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ORTHOGONAL DECOMPOSITION RELATED TO

MAGNETIC FIELD, AND GRUNSKY INEQUALITY

HlROSHI YAMAGUCHI

1. Introduction

Let ΰ be a bounded domain in R3 with Cω smooth boundary surfaces Σ.
Let σ=adx+bdy+cdz be a C°° closed 1-form on D (=DuΣ). By putting
o—a in D and = 0 outside D, we consider the usual WeyFs orthogonal
decomposition: σ-=-*ω-\-dF in R3, where ω is a L2 closed 2-form in R3 and

In § 4 we shall show that ω is a harmonic 2-form in R3\Σ of the form
ω—dp and that p and F are written into the following integral formulas:

. . / I f (a, b, c)Xnv J O \ , -
/ > W = ( τ ~ \ ιι n -dSy) dx for

V47ΓJI1 || Λ;—3; II V

n3; II

I f div(α ?̂ c) , ,
dvy forv

. I f (α, /?, c) wv / o I f div(α, ?̂, c
J y

— 3 ; II y AπjD \\x—y\\ yv

where ny is the unit outer normal vector of Σ at y, dx=(dx, dy, dz), and
means the formal inner product.

In § 2 we briefly recall the definition of surface current densities on Σ and
their properties studied in [6]. In §3 we shall prove an approximation lemma
concerning improper integrals. This lemma is not only useful to prove the
above integral formulas but also to show the fact that ω is related to the
magnetic field. Precisely, if we write ω—adyΛdz+βdzΛdx+γdxΛdy and
define B—(a, β, γ) in R3\Σ, then B is a magnetic field induced by a surface
current density JdSx on Σ such that B is the strong limit of a sequence of

usual magnetic fields {Bn)n in R3:\ϊmnΛ \\Bn{x)—B(x)\\2dvx=0. In § 5 we
JR3

shall show that this fact implies the existence of equilibrium current densities
SdSx on Σ. The notion of equilibrium current densities were introduced in
[6] motivated by the electric solenoid.

In §6 the integral formulas in R3 stated above is extended into those in
the complex z-plane. We then obtain a new proof of Grunsky inequality (cf.
[4]), which implies a necessary and sufficient condition for the case when the
inequality is reduced to equality. It gives us many examples of such cases.
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The main result (Theorem 4.1) in this paper is motivated by the elementary
part of Okabe's fluctuation and dissipation principle in [3]. The author thanks
Professors Y. Okabe and Y. Nakano for their conversation. He also appreciates
the referee for his kind comments.

2. Surface current density

We shall use the notation: x=(x, y, z)=(xu x2, x3)e/23. Let / = ( / i , /2, fz)
be a C°° vector field in R3 with compact support. If div/(;0=Σ?=i3/i/9Λ; t=0,
then Jdvx, where dvx is a volume element of R3, is called a volume current
density in Rz. Let γ be a 1-cycle in R3. By taking a 2-chain Q in R3 such

that dQ=γ, we set J[γ"]=\ J(x)>nxdSX} where nx denotes the unit outer

normal vector of Q at x. We call Jlγ'j the total current of Jdvx through [/•].
We consider the vector valued-integrals:

(2.1) ΛW=lr\ T^Ίidvy f o r

(2.2) B{x)=votA{x)=^\j{y)X^fdvy for xεΛ .

Following Biot-Savart we call Λ(x) the vector potential for Jdvx, and B(x) the
magnetic field induced by Jdvx.

Let DmR3 be a domain bounded by Cω smooth surfaces Σ. We denote by
dSx the surface area element of Σ, and put D'=R3\D. Let / = ( / i , /2, Λ) be a
C°° vector field on ί . If there exists a sequence of volume current densities
Undvx}n in .β3 which converges to JdSx on Σ in the sense of distribution,
then JdSx is called a surface current density on Σ. Precisely speaking, {Supp Jn] n

is uniformly bounded and lim^ooϊ φjndvx=\ φJdSx for Vψ<=C%(R3). For a

1-cycle γ in i ? 3 ^ , we set /I^]=limn_oo/W[^], which is called the total current
of JdSx through [7*]. We consider

A(x)=~[ ^r^j.dSy for
4TΓ J ^ | | Λ : — 3 ; | | y

B(x)=rotA(x)=~\ΣJ(y)X^^dSy for X<ER3\Σ.

We say that A(x) is the vector potential for JdSx, and B{x) the magnetic field
induced by JdSx.

We summarize some results in [7] which we use in this note:

PROPOSITION 2.1. Let J—(fu fz, fz) be a C°° vector field on Σ and let
η=fιdxJrf2dyJrfzdz on Σ. We put nxxj(x)=(glt g2, g*) for x e ί , and
*η=g1dx+g2dy+g3dz on Σ (which is called the conjugate l-form of η on Σ).
Then JdSx is a surface current density on Σ, if and only if J is tangential on
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Σ and * ^ is a closed 1-form on Σ.

When we regard Σ as a Riemann surface with conformal structure induced by
the euclidean metric of R3, the above condition says that η is a co-closed
differential on Σ, namely, +η is the conjugate differential of η on Σ such that
d*η=0 on Σ (which is inherited from condition div Jn—$ (w=l, 2, •••) in R3

that Jndvx is a volume current density in R3).

PROPOSITION 2.2. Let JdSx—(fu f2, fs)dSx be a surface current density on
Σ and, B{x) — (a, β, γ) the magnetic field in R3\Σ induced by JdSx. We put
η=fidx+f2dy+fsdz on Σ and ω—adyΛdz+βdzΛdx+γdxΛdy in R3\Σ. Then
we have

(1) ω is a harmonic 2-form in R3\Σ such that o>(x) = O(l/||x||2) at x = oo
(2) We simply write D+=D and D~=D'. If we put B(x)=B±(x) for

then B±(x) are continuous up to Σ from D±, respectively , and has the fol-
lowing gap: B+(x)—B~(x)—nxXj(x) for X G I . In other words, if we put
ω{x)—ω±{x) for x^D±, then ω±(x) are continuous up to Σ from D±

y respec-
tively, in such a way that *ω+(x)—*ω~(x)=*η(x) on Σ.

(3) For a 1-cycle γdDvjD', we have J\_γ~] — \ *ω—\ *^, where γ'=QΓλΣ and

Q is a 2-chain in R3 such that dQ—γ.

Given x<=R2 sufficiently close to Σ, we find a unique point ξ=ξ(x)^Σ such
that

(2.3) x-ξ=R(x)nξ where R(X)ZER,

where nξ is the unit outer normal vector of Σ at ξ. Then R(x) becomes
a Cω function in a neighborhood U of Σ in R3 such that nx=VR(x)—
(dR/dxu dR/dx2, dR/dx3) on Σ and

(2.4) UίΛD (resp. Σ, UΓ\D')={xϊΞU\R(x)<(resp. =, »0},

For a given <5>0 we set U(δ) :={X<BU\ — δ<R(x)<δ\. We fix an integer n0

such that U(l/no)mU, and put Γn := \x^U\ -l/n£R(x)^-l/2n\ for n^n0.
We take a sequence of C°° functions {Xn(R)}n^i on (— oo, oo) such that

f 1 on (— oo, — 1/w]
0^Xn(R)^l Xn(R) = \

(2.5) { 0 on [-l/2n, +oo),

\Γ(R)\<n2M,

where M>0 is a constant independent of n (2^1) and R^(— oo, oo). For n^
we can consider a function Xn(x) in R3 defined by
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(2.6)

1 in D\U

Xn(R(x)) in U

0 in D'\U.

Thus, χn(x)eCΐ(R*). The functions X'n(R(x)) and X%{R(x)) are of class C°° in
U with support in Γn (j^U), so we extend them to R3 by putting 0 in R3\U.

PROPOSITION 2.3. Let /<=CSf(#3). Then we have

(1) X'n(R{x))f{x)dvx-+—f(x)dSx on Σ in the sense of distribution.
(2) {Xn(R(x))f(x)dvx}nzn0 is convergent on Σ in the sense of distribution, if and

only if f(x)=0 on Σ. In this case, the limit is (df/dnx)dSx on Σ.

Assertion (2) followed from the fact that, for

(2.7) lim( mR

where H(x) denotes the mean curvature of Σ at x (cf. Lemma 1.1 in [7]).
Now let D be a domain in R3 (which may be Rz itself). For i=l, 2 we

consider the space L\(D) of all L2 /-forms in D and their subspace:

C°?to(D)—the set of C°° /-forms with compact support in D,

Z?(Z5)=the set of all C°° closed /-forms on D,

Hi(D)=the set of all L2 harmonic /-forms in D.

Then Weyl's orthogonal decomposition theorems hold:

In case D is a bounded domain in R3 with Cω smooth boundary surfaces Σ,
we define

Hi0(D)= {ω^H2{D)\ω is of class Cω up to Σ, and ω=0 along Σ\,

where α>=0 along Σ means that the normal component of ω vanishes on Σ.
As an analogue to Ahlfors' theorem in [1], we have

PROPOSITION 2.4. Let {γj}j=i,...,q be a 1-dimensional homology base of D.

Then, for each i (l^i^q), there exists a unique ωi<=H20(D) such that \ *ω<—δi3
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3. Approximation lemma

We shall show the following approximation

LEMMA 3.1. Let g(x)<=C°°(U) be given. For n^>n0, we consider the C°°
functions Iltn(x) and ht7l{x) m R3 defined by

, , v i ~.^s,,*v, . j (x)_[ in(R(y))g(y) .
*l,n\X)—\ Π n CίVy , li n\X)—\ Π Π CIVv .

Ju \\y-x\\ Ju \\y — x\\

We put

(3.1) IM^-^jξ^L^Sy for x^R3

Then we have

(1) lim /i,w(#) = /i(#) uniformly in R3.

(2) lim h,n(x) — h(x) uniformly on any compact set in R3\Σ.

(3) Both {/i.nWJn^o ^^^ {̂ 2, n(^)}n>n0 βΓβ uniformly bounded in R3.

Proof. It is clear that Iλ(x) and /2(x) are continuous in R3 and R3\Σ,
respectively, and that I2(x) has the gap 4πg(x) for X G I (Thus the convergence
of (2) is not uniform in U in general.) Since Supp Xf

n(R(x))-*Σ (n—>oo)? we see
from (1) of Proposition 2.3 that limn_>oo/i,n(^)=/(^) pointwise in R3\Σ. For
each n^n0, the function IίtnW is of class C°° in R3 such that, for x^R3 and
*"=1, 2, 3,

"Sx, {'<

Therefore, if (3) is true, then the family {(dI1>n/dxι)(x)\nino is uniformly
bounded in R3. Hence, the family {Ii,n(x)} n^n0 is bounded and equicontinuous
on any compact set K in R3. It follows from Ascoli-Arzela's theorem that the
sequence {I\,n{x))n^nQ uniformly converges to a function gλ(x) on K. As K,
we take a large closed ball Bo such that B0Z)U. Since Iίιn(x) is harmonic in
R3\Γn, it follows from the expression of Iltn(x) that there exists an ^ ! > 0
such that | / i , n (*) |^A/ | |x | | ίor Vn^w0 and VX<ΞR3\B0. Hence, {h,n(x)}n>=n0

uniformly converges to a function gι(x) in R3. Since h(x)—gι{x) in R3\Σ and
since /i(x) and gι(x) are continuous in i23, we have (1). Following the proof
of (2.7), we obtain (2). It rests to prove (3) for k=l, 2. The proof for k=l
is easy as follows: By simple calculation we find a constant c>0 such that

Γ 1 — for ΔXEΞR3 and
\x-y\\ y==n



122 HIROSHI YAMAGUCHI

We put Mί:=s\xp{\g(y)\\y^U(l/nQ)}< + oo, Since \X'n(R)\<nM on (-00, +00)
by (2.5), it follows that \Iι,n{x)\^cMMι for VXGΞJR3 and Vn^w0. Thus, the
case k—\ is proved. The proof for £—2 is rather delicate. The proof will be
done by use of Morse's theorem concerning regular singular point as follows:

In this proof we take and fix 0<d*<l/tt 0 , so that ΣdU(δ*)mU(l/no). We
simply put /*=(—δ*, +δ*). Each h.n(x), n^n0 is a C°° function in R3 and
harmonic in R2\Γn- By the expression of I2,n(x) and (2), we find a constant
Λ2>0 (independent of n^n0) such that | / 2 > Λ (Λ;) |^AB/II* | | outside a ball BOZDD.
It follows from (2) that { / u ( x ) ) n ^ 0 is uniformly bounded in R3\U(δ*). There-
fore, it suffices to prove the following

CLAIM. There exist an integer nx (^n 0) and a constant C>0 such that

\h,n(P+R*np)\^C for V(/>, R*)<EΞΣXI* and V n ^ ^ .

1 s t step. Let p^Σ be given arbitrarily. By a euclidean motion, we may
assume that p is the origin O in the (x, y, z)-sρace and the unit outer normal
vector nv is equal to (0, 0, 1). We identify p with O in this proof. The
tangent plane of Σ at O is thus

ζ=φ(ξ, η)=aξ2+2bξη+cη2-{- {higher order terms of ξ and η\,

where the Taylor series { } uniformly converges in a disk Dι—{ξ2-{-η2<pι}
(for future use, we prefer notation (£, η, ζ) to (x, y, z)). We consider the
following transformation S: (£, 37, i?)-^3/=(x, jy, z) from a neighborhood Wx of
the origin (0, 0, 0) in the (£, 77, 7?)-space onto a neighborhood Vx of the origin
O in the (x, 3;, z)-space of the form

(3.3) S:y=β, η, Φ(ξ, η))+Rnξ,

where nξ denotes the unit outer normal vector of Σ at (f, η, φ(ξ, η)). So, R is
equal to R(y) denned by (2.3). Then we have, for y^Vι and /?*e/*,

(3.4) l(y,R*):=\\y

— \\(ζ, f], φ{ζ, 5?))+-ff«f—(0, 0,

where /Q, 9 =1/V1+(4 |+^. It follows that for any (£, 37) sufficiently close to
(0, 0), say (f, i7)eZ)ί={f2+i78<|θί} where 0<pί<pu we have

+ {higher order terms of ξ and η\,

where Λ, B, C are Cω functions of ξ, η, R, /?*. We thus find an interval
/1 :=(—δi, +δi) such that
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for V(f, η)^Dί, V/?e/,, and V#*GΞ7*.

First, regarding R and i?* as parameters, we apply Morse's theorem to obtain
a C2 transformation 3LR.R* from a neighborhood Φ[(R, R*) of (0, 0) in the
(X, F)-plane onto a neighborhood D[(R, R*) {dD[) of (0, 0) in the (£, >?)-plane
such that

^ * , * * : (X, Y)-+(ξ, η)=(f(X, Y, R, R*), g(X, Y, R, R*))

i( 2

By the construction of MR,R* under the form (3.4) of l(y, /?*), the functions /
and g may be chosen to be of class C2 for (R, i?*)e7iX7*. By smoothness we
can take a common neighborhood 2)2ZL®Ί(R> R*) of (0, 0) in the (X, F)-plane for
V(/?, R^tΞhXl*, so that

(3.6) /(Z, Y, R, R*) and # ( * , Y, R, R*) are of class C2 in

Next, regarding i?*e/* as parameter, we put M : (X, F, #)>->(£, 37, i?)=(/, ^, i?),
and consider the C2 transformation H* :=cSoJ^ from a product neighborhood
Φ 2 : = ^ 2 X / i of the origin O in the (Z, F, i?)-space onto a neighborhood F 2

of the origin O in the (x, y, z)-space. We write

£Γ:(Z, F,

=(F(X, Y, R, /?*), G(Z, F, /?, 7?*), //(Z, r , R,

By differentiability of (3.6) we can find an L > 1 such that

^ A , r ί dF dF d2H d2H

Modules of {-^,

(3.7)
1

for \f(X, Y, R)<ΞCV2 and Vi?*G/*. Note that £Γ depends on (/>, i?*)e^x/*, so
do ^ 2 and L. Thus, it should better to write c V 2 = c ^ 2 ( ί , Λ*) and L = L(p, R*).
However, since the surface Σ is of Cw smooth, we see from the construction
of the mapping £Γ that there exists a small common product neighborhood
cV0O.cV2(P, R*) centered at (0, 0, 0) in the (X, Y, #)-space and a large common
L0>L(p, #*)>0 such that (3.5) and (3.7) are satisfied for V(Z, Y, R)^CVO and
V(/>, # * ) e i ; x / * . We write

cyo=^oX/o where Do= {X2+Y2<p0\ and 7 0 = ( - δ 0 , +«o).

As an integer n1 in the claim, we take an nι (^n0) such that ΓndU(δ0) for
Vw^tti. We put O ^ ^ ^ ΐ t ^ o ) , where 3* is constructed above depending on
(p, i?*)e2 τ χ7*. Thus, OP>Λ* is a neighborhood of (/?, R*) in the (x, 3;, z)-space.
From (3.7), we find a small common disk Eτ:— {ξ2+η2<τ2}, where r>0, in the
(ξ, >y)-plane such that
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(3.8) S(EτXl0)c:Op,R* for V(/>, R*)<EΞΣXI*,

where S is defined by (3.3) depending on (p, R*).

2n d step. Let (p, R*)<=ΣxI* and w^nx be given arbitrarily. We set

(3.9) Λ.»(ί+/?*Λp)={Jo +J^ o } j p r S ^ \ f r f t ; v

ΞΞS»(/>, R*)+Tn(p, R*).

We first show the uniform boundedness of the second terms {Tn(P, R*)\n;>n1 in
Σxl*. For R^Io, we consider the level surface: Σ{R)—{y^U\R{y)—R} in
the (x, y, ^)-space, where R(y) is defined by (2.3). For y<=Σ(R) and R^h, we
set dvy=j(y)dSydR, where dSy denotes the surface area element of Σ(R) at y.
Thus, j(y) becomes a Cω function in U(δ0) such that j(y)=l on J . We put,
for V/?G/0,

Fp>jR*(i?):=f ίi ^(^^ΏI \\\dSv

By (3.8) we have Ib—(i+i?*w p ) | |>r for Vy(ΞΣ(R)\OPtR* and V(ί, #*)eJ?x/*.
Hence, the integrand is a bounded C~ function for y^Σ(R)\OPtR* such that its
boundedness is uniform for (R, p, R*)(ΞIOXΣXI*. Further, since Σ(R)\OPtR*
varies C2 smoothly with respect to (R, p, R*)^IoxΣxI*, it follows that FPtR*(R)
varies smoothly with these variables. We thus find an M 2>0 such that

dFp,R*(R)
for V(#, p,

Note that %(-l/n)=%(-l/2n)=0 and Supple[-1/rc, -l/(2n)J. By the inte-
gration by parts, we have

S-l/271 f-l/2n

-1/τι J-i/Λ

Since | %;(/?) | ^ n M by (2.5), it follows that

\Tn(p, i ? * ) | ^ d : = M M 8 / 2 for V(j&, R*)(ΞΣXI* and

We next show the uniform boundedness of the first terms {Sn(p, R*)\n^n1 in
Σxl*. By the change of variables from y=(x, y, z) to (X, Y, R) by £Γ (de-
pending on (p, R*)), we have

where g==-g#2. We use the polar coordinates (X, Y)—{r cos θ, rύnθ) in ^)0

and put G{r, θ, R) :=g(X, Y, R)MX, Y, R). Note that G depends on (/>, /?*)
By (3.7) we find an Li>0 such that
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Modules of

for V(r, 0)e=[O, /o0]X[0, 2π] and V(fl, />, R*)<ΞIOXΣXI*. Since Z'(
%'(—l/2n)=0 and SuppZ£(/?)c[—1/n, — l/(2n)], we use the integration by parts
for R to obtain

We conveniently put Z=Z(r, R, R*)=l/V(ϊf:^*j*~+r2. It follows from
r(dZ/dR)=(R-R*)8Z/dr that

S 2πΓ-l/2nΓp() r / d

Ϊ
2πΓ-l/2nΓp0 ( fiZ ~ϊ

Ί(R-R*)X'n(R)^~G\drdRdθ
o J-i/n J o I Or i

Ϊ
2πΓ-ll2n

\
o J - i / n

>, 7?*)

Since \rZ\^l and |%{,(/?)| ̂ n M , we have \S(

n

2)(p, R*)\ £2π(l/2n)(nM)L1p0^
πMLφo for V(r, R*)eΣxI* and Vn^Tii. Using the integration by parts for r
in S^ίί, /?*), we have from |(/?-/?*)Z|^l and \X'n(R)\^nM,

ί
2πΓ-l/2n (Γpn

{R-R*)rn(R)\χ
o J-i/n I J o

-~

for V(r, R*)£ΞΣXI* and V ^ ^ . Hence, | 5 n ( ί , /?*)| ̂ C 2 :=πML1(3+ io0) in
for Vn^wi. It follows from (3.9) that \I2,n(p+R*np)\ ^C : = d + C 2 in
for Vn^ni. Our claim is thus proved. •

COROLLARY 3.1. Let JdSx be a surface current density on Σ and denote by
A(x) and B(x) its vector potential in RB and its magnetic field in R*\Σ. Then
there exists a sequence of volume current densities {Jndvx}n with the following
properties: If we denote by Λn(x) and Bn(x) the vector potential and the mag-
netic field for Jndvx respectively, then it holds

(1) {An(x)}n converges Λ(x) uniformly in R3.
(2) {Bn(x)\ n converges B{x) uniformly on any compact set in RZ\Σ.
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(3) \Bn(x)\ n zs uniformly bounded in R3.

(4) limί \\Bn(x)-B(xψdvx=0.
n->oojΛ3

Proof. In Corollary 1.1 in [7] we constructed a sequence of volume current
densities {Jndvx}n converging the given JdSx on Σ in the sense of distribution
such that their {A(x)} n and {B(x)} n converge A{x) and B(x) uniformly on any
compact set in R*\Σ. In that proof, Jndvx—{fln, fm, fsn)dvx was of the form

etc.,

where gz{x) and gz{x) are C°° functions in U (ΌΓn) and are independent of n
(^n 0 ). We shall show this {Jndvx}n satisfies (1)~(4) of Corollary 3.1. In fact,
(2) is already proved in [7]. Applying (1) of Lemma 3.1 to definition (2.1) of
An{x), we have (1). Since Bn{x)—rot An(x), we see that each component of
Bn{x) is of the form

{ό. 10) \ dvy,

where h(y) and k{y) are functions of class C°° in U and independent of n
(^n 0 ). Hence, (3) of Lemma 3.1 implies (3). From (2) and definition (2.2) of
Bn{x) we can find an M,>0 such that \\Bn(x)\\<Mί/\\x\\2 outside a ball B0^D
for Vn^n0. This together with (3) implies (4). •

4. Main theorem

Given a C°° 1-form a—^\=lfidxl in a domain UaR3, we put
(Σ?-i/t(^) a)1 / 2^0, Δσ=Σ?=1(Δ/ ι)6ίx t, and δ=*d*, where Δ is Laplacian and the
operator * is determined by σ/\*σ=\\σ\\2(x)dvx in U. When σeCΓ.oW, we
put

mσ{x) or - -
47Γ JΛ3II x—3; | | y kπ x=ι\)Rz\\x—y\\

This as well as Aσ is a 1-form. We analogously define the corresponding ones
for C°° /-form σt (*=0, 1, 2, 3). By the symmetry of the Newton kernel l/\\x—y\\
with respect to x and y in /ί3, we easily obtain, for

dJίσι—mdσt,

Further we have (see, for example, [5])

Aσι=(—iy(δd—dδ)σ% and Amσx— — σv (Poisson's equation).

We use the following Maxwell's theorem in the time mdependent case (see [7]):
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PROPOSITION 4.1. Let η<Ξ*ZURη (=*[Z 2(i2 3)nC^(/2 3)]). / / we put ρ(x)

= 7lη(x) and ω{x)—dp{x) in R\ then δω=η holds in R\

We shall show the following main theorem which gives a new interpreta-
tion of WeyΓs orthogonal decomposition theorem related to magnetic fields
induced by surface current densities on Σ:

THEOREM 4.1. Let σ=adx+bdy + cdz be a C°° closed l-form on D. We
put a(x)—(a, b, c) for x^D. Then we have

(1) JdSx:=a(x)XnxdSx is a surface current density on Σ.
We denote by B(x)=(a, β, γ) in D\jD' the magnetic field induced by JdSx,
and put ω—adyΛdz+βdzΛdx+γdxΛdy in D\jD'.

(2) // we put σ~σ in D and —0 in D', then it holds

(4.1) σ=*ω+dF in D\jD',

where

F(x)=_Lf «y}j±dSl[ ψ^dv, for x^R°.
4π)Σ\\x—y\\ v 4 π J z ) | | x — y \ \ y J

(3) Formula (4.1) is the WeyΓs orthogonal decomposition of σ in Γl(Rs), that
is, ύ)£ΞZ2(R*) and dF^B^R3). In our case, F^C(RZ)Γ\C°°(R5\Σ) and
ωtΞH2(R*\Σ) such that F(x)=O(l/\\x\\2) and ω(x)=O(l/||x| |3) at x=oo.

Proof. Although (1) is clear from Proposition 2.1, we verify it again for
the proof of (2) and (3). Using the function Xn(x) in Rs defined by (2.6) for
n^n0, we consider Z n < ; e C y W with support in D. If we put

) n ( ) ( n ) f l n f 2 n y f z n in
(4.2)

Jndvx=(fln, f2n, fzn)dvx in R\

then Jndvx is a volume current density in R3. Since σ is closed on D, we get

(4.3) fUx)=Tn{R(x)){^c--~b] etc.

It follows from (1) of Proposition 2.3 and VR(x)=nx on Σ that Jndvx^JdSx

(n—>oo) on Σ in the sense of distribution. Thus (1) is proved. Denoting by
Bn=(an, βn, γn) the magnetic field in Rz induced by Jndvx, we have Bn(x)-*B{x)
(n-*oo) pointwise in DVJD'. We put ωn(x)=andyΛdz+βndzΛdx+γndxΛdy
in R\ so that

(4.4) ^x)=d(^mJ!£Ldυ,) for

and ωn(x)-*ω(x) (n^co) pointwise.
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We here note that δ(*Xnσ)=:ηn in R\ By Proposition 4.1, we have δωn — ηn

in R\ Since dωn=0 in R\ we have the orthogonal decomposition: ^χnσ—ωn-\-
(*Xnσ—ωn) in R3. Since H—δd—dδ for 2-forms, it follows from (4.2) and
Poisson's equation that, for any fixed

=*Xnσ(x)+*dFn(x)

w h e r e

4TΓJΛ3 IIΛ—3;II v

__ W X'n(R(y))VR(y) a(y)+ϊn(y)diva(y)

~4πJz> " ||x-;y|| " " aVy'

Consequently,

(4.6) ina=*wn(x)A-d(-Fn) in R\

By its expression, Fn{x) is of class C°° in 723 and harmonic in RZ\D. Moreover,
since Xn(x)=0 on Σ, we have

^ J )} dvy

so that Fn(x)=O(l/| |x| |2) at % = cx>. Since ω n eZr(Λ 3 ) and dFn^Bλ{Rη, formula
(4.6) for each n^n0 is the WeyΓs orthogonal decomposition of Xnσ in Γ\(RZ).
By (1) of Lemma 3.1, Fn(x)-^—F(x) (w-*oo) uniformly in /23. Therefore, there
exists an MiX) (independent of n^n0) such that |F n (x) | ,
outside a ball B0Z)D. By (4.6) we may assume that ||fi>n||(x),
outside Bo. From (4.2), (4.3) and (4.4), each component an, βn or γn of ωn(x)
is of the same form as (3.10). Hence, (3) of Lemma 3.1 implies that {||α>n||(x)}nsno

is uniformly bounded in R\ It follows that limn_oo||α>n—ω||«s=0, and hence
limn^co||dFn + dF| | |8=0. In particular, ω^Z2(R3) and dFtEB^R*). Letting n—00
in (4.6), we get (2) and (3) of Theorem 4.1. •

COROLLARY 4.1. Let JdSx be a surface current density on Σ and, B{x) the
magnetic field induced by JdSx. We use the same notations ω, η, +η as in
Proposition 2.2. Assume that * ^ on Σ is extended to a C°° closed 1-form a on
D. If we put σ : = σ in D and = 0 in D'', then *<y is identical with the projection
of GΓGL?(JR3) to *Z2(/23) in the WeyΓs orthogonal decomposition.
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In fact, we put *η=gιdx-\-g2dy-hgzdz on Σ and σ—adx-\-bdy-\-cdz on D,
then JdSx—(gu g2, gz)XnxdSx—{a, b, c)XnxdSx for x<=Σ. Applying Theorem
4.1 to this σ, we have the corollary. •

5. Equilibrium surface density on Σ

If a surface current density JdSx on Σ induces a magnetic field Bj(x) in
Ό\jΌf such that Bj(x) vanishes identically in D', we said in [6] that JdSx is
an equilibrium current density on Σ. In this case, (2) of Proposition 2.2 is
reduced to Bj(x)=nxXj(x) and ω+(x)—*η(c) on Σ, which is called Fleming's
law. In [7] we proved the following existence

THEOREM 5.1. Let {fj) 3=i,...,q be a base of the 1-dimensional homology group
of D. Then there exist q equilibrium current densities {JtdSx}t=ι,...,q on Σ such
that Jtlr^δi

We give another proof of this theorem by use of Theorem 4.1.

Proof. For each 2 = 1, •••, q, we consider the 2-form Wi=atdyΛdz-\-βidzΛdx
-\-γidxΛdx^H20(D) defined in Proposition 2.4. As a C°° closed 1-form σ on D
in Theorem 4.1, we can take σ=*a)i on D. We denote by JidSx, Bu Ωx and
Fi(x) things obtained through *ωi which correspond to JdSx, B, ω and F(x)
obtained through σ in Theorem 4.1. Therefore,

in D\jD', JtdSx=((at, βlf γt)Xnx)dSx on Σ.

Since (al} βt, γt)±nx on Σ and άiv(al} βt, γι)^0 in D, we have Fi(x)=0 in i23,
so that *ώi=*Ωt in D\jDf, that is, Ωι=ωi in D and i3t—0 in Ώ1, which is
equivalent to Bi(x)=(at, βt, γt) in i) and = 0 in D'. Hence JιdSx is an equi-
librium current density on Σ. By (3) of Proposition 2.2, we have Jilγf\ =

\ *ωi=δij.
Jϊj

D

Let u(x) be a harmonic function on D. Applying Theorem 4.1 for σ — du,
we see that JdSx :=(Vu(x)Xnx)dSx is a surface current density on Σ and that

(5.1) di=*a>+<z(-U P^-^rdSy) in /23,
\4π j2 ||x—y|| V

where a>eZ2(/23) with the following property: If we set ω(x)=adyΛdz+
βdzΛdx+γdxΛdy in D\jD\ then (a, β, 7-) is the magnetic field induced by
JdSx. On the other hand, it is well known (cf. [2]) that, if we put

(5.2) c = l , 1/2, 0 on D, Σ, D', respectively,

then it holds
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for x<=RΆ. We thus obtain

COROLLARY 5.1. Under notations (5.1) and (5.3), u e

4[ () ^ d

(5.4) V 4πJ^ ^ d n | | x y | | V

The former formula physically means that the gradient of the double layer
potential with density u{x)dSx on Σ is equal to the magnetic field induced by
the surface current density (nxxVu(x))dSx on Σ. The latter says dpι±dp2 in
R* (not in D!).

COROLLARY 5.2. Lβί Vr(x)=(α, 6, c) be a Cω vector field on D such that
div V(jt)=r<)t V(x)=Q in D. Then there exists a surface current density JdSx

on Σ whose magnetic field restricted to D is equal to V(x), if and only if

\ V(x)'ΠxdSx=0 for each component Σt (i—1, •••, m) of Σ.

Proof. Let V(x)=(a, b, c) be given as above. We put ω=adyAdz~\-

bdzΛdx+cdxΛdy on Dy so that *ωG//1(D). First, assume that I V(x) nxdSx

JΣt

= 0 (2=1, •••, m). By Proposition 2.4 we find ωQ—ady/\dz-\-βdz/\dx-\-γdx/\dy^

H20(D) such that \ *ωo=\ *ω (l^V/^^). By the same reasoning as in the

proof of Theorem 5.1, we see that JodSx:=((a, β, γ)Xnx)dSx is an equilibrium
current density on Σ which induces the magnetic field (α, β, γ) in D and 0 in
D''. We can find a harmonic function h(x) on D such that *ω—*ωo=dh. Since

On

tions that there exists a Cω function φ on Σ such that

-TJ—dS x~0 (z=l, •••, m), it follows from Fredholm theory of integral equa-
On x

We here solve the Dirichlet problem on D with boundary values φ(x) on Σ and
denote by w(x) its solution on D. By (5.1), J1dSx=(nxxVu(x))dSx is a surface
current density on Σ which induces the magnetic field Vh(x) in D. It follows
that the surface current density JdSx :—JodSx-\~JιdSx on Σ induces the magnetic
field Bj(x) whose restriction to D is identical with V(x).

Next, assume that there exists JdSx on Σ which induces the magnetic field
Bj=(a, β, γ) in R*\Σ such that B,7^=V in D. If we put ωj^ady /\dz+βdzf\dx
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-\-dxAdy inR3\Σ, then ωjeZ2(R3) by Corollary 4.1. We draw a closed smooth
surface Σ{ in D homologous to Σx ( ι=l , •••, m). Since div V=0 on D, it follows
that

f V(x)-nxdSx=\ V(x)-nxdSx=\ ta>j=0. D

6. Grunsky inequality

In this section we consider the kernel logl/ |z—ζ| in the complex plane C
instead of l/\\x—y\\ in R* in the previous section. Let D be a bounded domain
in C with a C°° boundary smooth contour L. We recall the remarkable contrast
between the properties of the single and double layer potentials as

PROPOSITION 6.1. For fu f2<=C\L), we denote by υx and v2 the single and
double layer potentials with density fxdsz and f2dsz on L, respectively:

" 2 ( " ) = 2V/ 2 ( ζ ) 3^" l 0 g T^ζT^ ζ f°r

where dsζ is the arc length element of L at ζ. We conveniently put D+^D,
D~=C\B, dD±=L± {where L+=L and L~ =—L). If we write v-(z)=vj(z) {i=
1, 2) for z^D±, then we have

(1) Both vt(z), i=l, 2, are harmonic functions in D± and continuous up to L*,
in such a way that, for Z ± G L ± over

where both nz denote the same unit outer normal vector of L at z.
(2) vι(z)—O(\ogl/\z\) and v2{z)—O{l/\z\) at z—oo. Moreover, three conditions

vι{z) —O{l/\z\) at z—ooy \ fi(z)dsz=0, and \ -^-dSz=0 are equivalent.

Let u(z) be a harmonic function in D and of class C1 up to the boundary
L. By use of notation c of (5.2), it is well known (cf. [2]) that

(6.D

for Z^LC. Formula (5.4) changes to the following one:
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(6.2)

Proof. Since I du/dn,dsz=0, (2) of Proposition 6.1 implies \\dgi\\2

c<oo for

Γ
ί = l , 2. If we put qt(z)=qt(z) for x^D±, then it also implies lim\ qϊ(z)

i?-»ooj I ζ l = i ?

• -n—-dsr=0. It follows from (1) of Proposition 6.1 that
σnζ

(d#i, dqt)c=(dqu dq2)D+(dqu dq2)D>

This together with (6.1) proves (6.2). •

Proposition 6.1 implies

which is called the energy of (du/dnz)dsz on L in the potential theory. Hence,

(6.4) \\du\\l=IL(u)+\\dq*\\%.

We consider the case when D is the unit disk Do of center the origin and L is
the unit circle Lo={eίΘ\O<θ<2π\. Let u(z) be a harmonic function uiz) in Do

and of class C1 up to Lo. Then we have

LEMMA 6.1. ho(u)=j\\du\\%o.

Proof. For any fixed Z G L 0 , we have from Stokes' formula

I f 3 M , 1 ,

It follows that h0W=\\L (u(z)-u(O))^-dsz=^\\du\\lo. Π

We similarly verify that (6.4) and Lemma 6.1 are true for the unbounded
domain D and the exterior Eo= {\z\ >1\ of Do as follows : Let D be a unbounded
domain with C°° smooth boundary contours L. We determine the orientation of
L by dD—L. Let U(w) be a harmonic function on D\J {oo} which is of class
C1 up to L. Then we have
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where P2(w) is the double layer potential with density U(w)dsw on L. Let V(z)
be a harmonic function in EQ\J{oo) which is of class C1 up to the unit circle
Lo (where dE0=—Lo), we have

We write these two formulas into the following simple forms:

(6.5) \\dUn=IL(U)+\\dPt\\%, lL0(V)=±

We shall show that these imply the following Grunsky inequality. We consider
a univalent function g(z) in EQ such that g(z)=z+co+c1/z+c2/z2+ ••• at z=oo,
and denote by G the set of all such univalent functions g(z) in Eo.

THEOREM 6.1 (see [4]). Let g(z)<=G. If we set

" & z-ζ kfϊLx zkzι

then we have

(6.6)
N

Σ bkιλkλι
τΓ=i n N->

complex numbers {λn}n=i,2t. .' We call {bk,ι\k,ι the Grunsky coefficients
of g(z).

Proof. It suffices to prove the case when g(z) is univalent on Eo. We put
D=g(E0) and L=g(—Lo) so that dΏ—L. For N>\ we consider the following
functions:

( N ~λ ) — —

Thus, VN{z) and UN(w) are harmonic functions on £0W{°°} and D\J {oo}, re-
spectively. Since (d/dnz)dsz and the Dirichlet integral are invariant under the
conformal mapping w—g(z), we have

\\dVN\\*B,=\\dUN\\%,

2πJL0)LQdn2 dnζ
g(z)-g(ζ)

We denote by PN2{W) the double layer potential with density UN(w)dsw on L.
Applying equations (6.5) for U=UN, V — VN and PΪ—PN2, we have
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= -ho(VN)+IL(UN)+\\dPNJ%

Since
dVN_ N Jn

it follows that

Since {Λn}n is arbitrary, we can replace { } by | | in the last inequality. By
letting n—>oo, we obtain Theorem 6.1. •

In [4], when Grunsky inequality is reduced to equality is studied in the case
that at most a finite number of {λ\n do not vanish. We shall give a necessary
and sufficient condition for this problem under the conditions that

( 0 g(z)^@ is holomorphically extended up to Lo except for a finite point set {Pt}.

(ii) ΣUnKoo.
π=l

We set D=g(E0), L=g(—L0) and K=C\D. By (i), the set K is compact in C
and its boundary dE=—L is a piecewise real analytic smooth curve with a
finite number of edge points {(?*} = {g(Pt)\. It may happen that the interior
K° of K is empty: K°— 0. In this case, as a point set, L is a piecewise real
analytic smooth arc X. We write

(6.9) L=Λ++Λ- and X+=-X~.

Precisely, for u G i " (except for two end points), we find two points
over w. We denote by {bkι}k,ι the Grunsky coefficients of g{z). By Grunsky
inequality we have l/£+l//^ |&*z | for all k, / ^ l . This together with (ii) imply
Σ!k.ι-i\bkiλM<oo. We put θ=l/2 Acg{Σΐtι^ιbkiλM and consider the follow-
ing functions:
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(6.10) V(z)=2»-( Σ - ^ 1 - 1 in Eo, U(w)=V{g-\w)) in D.

By (ii), V(z) is of class C1 up to Lo and £/(w;) is continuous up to L and of class
C1 up to L except for the edge points {Qt}. Under these situations we shall
prove

COROLLARY 6.1. Assume that g(z)<=Q and {λn)n satisfies conditions ( i ) and

(ii). Then Grunsky inequality (6.6) for g(z) and {λn} n is reduced equality, if

and only if

(6.11) K°=9 and U(w+)=U(w~) for w^X.

Proof. We denote by P2(w) the double layer potential with density U(w)dsw

on L, In the proof of Theorem 6.1 we can use the function V(z) of (6.10)
instead of VN{z) of (6.7) to obtain the following formula corresponding to (6.8):

2π bklλkλι + \\dPι2||C
n

It follows that equality holds in (6.6) if and only in ||rf-P2||c=0, or equivalently,

(6.12) P2(w)=con$t. a, 0 on K°, D, respectively.

Note that this formula is true even when K°=0. It thus suffices for Corollary
6.1 to prove that (6.11)^(6.12). We first assume (6.11). Since U(w+)=U(w-)
for Vw<=X, it follows from (6.9) that

——rdsc=Q for Vweiλ

Thus (=4) is proved. For the converse we may assume some Λ^O (w^l), so
that U(w) is non-constant in D by (6.10). If K°Φ®, formula (6.12) and (1) of
Proposition 6.1 imply U{w)—a on dK ( = — L). Consequently, U(w) is the
constant a on D, which is a contradiction. We thus have K°=Q, and (6.9).
Therefore,

for w&C. Let w0<=X\{two edge points}. We find a small disk Φ in C
centered at w0, and denote by cV+(w0) and ^"(WQ) the left and right half sides
of cv along X+, respectively. From (6.12) and (1) of Proposition 6.1, we have,

U(wt)-U(wo)= lim ^-(w)- lim -^-(w)=0.

Thus (4=) is proved. •
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Examples. By the above consideration we can construct many exemples
g(z)^G and {λn} n for which equality holds in (6.6): First consider a piecewise
Cω smooth arc X in the w-plane with a finite number of edge points {Qi\. We
put D=C\X, so that D\J {00} is simply connected and dD=X++X~ such that
there exist w±^X± for w^X (except for two end points). We have a unique
g(z)(=G which transforms Eo onto D. So, g(z) satisfy condition (i). Next let
ψ(w) be a C°° real-valued function in a neighborhood of X in the w-plane such
that ψ(w) is a constant c t near each Qx. We construct the harmonic function
U(w) in Z)w{oo} with boundary values ψ(w) at w±^X±. We set VX2r)=ί/(g(z))
in Eo and consider the Taylor series: V(z)—2ίR{Σ!ι^o(in/zn\ in £ 0 . If we set
λn—nάn ( n = l , 2, •••), then equality holds in (6.6) for these g(z) and {λnln-

(6.13) 2 - 1 ^ - :

n=l ft

In fact, it is clear that

w)) in Zλ
=1 nz"

Since ί/(z) is of class C3 up to the boundary Lo, it follows that + oo>||33/7/3z3|||0

—π Έn=in2(n+l)2(ft+2)|αn|
2, so that Σn=iUnl<°° Consequently, the same

argument as (6.8) is available for this V(z) instead of VN(z), and we obtain

00 I

where P2(w) is the double layer potential with density U(w)dsw for w<=dD.
Since dD=X+-\-X~ and U(w+)=U(w~)=ψ(w) for u/eX, we have P2(w)—0 in
Z), and (I rf/>

a|||?=0. This and Grunsky inequality imply (6.13). •
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