_{0}} \frac{\partial Z}{\partial r} \tilde{G} dr \right\} dR d\theta \right|$$

$$= \left| \int_{0}^{2\pi} \int_{-1/n}^{-1/2n} (R - R^{*}) \chi_{n}'(R) \left\{ [Z\tilde{G}]_{0}^{\rho_{0}} - \int_{0}^{\rho_{0}} Z \frac{\partial \tilde{G}}{\partial r} dr \right\} dR d\theta \right|$$

$$\leq 2\pi \frac{1}{2n} (nM) (2L_{1} + \rho_{0}L_{1}) = \pi M L_{1} (2 + \rho_{0})$$

for $\forall (r, R^*) \in \Sigma \times I^*$ and $\forall n \ge n_1$. Hence, $|S_n(p, R^*)| \le C_2 := \pi M L_1(3+\rho_0)$ in $\Sigma \times I^*$ for $\forall n \ge n_1$. It follows from (3.9) that $|I_{2,n}(p+R^*n_p)| \le C := C_1+C_2$ in $\Sigma \times I^*$ for $\forall n \ge n_1$. Our claim is thus proved.

COROLLARY 3.1. Let JdS_x be a surface current density on Σ and denote by A(x) and B(x) its vector potential in \mathbb{R}^3 and its magnetic field in $\mathbb{R}^3 \setminus \Sigma$. Then there exists a sequence of volume current densities $\{J_n dv_x\}_n$ with the following properties: If we denote by $A_n(x)$ and $B_n(x)$ the vector potential and the magnetic field for $J_n dv_x$ respectively, then it holds

(1) $\{A_n(x)\}_n$ converges A(x) uniformly in \mathbb{R}^3 .

(2) $\{B_n(x)\}_n$ converges B(x) uniformly on any compact set in $\mathbb{R}^3 \setminus \Sigma$.

- (3) $\{B_n(x)\}_n$ is uniformly bounded in \mathbb{R}^3 .
- (4) $\lim_{n\to\infty}\int_{\mathbf{R}^3} \|B_n(x) B(x)\|^2 dv_x = 0.$

Proof. In Corollary 1.1 in [7] we constructed a sequence of volume current densities $\{J_n dv_x\}_n$ converging the given JdS_x on Σ in the sense of distribution such that their $\{A(x)\}_n$ and $\{B(x)\}_n$ converge A(x) and B(x) uniformly on any compact set in $\mathbb{R}^3 \setminus \Sigma$. In that proof, $J_n dv_x = (f_{1n}, f_{2n}, f_{3n}) dv_x$ was of the form

$$f_{1n}(x) = \mathcal{X}'_n(R(x)) \Big(\tilde{g}_3(x) \frac{\partial R(x)}{\partial x_2} - \tilde{g}_2(x) \frac{\partial R(x)}{\partial x_3} \Big) \quad \text{etc.},$$

where $\tilde{g}_2(x)$ and $\tilde{g}_3(x)$ are C^{∞} functions in $U (\Box \Gamma_n)$ and are independent of n($\geq n_0$). We shall show this $\{J_n dv_x\}_n$ satisfies (1)~(4) of Corollary 3.1. In fact, (2) is already proved in [7]. Applying (1) of Lemma 3.1 to definition (2.1) of $A_n(x)$, we have (1). Since $B_n(x) = \operatorname{rot} A_n(x)$, we see that each component of $B_n(x)$ is of the form

(3.10)
$$\int_{\mathbf{R}^3} \frac{\chi'_n(R(y))h(y) + \chi''_n(\mathbf{R}(y))k(y)}{\|x - y\|} dv_y,$$

where h(y) and k(y) are functions of class C^{∞} in U and independent of $n (\geq n_0)$. Hence, (3) of Lemma 3.1 implies (3). From (2) and definition (2.2) of $B_n(x)$ we can find an $M_1 > 0$ such that $||B_n(x)|| \leq M_1/||x||^2$ outside a ball $B_0 \supset \overline{D}$ for $\forall n \geq n_0$. This together with (3) implies (4).

4. Main theorem

Given a C^{∞} 1-form $\sigma = \sum_{i=1}^{3} f_i dx_i$ in a domain $U \subset \mathbb{R}^3$, we put $\|\sigma\|(x) = (\sum_{i=1}^{3} f_i(x)^2)^{1/2} \ge 0$, $\Delta \sigma = \sum_{i=1}^{3} (\Delta f_i) dx_i$, and $\delta = *d*$, where Δ is Laplacian and the operator * is determined by $\sigma \wedge *\sigma = \|\sigma\|^2(x) dv_x$ in U. When $\sigma \in C^{\infty}_{1,0}(\mathbb{R}^3)$, we put

$$\mathfrak{N}\sigma(x) \text{ or } \frac{1}{4\pi} \int_{\mathbf{R}^3} \frac{\sigma(y)}{\|x-y\|} dv_y := \frac{1}{4\pi} \sum_{i=1}^3 \left(\int_{\mathbf{R}^3} \frac{f_i(y)}{\|x-y\|} dv_y \right) dx_i.$$

This as well as $\Delta \sigma$ is a 1-form. We analogously define the corresponding ones for C^{∞} *i*-form σ_i (*i*=0, 1, 2, 3). By the symmetry of the Newton kernel 1/||x-y|| with respect to x and y in \mathbf{R}^3 , we easily obtain, for $\sigma_i \in C_{i,0}^{\infty}(\mathbf{R}^3)$,

$$d\mathcal{M}\sigma_{i} = \mathcal{M}d\sigma_{i}, \quad *\mathcal{M}\sigma_{i} = \mathcal{M}*\sigma_{i}, \quad \delta\mathcal{M}\sigma_{i} = \mathcal{M}\delta\sigma_{i}.$$

Further we have (see, for example, [5])

 $\Delta \sigma_{\imath} \!=\! (-1)^{\imath} (\delta d \!-\! d\delta) \sigma_{\imath} \quad \text{and} \quad \Delta \mathcal{N} \sigma_{\imath} \!=\! -\sigma_{\imath} \text{ (Poisson's equation).}$

We use the following Maxwell's theorem in the time independent case (see [7]):

127

PROPOSITION 4.1. Let $\eta \in *Z_{20}^{\infty}(\mathbb{R}^3)$ $(=*[Z_2(\mathbb{R}^3) \cap C_{2,0}^{\infty}(\mathbb{R}^3)])$. If we put $p(x) = \mathfrak{N}\eta(x)$ and $\omega(x) = dp(x)$ in \mathbb{R}^3 , then $\delta \omega = \eta$ holds in \mathbb{R}^3 .

We shall show the following main theorem which gives a new interpretation of Weyl's orthogonal decomposition theorem related to magnetic fields induced by surface current densities on Σ :

THEOREM 4.1. Let $\sigma = adx + bdy + cdz$ be a C^{∞} closed 1-form on \overline{D} . We put $\mathbf{a}(x) = (a, b, c)$ for $x \in \overline{D}$. Then we have

- (1) $JdS_x := a(x) \times n_x dS_x$ is a surface current density on Σ . We denote by $B(x) = (\alpha, \beta, \gamma)$ in $D \cup D'$ the magnetic field induced by JdS_x , and put $\omega = \alpha dy \wedge dz + \beta dz \wedge dx + \gamma dx \wedge dy$ in $D \cup D'$.
- (2) If we put $\tilde{\sigma} = \sigma$ in D and = 0 in D', then it holds

$$\tilde{\sigma} = *\boldsymbol{\omega} + dF \quad in \ D \cup D',$$

where

$$F(x) = \frac{1}{4\pi} \int_{\Sigma} \frac{\boldsymbol{a}(y) \cdot \boldsymbol{n}_{y}}{\|x - y\|} dS_{y} - \frac{1}{4\pi} \int_{D} \frac{\operatorname{div} \boldsymbol{a}(y)}{\|x - y\|} dv_{y} \quad for \ x \in \mathbf{R}^{3}.$$

(3) Formula (4.1) is the Weyl's orthogonal decomposition of $\tilde{\sigma}$ in $\Gamma_1^2(\mathbb{R}^3)$, that is, $\omega \in \mathbb{Z}_2(\mathbb{R}^3)$ and $dF \in B_1(\mathbb{R}^3)$. In our case, $F \in C(\mathbb{R}^3) \cap C^{\infty}(\mathbb{R}^3 \setminus \Sigma)$ and $\omega \in H_2(\mathbb{R}^3 \setminus \Sigma)$ such that $F(x) = O(1/||x||^2)$ and $\omega(x) = O(1/||x||^3)$ at $x = \infty$.

Proof. Although (1) is clear from Proposition 2.1, we verify it again for the proof of (2) and (3). Using the function $\tilde{\chi}_n(x)$ in \mathbb{R}^3 defined by (2.6) for $n \ge n_0$, we consider $\tilde{\chi}_n \sigma \in C_{1,0}^{\infty}(\mathbb{R}^3)$ with support in D. If we put

(4.2)
$$\eta_n(x) = *d(\tilde{\chi}_n \sigma) = f_{1n} dx + f_{2n} dy + f_{3n} dz \quad \text{in } \mathbf{R}^3$$
$$J_n dv_x = (f_{1n}, f_{2n}, f_{3n}) dv_x \qquad \text{in } \mathbf{R}^3,$$

then $J_n dv_x$ is a volume current density in \mathbf{R}^3 . Since σ is closed on \overline{D} , we get

(4.3)
$$f_{1n}(x) = \chi'_n(R(x)) \left\{ \frac{\partial R}{\partial y} c - \frac{\partial R}{\partial z} b \right\} \quad \text{etc}$$

It follows from (1) of Proposition 2.3 and $\nabla R(x) = \mathbf{n}_x$ on Σ that $J_n dv_x \rightarrow J dS_x$ $(n \rightarrow \infty)$ on Σ in the sense of distribution. Thus (1) is proved. Denoting by $B_n = (\alpha_n, \beta_n, \gamma_n)$ the magnetic field in \mathbf{R}^3 induced by $J_n dv_x$, we have $B_n(x) \rightarrow B(x)$ $(n \rightarrow \infty)$ pointwise in $D \cup D'$. We put $\boldsymbol{\omega}_n(x) = \alpha_n dy \wedge dz + \beta_n dz \wedge dx + \gamma_n dx \wedge dy$ in \mathbf{R}^3 , so that

(4.4)
$$\boldsymbol{\omega}_n(x) = d \Big(\frac{1}{4\pi} \int_{\boldsymbol{R}^3} \frac{\boldsymbol{\eta}_n(y)}{\|x - y\|} dv_y \Big) \quad \text{for } x \in \boldsymbol{R}^3,$$

and $\boldsymbol{\omega}_n(x) \rightarrow \boldsymbol{\omega}(x) \ (n \rightarrow \infty)$ pointwise.

We here note that $\delta(*\tilde{\chi}_n\sigma) = \eta_n$ in \mathbb{R}^3 . By Proposition 4.1, we have $\delta\omega_n = \eta_n$ in \mathbb{R}^3 . Since $d\omega_n = 0$ in \mathbb{R}^3 , we have the orthogonal decomposition: $*\tilde{\chi}_n\sigma = \omega_n + (*\tilde{\chi}_n\sigma - \omega_n)$ in \mathbb{R}^3 . Since $\Delta = \delta d - d\delta$ for 2-forms, it follows from (4.2) and Poisson's equation that, for any fixed $x \in \mathbb{R}^3$,

(4.5)
$$\omega_n(x) = d\delta \Big(\frac{1}{4\pi} \int_{\mathbf{R}^3} \frac{*\tilde{\chi}_n \sigma}{\|x - y\|} dv_y \Big)$$
$$= (-\Delta + \delta d) \Big(\frac{1}{4\pi} \int_{\mathbf{R}^3} \frac{*\tilde{\chi}_n \sigma}{\|x - y\|} dv_y \Big)$$
$$= *\tilde{\chi}_n \sigma(x) + *dF_n(x)$$

where

$$F_{n}(x) = \frac{1}{4\pi} \int_{\mathbf{R}^{3}} \frac{*d(*\tilde{\chi}_{n}\sigma)}{\|x-y\|} dv_{y}$$
$$= \frac{1}{4\pi} \int_{D} \frac{\chi_{n}'(R(y))\nabla R(y) \cdot \boldsymbol{a}(y) + \tilde{\chi}_{n}(y) \operatorname{div} \boldsymbol{a}(y)}{\|x-y\|} dv_{y}$$

Consequently,

(4.6)
$$\tilde{\chi}_n \sigma = * \omega_n(x) \dot{+} d(-F_n) \quad \text{in } \mathbf{R}^3.$$

By its expression, $F_n(x)$ is of class C^{∞} in \mathbb{R}^3 and harmonic in $\mathbb{R}^3 \setminus \overline{D}$. Moreover, since $\tilde{\chi}_n(x) = 0$ on Σ , we have

$$\begin{split} \lim_{x \to \infty} \frac{F_n(x)}{\|x\|} &= \frac{1}{4\pi} \int_D \{ \boldsymbol{\chi}'_n(R(y)) \nabla R(y) \cdot \boldsymbol{a}(y) + \tilde{\boldsymbol{\chi}}_n(y) \operatorname{div} \boldsymbol{a}(y) \} \, d\boldsymbol{v}_y \\ &= \frac{1}{4\pi} \int_D d [\tilde{\boldsymbol{\chi}}_n(y) * \boldsymbol{\sigma}] = \frac{1}{4\pi} \int_{\partial D} \tilde{\boldsymbol{\chi}}_n(y) * \boldsymbol{\sigma} = 0 \,, \end{split}$$

so that $F_n(x)=O(1/||x||^2)$ at $x=\infty$. Since $\boldsymbol{\omega}_n \in Z_2^{\infty}(\mathbf{R}^3)$ and $dF_n \in B_1(\mathbf{R}^3)$, formula (4.6) for each $n \ge n_0$ is the Weyl's orthogonal decomposition of $\tilde{\chi}_n \sigma$ in $\Gamma_1^2(\mathbf{R}^3)$. By (1) of Lemma 3.1, $F_n(x) \to -F(x)$ $(n \to \infty)$ uniformly in \mathbf{R}^3 . Therefore, there exists an $M_1>0$ (independent of $n\ge n_0$) such that $|F_n(x)|$, $|F(x)|\le M_1/||x||^2$ outside a ball $B_0\supset \bar{D}$. By (4.6) we may assume that $||\boldsymbol{\omega}_n||(x)$, $||\boldsymbol{\omega}||(x)\le M_1/||x||^2$ outside B_0 . From (4.2), (4.3) and (4.4), each component α_n , β_n or γ_n of $\boldsymbol{\omega}_n(x)$ is of the same form as (3.10). Hence, (3) of Lemma 3.1 implies that $\{||\boldsymbol{\omega}_n||(x)\}_{n\ge n_0}$ is uniformly bounded in \mathbf{R}^3 . It follows that $\lim_{n\to\infty} ||\boldsymbol{\omega}_n-\boldsymbol{\omega}||_{\mathbf{R}^3}^2=0$, and hence $\lim_{n\to\infty} ||dF_n+dF||_{\mathbf{R}^3}^2=0$. In particular, $\boldsymbol{\omega}\in Z_2(\mathbf{R}^3)$ and $dF\in B_1(\mathbf{R}^3)$. Letting $n\to\infty$ in (4.6), we get (2) and (3) of Theorem 4.1.

COROLLARY 4.1. Let JdS_x be a surface current density on Σ and, B(x) the magnetic field induced by JdS_x . We use the same notations ω , η , $\star \eta$ as in Proposition 2.2. Assume that $\star \eta$ on Σ is extended to a C^{∞} closed 1-form σ on \overline{D} . If we put $\tilde{\sigma} := \sigma$ in D and = 0 in D', then $\star \omega$ is identical with the projection of $\tilde{\sigma} \in L^2_1(\mathbf{R}^3)$ to $\star Z_2(\mathbf{R}^3)$ in the Weyl's orthogonal decomposition.

In fact, we put $\star \eta = g_1 dx + g_2 dy + g_3 dz$ on Σ and $\sigma = a dx + b dy + c dz$ on \overline{D} , then $J dS_x = (g_1, g_2, g_3) \times \mathbf{n}_x dS_x = (a, b, c) \times \mathbf{n}_x dS_x$ for $x \in \Sigma$. Applying Theorem 4.1 to this σ , we have the corollary.

5. Equilibrium surface density on Σ

If a surface current density JdS_x on Σ induces a magnetic field $B_J(x)$ in $D \cup D'$ such that $B_J(x)$ vanishes identically in D', we said in [6] that JdS_x is an equilibrium current density on Σ . In this case, (2) of Proposition 2.2 is reduced to $B_J^+(x) = \mathbf{n}_x \times J(x)$ and $\boldsymbol{\omega}^+(x) = \star \eta(c)$ on Σ , which is called Fleming's law. In [7] we proved the following existence

THEOREM 5.1. Let $\{\gamma_j\}_{j=1,\dots,q}$ be a base of the 1-dimensional homology group of D. Then there exist q equilibrium current densities $\{J_i dS_x\}_{i=1,\dots,q}$ on Σ such that $J_i[\gamma_j] = \delta_{ij}$ $(1 \leq \forall_j \leq q)$.

We give another proof of this theorem by use of Theorem 4.1.

Proof. For each $i=1, \dots, q$, we consider the 2-form $\omega_i = \alpha_i dy \wedge dz + \beta_i dz \wedge dx + \gamma_i dx \wedge dx \in H_{20}(D)$ defined in Proposition 2.4. As a C^{∞} closed 1-form σ on \overline{D} in Theorem 4.1, we can take $\sigma = *\omega_i$ on \overline{D} . We denote by $J_i dS_x$, B_i , Ω_i and $F_i(x)$ things obtained through $*\widetilde{\omega}_i$ which correspond to JdS_x , B, ω and F(x) obtained through $\tilde{\sigma}$ in Theorem 4.1. Therefore,

$$*\widetilde{\omega}_i = *\Omega_i + dF_i \quad \text{in } D \cup D', \qquad J_i dS_x = ((\alpha_i, \beta_i, \gamma_i) \times \boldsymbol{n}_x) dS_x \quad \text{on } \Sigma.$$

Since $(\alpha_i, \beta_i, \gamma_i) \perp \mathbf{n}_x$ on Σ and div $(\alpha_i, \beta_i, \gamma_i) = 0$ in D, we have $F_i(x) = 0$ in \mathbb{R}^3 , so that $*\widetilde{\omega}_i = *\Omega_i$ in $D \cup D'$, that is, $\Omega_i = \omega_i$ in D and $\Omega_i = 0$ in D', which is equivalent to $B_i(x) = (\alpha_i, \beta_i, \gamma_i)$ in D and = 0 in D'. Hence $J_i dS_x$ is an equilibrium current density on Σ . By (3) of Proposition 2.2, we have $J_i[\gamma_j] = \int_{\gamma_j} *\omega_i = \delta_{ij}$.

Let u(x) be a harmonic function on \overline{D} . Applying Theorem 4.1 for $\sigma = du$, we see that $JdS_x := (\nabla u(x) \times \mathbf{n}_x) dS_x$ is a surface current density on Σ and that

(5.1)
$$\widetilde{du} = *\omega + d\left(\frac{1}{4\pi}\int_{\Sigma} \frac{\partial u/\partial n_y}{\|x-y\|} dS_y\right) \text{ in } \mathbf{R}^3,$$

where $\omega \in Z_2(\mathbb{R}^3)$ with the following property: If we set $\omega(x) = \alpha dy \wedge dz + \beta dz \wedge dx + \gamma dx \wedge dy$ in $D \cup D'$, then (α, β, γ) is the magnetic field induced by JdS_x . On the other hand, it is well known (cf. [2]) that, if we put

(5.2)
$$c=1, 1/2, 0$$
 on D, Σ, D' , respectively

then it holds

(5.3)
$$cu(x) = \frac{1}{4\pi} \int_{\mathcal{S}} \frac{\partial u/\partial n_y}{\|x-y\|} dS_y - \frac{1}{4\pi} \int_{\mathcal{S}} u(y) \frac{\partial}{\partial n_y} \frac{1}{\|x-y\|} dS_y$$
$$\equiv p_1(x) - p_2(x)$$

for $x \in \mathbf{R}^3$. We thus obtain

COROLLARY 5.1. Under notations (5.1) and (5.3), we have

(5.4)
$$\boldsymbol{\omega}(x) = *d\left(-\frac{1}{4\pi}\int_{\Sigma}u(y)\frac{\partial}{\partial n_{y}}\frac{1}{\|x-y\|}dS_{y}\right) \quad in \ D \cup D'$$
$$\|du\|_{D}^{2} = \|dp_{1}\|_{\mathbf{R}^{3}}^{2} + \|dp_{2}\|_{\mathbf{R}^{3}}^{2}.$$

The former formula physically means that the gradient of the double layer potential with density $u(x)dS_x$ on Σ is equal to the magnetic field induced by the surface current density $(\mathbf{n}_x \times \nabla u(x))dS_x$ on Σ . The latter says $dp_1 \perp dp_2$ in \mathbf{R}^3 (not in D!).

COROLLARY 5.2. Let V(x)=(a, b, c) be a C^{ω} vector field on \overline{D} such that div $V(x)=\operatorname{rot} V(x)=0$ in D. Then there exists a surface current density JdS_x on Σ whose magnetic field restricted to D is equal to V(x), if and only if $\int_{\Sigma_1} V(x) \cdot \mathbf{n}_x dS_x = 0$ for each component Σ_1 $(i=1, \dots, m)$ of Σ .

Proof. Let V(x)=(a, b, c) be given as above. We put $\boldsymbol{\omega}=ady \wedge dz+bdz \wedge dx+cdx \wedge dy$ on \overline{D} , so that $\ast \boldsymbol{\omega} \in H_1(\overline{D})$. First, assume that $\int_{\Sigma_t} V(x) \cdot \boldsymbol{n}_x dS_x = 0$ $(i=1, \dots, m)$. By Proposition 2.4 we find $\boldsymbol{\omega}_0 = \alpha dy \wedge dz + \beta dz \wedge dx + \gamma dx \wedge dy \in H_{20}(D)$ such that $\int_{\gamma_j} \ast \boldsymbol{\omega}_0 = \int_{\gamma_j} \ast \boldsymbol{\omega} (1 \leq \forall j \leq q)$. By the same reasoning as in the proof of Theorem 5.1, we see that $J_0 dS_x := ((\alpha, \beta, \gamma) \times \boldsymbol{n}_x) dS_x$ is an equilibrium current density on Σ which induces the magnetic field (α, β, γ) in D and 0 in D'. We can find a harmonic function h(x) on \overline{D} such that $\ast \boldsymbol{\omega} - \ast \boldsymbol{\omega}_0 = dh$. Since $\int_{\Sigma_i} \frac{\partial h}{\partial n_x} dS_x = 0$ $(i=1, \dots, m)$, it follows from Fredholm theory of integral equations that there exists a C^{ω} function ϕ on Σ such that

$$h(x) = \frac{1}{4\pi} \int_{\Sigma} \phi(y) \frac{\partial}{\partial n_y} \frac{1}{\|x - y\|} dS_y \quad \text{for } x \in D.$$

We here solve the Dirichlet problem on \overline{D} with boundary values $\phi(x)$ on Σ and denote by u(x) its solution on \overline{D} . By (5.1), $J_1 dS_x = (\mathbf{n}_x \times \nabla u(x)) dS_x$ is a surface current density on Σ which induces the magnetic field $\nabla h(x)$ in D. It follows that the surface current density $JdS_x := J_0 dS_x + J_1 dS_x$ on Σ induces the magnetic field $B_J(x)$ whose restriction to D is identical with V(x).

Next, assume that there exists JdS_x on Σ which induces the magnetic field $B_J = (\alpha, \beta, \gamma)$ in $\mathbb{R}^3 \setminus \Sigma$ such that $B_J = V$ in D. If we put $\omega_J = \alpha dy \wedge dz + \beta dz \wedge dx$

 $+dx \wedge dy$ in $\mathbb{R}^{3} \setminus \Sigma$, then $\omega_{J} \in \mathbb{Z}_{2}(\mathbb{R}^{3})$ by Corollary 4.1. We draw a closed smooth surface Σ'_{i} in D homologous to Σ_{i} $(i=1, \dots, m)$. Since div V=0 on \overline{D} , it follows that

$$\int_{\Sigma_{i}} V(x) \cdot \boldsymbol{n}_{x} dS_{x} = \int_{\Sigma_{i}'} V(x) \cdot \boldsymbol{n}_{x} dS_{x} = \int_{\Sigma_{i}'} \boldsymbol{\omega}_{J} = 0. \qquad \Box$$

6. Grunsky inequality

In this section we consider the kernel $\log 1/|z-\zeta|$ in the complex plane C instead of 1/||x-y|| in \mathbb{R}^3 in the previous section. Let D be a bounded domain in C with a C^{∞} boundary smooth contour L. We recall the remarkable contrast between the properties of the single and double layer potentials as

PROPOSITION 6.1. For $f_1, f_2 \in C^1(L)$, we denote by v_1 and v_2 the single and double layer potentials with density $f_1 ds_2$ and $f_2 ds_2$ on L, respectively:

$$v_{1}(z) = \frac{1}{2\pi} \int_{L} f_{1}(\zeta) \log \frac{1}{|z-\zeta|} ds_{\zeta} \quad \text{for } z \in C$$
$$v_{2}(z) = \frac{1}{2\pi} \int_{L} f_{2}(\zeta) \frac{\partial}{\partial n_{\zeta}} \log \frac{1}{|z-\zeta|} ds_{\zeta} \quad \text{for } z \in C \setminus L,$$

where ds_{ζ} is the arc length element of L at ζ . We conveniently put $D^+=D$, $D^-=C\setminus\overline{D}$, $\partial D^{\pm}=L^{\pm}$ (where $L^+=L$ and $L^-=-L$). If we write $v_i(z)=v_i^{\pm}(z)$ (i= 1, 2) for $z\in D^{\pm}$, then we have

(1) Both $v_i^{\pm}(z)$, i=1, 2, are harmonic functions in D^{\pm} and continuous up to L^{\pm} , in such a way that, for $z^{\pm} \in L^{\pm}$ over $z \in L$,

$$\begin{cases} v_1^+(z^+)=v_1^-(z^-)\\ \frac{\partial v_1^+}{\partial n_z}(z^+)-\frac{\partial v_1^-}{\partial n_z}(z^-)=f_1(z) \end{cases} \begin{cases} v_2^+(z^+)-v_2^-(z^-)=-f_2(z)\\ \frac{\partial v_2^+}{\partial n_z}(z^+)=\frac{\partial v_2^-}{\partial n_z}(z^-), \end{cases}$$

where both n_z denote the same unit outer normal vector of L at z.

(2) $v_1(z)=O(\log 1/|z|)$ and $v_2(z)=O(1/|z|)$ at $z=\infty$. Moreover, three conditions $v_1(z)=O(1/|z|)$ at $z=\infty$, $\int_L f_1(z)ds_z=0$, and $\int_L \frac{\partial v_1}{\partial n_z}dS_z=0$ are equivalent.

Let u(z) be a harmonic function in D and of class C^1 up to the boundary L. By use of notation c of (5.2), it is well known (cf. [2]) that

(6.1)
$$c u(z) = \frac{1}{2\pi} \int_{L} \frac{\partial u}{\partial n_{\zeta}} \log \frac{1}{|z-\zeta|} ds_{\zeta} - \frac{1}{2\pi} \int_{L} u(\zeta) \frac{\partial}{\partial n_{\zeta}} \log \frac{1}{|z-\zeta|} ds_{\zeta}$$
$$\equiv q_1(z) - q_2(z).$$

for $z \in C$. Formula (5.4) changes to the following one:

•

(6.2)
$$\|du\|_{D}^{2} = \|dq_{1}\|_{C}^{2} + \|dq_{2}\|_{C}^{2}.$$

Proof. Since $\int_L \partial u/\partial n_z ds_z = 0$, (2) of Proposition 6.1 implies $||dq_i||_C^2 < \infty$ for i=1, 2. If we put $q_i(z)=q_i^{\pm}(z)$ for $x \in D^{\pm}$, then it also implies $\lim_{R \to \infty} \int_{|\zeta|=R} q_1^{-}(z) \cdot \frac{\partial q_2^{-}}{\partial n_{\zeta}} ds_{\zeta} = 0$. It follows from (1) of Proposition 6.1 that

$$(dq_1, dq_2)_{\mathcal{C}} = (dq_1, dq_2)_{\mathcal{D}} + (dq_1, dq_2)_{\mathcal{D}'}$$

= $\int_L q_1^+(z) \frac{\partial q_2^+}{\partial n_{\zeta}}(z) ds_{\zeta} - \int_L q_1^-(z) \frac{\partial q_2^-}{\partial n_{\zeta}}(z) ds_{\zeta} = 0.$

This together with (6.1) proves (6.2).

Proposition 6.1 implies

(6.3)
$$\|dq_1\|_{\mathcal{C}}^2 = \frac{1}{2\pi} \int_L \int_L \frac{\partial u}{\partial n_z} \frac{\partial u}{\partial n_\zeta} \log \frac{1}{|z-\zeta|} ds_z ds_\zeta \equiv I_L(u),$$

which is called the energy of $(\partial u/\partial n_z)ds_z$ on L in the potential theory. Hence,

(6.4)
$$\|du\|_{D}^{2} = I_{L}(u) + \|dq_{2}\|_{C}^{2}$$

We consider the case when D is the unit disk D_0 of center the origin and L is the unit circle $L_0 = \{e^{i\theta} | 0 \le \theta \le 2\pi\}$. Let u(z) be a harmonic function u(z) in D_0 and of class C^1 up to L_0 . Then we have

LEMMA 6.1.
$$I_{L_0}(u) = \frac{1}{2} \|du\|_{D_0}^2$$

Proof. For any fixed $z \in L_0$, we have from Stokes' formula

$$\begin{split} &\frac{1}{2\pi} \int_{L_0} \frac{\partial u}{\partial n_{\zeta}} \log \frac{1}{|z-\zeta|} ds_{\zeta} \\ &= \frac{1}{2\pi} \Big(\pi u(z) + \int_{L_0} u(\zeta) \frac{\partial}{\partial n_{\zeta}} \log \frac{1}{|z-\zeta|} ds_{\zeta} \Big) \\ &= \frac{1}{2\pi} \Big(\pi u(z) - \int_0^{2\pi} u(\zeta) \frac{d\theta}{2} \Big) = \frac{1}{2} (u(z) - u(0)) \,. \end{split}$$

It follows that $I_{L_0}(u) = \frac{1}{2} \int_{L_0} (u(z) - u(0)) \frac{\partial u}{\partial n_z} ds_z = \frac{1}{2} \| du \|_{D_0}^2$.

We similarly verify that (6.4) and Lemma 6.1 are true for the unbounded domain D and the exterior $E_0 = \{|z| > 1\}$ of D_0 as follows: Let D be a unbounded domain with C^{∞} smooth boundary contours L. We determine the orientation of L by $\partial D = L$. Let U(w) be a harmonic function on $D \cup \{\infty\}$ which is of class C^1 up to L. Then we have

132

$$\|dU\|_{D}^{2} = \frac{1}{2\pi} \int_{L} \int_{L} \frac{\partial U}{\partial n_{w}} \frac{\partial U}{\partial n_{\xi}} \log \frac{1}{|w-\xi|} ds_{w} ds_{\xi} + \|dP_{2}\|_{C}^{2},$$

where $P_2(w)$ is the double layer potential with density $U(w)ds_w$ on L. Let V(z) be a harmonic function in $E_0 \cup \{\infty\}$ which is of class C^1 up to the unit circle L_0 (where $\partial E_0 = -L_0$), we have

$$\frac{1}{2\pi}\int_{L_0}\int_{L_0}\frac{\partial V}{\partial n_z}\frac{\partial V}{\partial n_\zeta}\log\frac{1}{|z-\zeta|}ds_zds_{\zeta}=\frac{1}{2}\|dV\|_{E_0}^2.$$

We write these two formulas into the following simple forms:

(6.5)
$$\|dU\|_{D}^{2} = I_{L}(U) + \|dP_{2}\|_{C}^{2}, \quad I_{L_{0}}(V) = \frac{1}{2} \|dV\|_{E_{0}}^{2}.$$

We shall show that these imply the following Grunsky inequality. We consider a univalent function g(z) in E_0 such that $g(z)=z+c_0+c_1/z+c_2/z^2+\cdots$ at $z=\infty$, and denote by \mathcal{G} the set of all such univalent functions g(z) in E_0 .

THEOREM 6.1 (see [4]). Let $g(z) \in \mathcal{G}$. If we set

$$\log \frac{g(z) - g(\zeta)}{z - \zeta} = -\sum_{k, l=1}^{\infty} \frac{b_{kl}}{z^k z^l} \quad for \ (z, \zeta) \in E_0 \times E_0,$$

then we have

(6.6)
$$\sum_{n=1}^{\infty} \frac{|\lambda_n|^2}{n} \ge \lim_{N \to \infty} \left| \sum_{k,l=1}^{N} b_{kl} \lambda_k \lambda_l \right|$$

for any complex numbers $\{\lambda_n\}_{n=1,2,\dots}$. We call $\{b_{k,l}\}_{k,l}$ the Grunsky coefficients of g(z).

Proof. It suffices to prove the case when g(z) is univalent on \overline{E}_0 . We put $D=g(E_0)$ and $L=g(-L_0)$ so that $\partial D=L$. For $N\geq 1$ we consider the following functions:

(6.7)
$$V_N(z) = 2\Re \left\{ \sum_{n=1}^N \frac{\bar{\lambda}_n}{nz^n} \right\}$$
 on \bar{E}_0 , $U_N(w) = V_N(g^{-1}(w))$ on \bar{D} .

Thus, $V_N(z)$ and $U_N(w)$ are harmonic functions on $\overline{E}_0 \cup \{\infty\}$ and $\overline{D} \cup \{\infty\}$, respectively. Since $(\partial/\partial n_z)ds_z$ and the Dirichlet integral are invariant under the conformal mapping w=g(z), we have

$$\|dV_N\|_{E_0}^2 = \|dU_N\|_D^2,$$

$$I_L(U_N) = \frac{1}{2\pi} \int_{L_0} \int_{L_0} \frac{\partial V_N}{\partial n_z} \frac{\partial V_N}{\partial n_z} \log \left|\frac{1}{g(z) - g(\zeta)}\right| ds_z ds_\zeta.$$

We denote by $P_{N_2}(w)$ the double layer potential with density $U_N(w)ds_w$ on L. Applying equations (6.5) for $U=U_N$, $V=V_N$ and $P_2=P_{N_2}$, we have

$$\begin{split} \frac{1}{2} \| dV_N \|_{E_0}^2 &= -\frac{1}{2} \| dV_N \|_{E_0}^2 + \| dU_N \|_D^2 \\ &= -I_{L_0}(V_N) + I_L(U_N) + \| dP_{N_2} \|_C^2 \\ &= \frac{1}{2\pi} \int_{L_0} \int_{L_0} \frac{\partial V_N}{\partial n_z} \frac{\partial V_N}{\partial n_\zeta} \log \Big| \frac{z - \zeta}{g(z) - g(\zeta)} \Big| ds_z ds_\zeta + \| dP_{N_2} \|_C^2 \\ &= \frac{1}{2\pi} \Re \Big\{ \int_{L_0} \int_{L_0} \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \frac{b_{kl}}{z^k \zeta^l} \frac{\partial V_N}{\partial n_z} \frac{\partial V_N}{\partial n_\zeta} ds_z ds_\zeta \Big\} + \| dP_{N_2} \|_C^2 \end{split}$$

Since

$$\begin{split} & \frac{\partial V_N}{\partial z} = -\sum_{n=1}^N \frac{\bar{\lambda}_n}{z^{n+1}}, \quad \|dV_N\|_{E_0}^2 = 4 \left\|\frac{\partial V_N}{\partial z}\right\|_{E_0}^2, \\ & \frac{\partial V_N}{\partial n_z} ds_z = \frac{1}{i} \left(\frac{\partial V_N}{\partial z} dz - \frac{\partial V_N}{\partial \bar{z}} d\bar{z}\right), \end{split}$$

it follows that

(6.8)
$$2\pi \sum_{n=1}^{N} \frac{|\lambda_{n}|^{2}}{n} = \frac{1}{2\pi} \Re \left\{ \sum_{k,l=1}^{N} b_{kl} \left(\int_{L_{0}} \frac{\partial V_{N}}{\partial \bar{z}} \frac{d\bar{z}}{z^{k}} \right) \left(\int_{L_{0}} \frac{\partial V_{N}}{\partial \bar{\zeta}} \frac{d\bar{\zeta}}{\zeta^{l}} \right) \right\} + \|dP_{N_{2}}\|_{C}^{2}$$
$$= 2\pi \Re \left\{ \sum_{k,l=1}^{N} b_{kl} \lambda_{k} \lambda_{l} \right\} + \|dP_{N_{2}}\|_{C}^{2}$$
$$\geq 2\pi \Re \left\{ \sum_{k,l=1}^{N} b_{kl} \lambda_{k} \lambda_{l} \right\}.$$

Since $\{\lambda_n\}_n$ is arbitrary, we can replace $\{\}$ by || in the last inequality. By letting $n \to \infty$, we obtain Theorem 6.1.

In [4], when Grunsky inequality is reduced to equality is studied in the case that at most a finite number of $\{\lambda\}_n$ do not vanish. We shall give a necessary and sufficient condition for this problem under the conditions that

(i) g(z)∈ G is holomorphically extended up to L₀ except for a finite point set {P_i}.
 (ii) ∑_{n=1}[∞] |λ_n| <∞.

We set $D=g(E_0)$, $L=g(-L_0)$ and $K=C\setminus D$. By (i), the set K is compact in C and its boundary $\partial E=-L$ is a piecewise real analytic smooth curve with a finite number of edge points $\{Q_i\}=\{g(P_i)\}$. It may happen that the interior K° of K is empty: $K^{\circ}=\emptyset$. In this case, as a point set, L is a piecewise real analytic smooth arc \mathcal{L} . We write

$$(6.9) L = \mathcal{L}^+ + \mathcal{L}^- \text{ and } \mathcal{L}^+ = -\mathcal{L}^-.$$

Precisely, for $w \in \mathcal{L}$ (except for two end points), we find two points $w^{\pm} \in \mathcal{L}^{+}$ over w. We denote by $\{b_{kl}\}_{k,l}$ the Grunsky coefficients of g(z). By Grunsky inequality we have $1/k+1/l \geq |b_{kl}|$ for all $k, l \geq 1$. This together with (ii) imply $\sum_{k,l=1}^{\infty} |b_{kl}\lambda_k\lambda_l| < \infty$. We put $\Theta = 1/2 \operatorname{Arg} \{\sum_{k,l=1}^{\infty} b_{kl}\lambda_k\lambda_l\}$ and consider the following functions:

(6.10)
$$V(z)=2\Re\left\{\sum_{n=1}^{\infty}\frac{\bar{\lambda}_n e^{i\theta}}{nz^n}\right\} \text{ in } E_0, \qquad U(w)=V(g^{-1}(w)) \text{ in } D.$$

By (ii), V(z) is of class C^1 up to L_0 and U(w) is continuous up to L and of class C^1 up to L except for the edge points $\{Q_i\}$. Under these situations we shall prove

COROLLARY 6.1. Assume that $g(z) \in \mathcal{G}$ and $\{\lambda_n\}_n$ satisfies conditions (i) and (ii). Then Grunsky inequality (6.6) for g(z) and $\{\lambda_n\}_n$ is reduced equality, if and only if

(6.11)
$$K^{\circ} = \emptyset$$
 and $U(w^{+}) = U(w^{-})$ for $w \in \mathcal{L}$.

Proof. We denote by $P_2(w)$ the double layer potential with density $U(w)ds_w$ on L. In the proof of Theorem 6.1 we can use the function V(z) of (6.10) instead of $V_N(z)$ of (6.7) to obtain the following formula corresponding to (6.8):

$$2\pi\sum_{n=1}^{\infty}\frac{|\lambda_n|^2}{n}=2\pi\left|\sum_{k,l=1}^{\infty}b_{kl}\lambda_k\lambda_l\right|+\|dP_2\|_c^2.$$

It follows that equality holds in (6.6) if and only in $||dP_2||_c^2=0$, or equivalently,

(6.12)
$$P_2(w) = \text{const. } a, 0 \text{ on } K^\circ, D, \text{ respectively.}$$

Note that this formula is true even when $K^{\circ}=\emptyset$. It thus suffices for Corollary 6.1 to prove that (6.11) \Leftrightarrow (6.12). We first assume (6.11). Since $U(w^{+})=U(w^{-})$ for $\forall w \in \mathcal{L}$, it follows from (6.9) that

$$P_2(w) = \frac{1}{2\pi} \int_L U(\xi) - \frac{\partial}{\partial n_{\xi}} \log \frac{1}{|w - \xi|} ds_{\xi} = 0 \quad \text{for } \forall w \in D.$$

Thus (\Rightarrow) is proved. For the converse we may assume some $\lambda_n \neq 0$ $(n \geq 1)$, so that U(w) is non-constant in D by (6.10). If $K^{\circ} \neq \emptyset$, formula (6.12) and (1) of Proposition 6.1 imply U(w)=a on $\partial K (=-L)$. Consequently, U(w) is the constant a on D, which is a contradiction. We thus have $K^{\circ}=\emptyset$, and (6.9). Therefore,

$$P_{2}(w) = \int_{\mathcal{L}^{+}} U(\xi^{+}) \frac{\partial}{\partial n_{\xi}} \log \frac{1}{|\xi - w|} ds_{\xi} + \int_{\mathcal{L}^{-}} U(\xi^{-}) \frac{\partial}{\partial n_{\xi}} \log \frac{1}{|\xi - w|} ds_{\xi}$$

for $w \in C$. Let $w_0 \in \mathcal{L} \setminus \{ \text{two edge points} \}$. We find a small disk \mathcal{V} in C centered at w_0 , and denote by $\mathcal{V}^+(w_0)$ and $\mathcal{V}^-(w_0)$ the left and right half sides of \mathcal{V} along \mathcal{L}^+ , respectively. From (6.12) and (1) of Proposition 6.1, we have,

$$U(w_{0}^{+})-U(w_{0}^{-}) = \lim_{\substack{w \to w_{0}^{+} \\ w \in CV^{+}(w_{0})}} \frac{\partial P_{2}}{\partial n_{w_{0}}}(w) - \lim_{\substack{w \to w_{0}^{-} \\ w \in CV^{-}(w_{0})}} \frac{\partial P_{2}}{\partial n_{w_{0}}}(w) = 0.$$

Thus (\Leftarrow) is proved.

Examples. By the above consideration we can construct many exemples $g(z) \in \mathcal{G}$ and $\{\lambda_n\}_n$ for which equality holds in (6.6): First consider a piecewise C^{ω} smooth arc \mathcal{L} in the *w*-plane with a finite number of edge points $\{Q_i\}$. We put $D = \mathbb{C} \setminus \mathcal{L}$, so that $D \cup \{\infty\}$ is simply connected and $\partial D = \mathcal{L}^+ + \mathcal{L}^-$ such that there exist $w^{\pm} \in \mathcal{L}^{\pm}$ for $w \in \mathcal{L}$ (except for two end points). We have a unique $g(z) \in \mathcal{G}$ which transforms E_0 onto D. So, g(z) satisfy condition (i). Next let $\psi(w)$ be a C^{∞} real-valued function in a neighborhood of \mathcal{L} in the *w*-plane such that $\psi(w)$ is a constant c_i near each Q_i . We construct the harmonic function U(w) in $D \cup \{\infty\}$ with boundary values $\psi(w)$ at $w^{\pm} \in \mathcal{L}^{\pm}$. We set V(z) = U(g(z)) in E_0 and consider the Taylor series: $V(z) = 2\Re \{\sum_{n=0}^{\infty} a_n/z^n\}$ in E_0 . If we set $\lambda_n = n\bar{a}_n$ $(n=1, 2, \cdots)$, then equality holds in (6.6) for these g(z) and $\{\lambda_n\}_n$:

(6.13)
$$\sum_{n=1}^{\infty} \frac{|\lambda_n|^2}{n} = \left| \sum_{k,l=1}^{\infty} b_{kl} \lambda_k \lambda_l \right|.$$

In fact, it is clear that

$$V(z) = 2\Re\left\{\sum_{n=1}^{\infty} \frac{\overline{\lambda}_n}{nz^n}\right\} \text{ in } E_0, \qquad U(w) = V(g^-(w)) \text{ in } D.$$

Since U(z) is of class C^3 up to the boundary L_0 , it follows that $+\infty > \|\partial^3 U/\partial z^3\|_{E_0}^2 = \pi \sum_{n=1}^{\infty} n^2 (n+1)^2 (n+2) |a_n|^2$, so that $\sum_{n=1}^{\infty} |\lambda_n| < \infty$. Consequently, the same argument as (6.8) is available for this V(z) instead of $V_N(z)$, and we obtain

$$2\pi\sum_{n=1}^{\infty}\frac{|\lambda_n|^2}{n}=2\pi\Re\left\{\sum_{k,l=1}^{\infty}b_{kl}\lambda_k\lambda_l\right\}+\|dP_2\|_c^2,$$

where $P_2(w)$ is the double layer potential with density $U(w)ds_w$ for $w \in \partial D$. Since $\partial D = \mathcal{L}^+ + \mathcal{L}^-$ and $U(w^+) = U(w^-) = \phi(w)$ for $w \in \mathcal{L}$, we have $P_2(w) = 0$ in D, and $||dP_2||_C^2 = 0$. This and Grunsky inequality imply (6.13).

References

- L.V. AHLFORS, Open Riemann surfaces and extremal problems on compact subregions, Comment. Math. Helv., 24 (1950), 100-129.
- [2] R. COURANT AND D. HILBERT, Methods of Mathematical Physics, Vol. II, 3rd edition, Wiley, 1968.
- [3] Y. OKABE AND Y. NAKANO, The theory of KM₂O-Langevin equations and its applications to data analysis (I): Stationary analysis, Hokkaido Math. J., 20 (1991), 45-90.
- [4] C. POMMERENKE, Univalent Functions, Vandenhoeck-Ruprecht, 1975.
- [5] R.M. RANGE, Holomorphic Functions and Integral Representations in Several Complex Variables, Graduate Texts in Math., 108, Springer-Verlag, 1986.
- [6] H. YAMAGUCHI, Equilibrium vector potentials in R³, Proc. Japan Acad., 68 (1992), 164-166.
- [7] H. YAMAGUCHI, Equilibrium vector potentials in \mathbb{R}^{3} (in full length), to appear in Hokkaido Math. J.

Faculty of Education Shiga University Ohtsu, Shiga 520, Japan