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PSEUDOHERMITIAN IMMERSIONS, PSEUDO-EINSTEIN

STRUCTURES, AND THE LEE CLASS

OF A CR MANIFOLD

ELISABETTA BARLETTA AND SORIN DRAGOMIR

Any nondegenerate CR manifold carrying a fixed contact 1-form is known
to possess (cf. N. Tanaka [T], S. Webster [Wl]) a canonical linear connection
(the Tanaka-Webster connection) parallelizing the Levi form and the maximal
complex structure. This leads to an (already widely exploited, cf. D. Jerison
& J.M. Lee [JL1], [JL2], J.M. Lee [LI], [L2], H. Urakawa [Ul], [U2], etc.)
analogy between CR geometry on one hand, and both Hermitian and conformal
geometry on the other.

To describe our point of view, let M and A be two CR manifolds of CR
dimensions n and N=n + k, k^l, respectively. A CR immersion f:M—>A is
an immersion and a CR map. If / is the inclusion then M is a CR submanifold
of A (a CR hypersurface when k = l). For instance, let M2n+ί be the inter-
section between the sphere S2n+3 and a transverse complex hypersurface in
Cn+2. Then M2n+1 is a CR hypersurface of S2n+S (in particular M2n+1 is strictly
pseudoconvex). Let M be a CR submanifold of A. Then M is rigid in A if
any CR diffeomorphism F: M-^M' onto another CR submanifold M' of A (e.g.
F may be the restriction of a biholomorphic mapping) extends to a CR auto-
morphism of A (e.g. if A^=S2n+3 then F should extend to a fractional linear, or
projective, transformation preserving S2n+3). A theory of CR immersions has
been initiated by S. Webster [W2]. There it is shown that S2n+1 is rigid in
S2n+* if ?z^2. Also, if ?2^3 then any CR hypersurface of S 2 n + 3 is rigid. The
basic idea in [W2] is to endow the ambient space S2n+3 with the Tanaka-
Webster connection (rather than the Levi-Civita connection associated with the
canonical Riemannian structure) and obtain CR analogues of the Gauss-Weingarten
(respectively Gauss-Ricci-Codazzi) equations (from the theory of isometric immer-
sions between Riemannian manifolds). In the end, these could be used to show
that the intrinsic geometry determines the (CR analogue of the) second funda-
mental form of the given CR immersion. The main inconvenience of this
approach seems to be the nonuniqueness of choice of a canonical connection on
the CR submanifold (i.e. the induced and the 'intrinsic' Tanaka-Webster con-
nections of the submanifold do not coincide, in general). In [Dl] we compensate
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for this inadequacy by restricting ourselves to a smaller class of CR immersions,
as follows. Let / : M-+A be a CR immersion between two strictly pseudoconvex
CR manifolds on which contact 1-forms θ and θ have been fixed. Then
f*θ=λθ for some C°° function λ:M-^R. If λ=l then / is called isopseudo-
hermitian (following the terminology in [JJ). An isopseudohermitian immersion
/ : M—>A is a pseudohermitian immersion if /(M) is tangent to the characteristic
direction of (A, θ). If this is the case then (by a result in [Dl]) / is an
isometry (with respect to the Webster metrics of (M, θ) and 04, θ)). Also one
may use the axiomatic description (of the Tanaka-Webster connection) in [T]
to show that the induced and intrinsic connections on M coincide. Moreover,
by a result of H. Urakawa (any CR map f: M-+A satisfying f*T=λTA for
some λ^C°°(M) with T(λ)=0 is harmonic with respect to the Webster metrics
of M and A, cf. Corollary 3.2 in [U3], p. 236) any pseudohermitian immersion
is actually minimal. Cf. also Theorem 7 in [Dl]. The present note is an
application of this theory in connection with the problem of the existence of
pseudo-Einstein pseudohermitian structures (i.e. for which the pseudohermitian
Ricci tensor of the Tanaka-Webster connection is proportional to the Levi form,
cf. J.M. Lee, [LI]) on (locally realizable) CR manifolds. As in [Dl], our main
tool consists of pseudohermitian analogues of the Gauss and Weingarten
equations. In particular, we introduce the concept of normal Tanaka-Webster
connection V1 (of a given pseudohermitian immersion between two strictly
pseudoconvex CR manifolds). When V1 is flat we use the (pseudohermitian
analogues of the) Gauss-Ricci-Codazzi equations to relate the pseudohermitian
Ricci tensors of the Tanaka-Webster connections of the submanifold and ambient
space (cf. Theorem 2). As a corollary, we may regard the Lee class γ(M) (a
cohomology class in the first cohomology group of the given (locally realizable)
CR manifold M with coefficients in the sheaf of CR-pluriharmonic functions
[LI]) as an obstruction toward the existence of pseudohermitian immersions
/ : M-+S2N+ί with a flat normal Tanaka-Webster connection of a strictly pseudo-
convex CR manifold M in an odd dimensional sphere. Our methods are similar
to those in B. Y. Chen & H. S. Lue [CL] (where holomorphic immersions
between Kaehler manifolds are dealt with). We exploit the symmetries of the
curvature tensor field of the Tanaka-Webster connection (rather than the
Riemannian-Christoffel tensor field in [CL]) and deal with the highly compli-
cated character (due to the presence of torsion terms there) of the Bianchi
identities (cf. e.g. (40)). The key points (leading from (52) to (26) in Theorem
2) are Lemma 2 (the (0, 2)-tensor field Ea is proportional to the Levi form of
the submanifold) and a nontrivial cancellation of torsion terms.

As a byproduct of the considerations in section 6 we show (cf. Theorem 4)
the nonexistence of pseudohermitian immersions of Hn(s) (a quotient of the
Heisenberg group by a discrete group of dilations, carrying the contact form
discovered in [D2] in analogy with the Boothby metric of a complex Hopf
manifold, cf. [D3]) into a Tanaka-Webster flat strictly pseudoconvex CR mani-
fold (e.g. HN or UΛtβ). The extension to which one may exploit the analogy
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with the case of holomorphic immersions in [CL] (cf. also our Theorem 3) is
demonstrated at the close of the same section.

Several examples of CR immersions are examinated in section 9. In partic-
ular, CR immersions

(between boundaries of pseudo-Siegel domains in Cn+1 and CN+1 respectively)
arise when looking at the weak pseudoconvexity locus of Dayβ-={(z, w)^CN+1:
2JL 1 | ^ | 2 ^+Im(w;^)~l<0}, cf. [BP]. The authors are grateful to the referee
for drawing their attention upon the works by H. Urakawa and for suggestions
which improved the first version of the present paper.

1. Definitions and basic formulae

Let M be a real (2n+l)-dimensional C°° manifold. A CR structure (of CR
dimension n) on M is a complex subbundle Tli0(M), of complex rank n, of the
complexified tangent bundle CTM=T(M)®C so that

(1) τ l i o ( M ) π r O i l ( M ) = ( θ ) ,

and

(2) [Γ~(T

Here TOtl(M)—T1>o(M) (throughout an overbar denotes complex conjugation).
Also, if E->M is a vector bundle over M then Γ°°(E) denotes the module of
C°° cross-section in E (defined on some open set UQM, to be understood from
the context) and Ex is the fibre in E over x<=M. A pair (M, Th0(M)) is a
CR manifold (of CR dimension n). Its Levi distribution

//(Af)=Re{TliO(Af)ΘTo.i(Af)}

carries the complex structure / : H(M)—>H(M) given by

(3) J(Z+Z)=i(Z-Z),

for any Z<ΞT1>0(M). Here Ϊ=Λ/^1. Let KaT*(M) be the annihilator of
H{M\ i.e. KX={OKBT*(M) :Ker(ώ)^H(M)X] for any I G M . Then K->M is a
real line subbundle of T*(M). Assume from now on that M is orientable.
Then K admits globally defined nowhere zero sections Θ^Γ°°(K) each of which
is referred to as a pseudohermitian structure on M. The Levi form GΘ of
(M, T l i 0(M), θ) is given by

(4) G,{X9Y)=dθ{X,JY)9

for any X, Y^Γ°°(H(M)) and (M, Tlι0(M)) is nondegenerate if Gθ is non-
degenerate for some Θ<=Γ°°(K) (and thus for all). If (M, T1>0(M)) is non-
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degenerate and a pseudohermitian structure θ has been fixed, then there is a
unique globally defined nowhere zero tangent vector field T (the characteristic
direction of dθ) on M transverse to H(M) and satisfying

(5) TJ0=1, Tldθ=0.

Here X J denotes the interior product with the tangent vector field X. Clearly

(6)

Therefore one may extend / to a bundle morphism / : T(M)->T(M) by request-
ing that JT=0. Also, let gβ be the Webster metric, i.e. the semi-Riemannian
metric given by gθ(X, Y)=GΘ(X, Y), gθ(X, T)=0 and gθ{T, T ) = l for any
X, YΪΞH(M). The CR manifold (M, Th0(M)) is strictly pseudoconvex if Gθ is
positive definite for some Θ<=Γ°°(K). If this is the case then gθ is a Riemannian
metric and, as it has been pointed out elsewhere (cf. e.g. [Dl]) the synthetic
object (/, T, θ, gθ) is a contact metric structure on M (in the sense of D. E.
Blair [B], p. 25). In general (/, T, θ, gθ) is not normal, and the obstruction
to normality is the pseudohermitian torsion, a fragment of the torsion field of
the Tanaka-Webster connection which we now recall. Cf. [T], [Wl], any non-
degenerate CR manifold M on which a pseudohermitian structure has been
specified carries a canonical linear connection V satisfying the following axioms :

i) H(M) is parallel with respect to V,

ϋ) V/=0,
iii) Vgθ=0,
iv) ττ+Tor(Z, W)=0 for any Z€ΞTU0(M), WΪΞCTM,

where π+: CTM-*Tί>0(M) is the natural projection associated with the direct
sum decomposition:

(7) CTM=Th o(M)0To, i(Af )0CT,

and Tor is the torsion tensor field of V. The pseudohermitian torsion r of the
Tanaka-Webster connection is the vector bundle valued 1-form on M given by

(8) rZ=Tor(T, X),

for any XGH(M). Cf. [Dl], trace(r)=0 and τ is self-adjoint with respect to
the Webster metric g$. Also (/, T, θ, gθ) in normal (in the sense of [B],
p. 48) iff r=0.

Let (M, Tlt0(M), θ) be nondegenerate and let V̂  be the Levi-Civita connec-
tion of (M, gθ). Then

(9) V'=V

Here Ω9{X9 Y)=gθ{X, JY) and A{X, Y)=gθ(τX, Y) for any X, Y<=H(M). Also
O denotes the symmetric product (e.g. (ΘQJ){X, Y)=1/2{Θ(X)JY + Θ(Y)JX\).
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Furthermore, we shall need the identities

(10) Ύov=2θ/\τ-Ωθ®T,

(11) VT=0,

(12) r / + / r = 0 .

Cf. [T], Let R be the curvature tensor field of the Tanaka-Webster connection
V of (M, Θ). Let Ric(Z, F)=trace {Z->#(Z, X)Y) for any tangent vector fields
Xf Y on M. If {Tu •-, Tn] is a (local) frame of Tli0(Af), the pseudohermitian
Ricci tensor Raj of (M, 0) is given by

/?β ί=Ric(Tβ,

where T«=Ta. Set also

Then Θ is (globally) pseudo-Einstein if

(13) Rafi = λhaβ,

for some C°° function Λ, i.e. the pseudohermitian Ricci tensor of (M, 0) is
proportional to the Levi form (cf. [LI]). If this is the case then λ=(l/n)R
where R—ha$Ra$ is the pseudohermitian scalar curvature of (M, θ). The
pseudo-Einstein condition (13) is not so rigid as its Riemannian counterpart.
Indeed, the Πnd Bianchi identity (associated with the Tanaka-Webster connec-
tion) no longer implies J?=const. (due to the presence of torsion terms). It
should also be pointed out that (unlike the case of Kaehler geometry) Raβ is
only a fragment of Ric (Ric is determined by Raβ and certain covariant deri-
vatives of T, cf. [Dl]). Any odd dimensional sphere S2n+1dCn+1 endowed with
the standard CR structure TltQ(S2n+1)=Tι'°(Cn+1)/ΛCTS2n+1 admits the pseudo-
Einstein pseudohermitian structure c*θ where θ=i/2(3—d)\z\2 and c: S 2 n + 1 cC B + 1 .
Throughout, if X is a complex manifold, then Tlt0(X) denotes its holomorphic
tangent bundle. Also, if Hn = CnxR is the Heisenberg group (cf. e.g. [FS], p.
434-435) and δs: Hn- \0}-+Hn- {0} the dilation by 0 < s < l then G s = {δf : meZ}
acts freely on Hn— {0} as a properly discontinuous group of CR automorphisms
of Hn— {0} so that (cf. [D2], p. 36) the quotient space Hn(s)=(Hn—{0\)/Gs is
a compact CR manifold (of CR dimension n) diffeomorphic to Σ 2 7 lXS\ where
Σ 2 n = { x e # n : 1*1=1} and | x | = ( U | 4 + * 2 ) 1 / 4 is the Heisenberg norm of x=(z, t).
By a result in [D2] the pseudohermitian structure θ= \x\~2{dt+2Σι%=i(xadya—
yadxa)} on Hn(s) is pseudo-Einstein (here x=(z, t), z=(zx, •••, zn), za=xa+iya).

2. Pseudohermitian immersions

Let (M, Tlt0(M)) and 04, Tlι0G4)) be two CR manifolds of CR dimensions n
and N—n+k, respectively. A C°° map / : M-+A is a CR map if
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/*T l i 0 (M)cT l i 0 ( i4) .

Let us assume from now on that (M, Tlt0(M)) and (A, Th0(A)) are strictly
pseudoconvex and specify pseudohermitian structures θ and θ, on M and A
respectively, so that Gθ and G& are positive definite. Let / : M-*A be a CR
map. Then

f*θ=μθ,

for some C°° function μ>0. Assume from now on that / is a CR immersion (i.e.
an immersion and a CR map). A theory of CR immersions (between strictly
pseudoconvex CR manifolds) has been built in [Dlj. We recall that in general
/ is not an isometry with respect to the Webster metrics go and gβ- Yet, if /
is isopseudohermitian (i.e. μ=l), then f*gβ—gθ iff nor(7\)=0. Here TA is the
characteristic direction of dθ and nor*: Tf(x)(A)-*v2k(f)x is the natural projec-
tion with respect to the direct sum decomposition

for any I G M . Here v2k(f)-*M denotes the normal bundle of the given immer-
sion. Such f: M-*A (i.e. a CR immersion with / * Θ = 0 and nor(T^)=0) is
termed pseudohermitian immersion. If this is the case then f*T=TA. Also (cf.
[Dl]) there are natural CR analogues of the Gauss and Weingarten formulae

(14) V%xUY=f*VxY + a(f)(X, Y),

(15) V ^ χ f =

for any X, Y^Γ°°(TM)f feΞΓ°V*(/)). Here V, VA are the Tanaka-Webster
connections of (M, θ), (A, θ), respectively. Also a(f) and a are bilinear and
V1 is a connection in v2k(f), referred to as the normal Tanaka-Webster connection
of /. Unlike the second fundamental form of /, its CR analogue a(f) is not
symmetric, i.e.

(16) a(fXX, Y)-a(f){Y, X)=nor{Tor^(/*Z, f*Y)),

for any X, Y^T(M). Here Tor^ is the torsion tensor field of VΛ. Since
VATA-0 it follows that

a(f)(X, T)=0,

for any X^T(M). We consider the normal bundle valued 1-form Q(f) on M
given by

for any XGT(M). If τA is the pseudohermitian torsion of the Tanaka-Webster
connection VΛ then

(17)

Taking into account (10) and (17), the identity (16) may be also written
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, Y)-a(f){Yy X)=2(θΛQfXX, Y),

for any X, YeT(M). The equations (14)-(15) lead to CR analogues of the
Gauss-Codazzi-Ricci equations

(18) tan{RA(UX, f*Y)f*Z}=R(X, Y)Z+aa(fUX,z)Y-aa(f)(YιZ)X,

(19) nor {RA(f*X,f*Y)f*Z\

=Φx<x{f)W, Z)-(yra(f))(X, Z)+α(/)(Tor(X, Y), Z),

(20) gθ(RA(f*X, f*Y)ξ, η)

, aξX)-gθ(avX, a$Y),

for any X,Y, ZZΞT(M) and any ξ, η£Ξv2k(f). Here tan*: Tf{x)(A)-+ TXM is
the natural projection, x e M , and RA, RL are the curvature tensor fields of VA,
V1, respectively. Note that

(21) gθ(aξX, Y)=geW)(X, Y), ξ).

Therefore (on account of (16)), unlike the Weingarten operator of /, its CR
analogue aξ is not self-adjoint (unless Q(/)=0). Also (by (21)) aξ is H(M)-
valued. As / is a CR map

f*H(M)czH(A),

where JA: H{A)-*H{A) denotes the complex structure of H(A). Next VAJA~0
and (14)-(15) yield

(22) ot(f)(X,JY)=JMf)(X,Y),

(23) ajAξX=JaξXy

(24) VV*=0,

for any Z, Ye=T(M), ξ^v2k(f). Cf. [Dl], f*gθ=gθ yields i,2*(/)c:#G4) so that
/^f makes sense a priori (i.e. before the extension of JA to a (1, l)-tensor field
on A by requesting that JATA=0). Conversely, if V2H(/)X is the orthogonal
complement (with respect to the inner product £e,/u>) of (dxf)H(M)x in H(A)f(x)

and v2H(f)x=v2k(f)x for any x e M , then / is an isometry with respect to the
Webster metrics of (M, θ) and (Λ, θ).

3. CR-pluriharmonic functions and the Lee class

Let MdCn+1 be a real hypersurface. Then T1>o(M)=Tuo(Cn+1)r\CTM is
a CR structure of CR dimension n on M. Such (M, 7\0(M)) is referred to as
an embedded CR manifold. A CR manifold (M, Th0(M)) is locally realizable if
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each point of M admits a neighborhood which is CR isomorphic to some embedded
CR manifold. If (M, 7\0(M)) is a locally realizable CR manifold then pseudo-
Einstein pseudohermitian structures exist (locally) in some neighborhood of every
point of M (cf. Corollary B of [LI]) but there may be obstructions to the
existence of global pseudo-Einstein structures. Let 5* be the sheaf of CR-pluri-
harmonic functions on M, i.e. if UQM is open then u<=&(U) iff w=Re(F) for
some CR-holomorphic function F: U-+C. Then there is a CR-invariant cohomo-
logy class γ{M)^Hλ{M, &) (referred hereafter as the Lee class of M) which
vanishes iff M admits a global pseudo-Einstein structure (cf. [LI], p. 172). A
complex valued #-form η on M is a (0, g)-ίorm if T J η=0 and 7\ 0(M) J η=0.
For instance, if {θ\ •••, θn} is an admissible coframe, i.e. θa are the (local)
1-forms determined by Tβ ]θa=δ%, T ] θa=0 and Tβ j θa=0, then any (0, In-
form η may be written locally as η = ηάθ

ά, where θ"=θ". Let Λ°'q(M) be the
bundle of (0, <7)-forms on M. The tangential Cauchy-Riemann operator is the
differential operator 3M : Γ°°(Λ0 5(M))—Γ°°(Λ°'q+\M)) defined as follows. Let η
be a (0, #)-form on M. Then d^ 77 is the unique (0, #+l)-form which coincides
with dη when restricted to T0.i(M)(g> ••• <g)T0.i(M) (?+l factors). A (0, ?)-form
77 is CR-holomorphic if it satisfies the tangential Cauchy-Riemann equations

Let / : M—>A be a pseudohermitian immersion. Then

(25) 3Mf*η=f*3AV,

for any (0, #)-form η on A Let ^ be the sheaf of CR-pluriharmonic functions
on A. Assume for the rest of this section that / is a homeomorphism on its
image. As a consequence of (25), if DQΛ is open and v(=&A(D) then v°f<=@(V),
where V=f~\DΓ\f(M)). We need to recall the construction of the CR-invariant
cohomology class γ(A)<=H\A, &A) built in [LI], p. 172. Assume from now on
that A is locally realizable (e.g. if either A is compact or N>2, then by results
in L. Boutet De Monvel [BM] (for the compact case) and M. Kuranishi [K], T.
Akahori [A] (for the noncompact case) it follows that (A, Tlt0(A)) is locally
realizable). Then, by a result in [LI], p. 158, there is an open covering W=
{Dj\jE:Σ of A and a pseudo-Einstein pseudohermitian structure θron each DJt

/<=2\ If ItJ: DiΓΛDj-^Dj are inclusions, then Iΐjθj=exp(2Uji)IfiΘt for some C°°
functions U^: D^nD^R. By Proposition 5.1 of [LI], p. 172, Uji^^AiDiίλDj).
Let N(W) be the nerve of 3) (we use the notations and conventions in S.
Goldberg [G], p. 272-275). Let C^C\N(£))y £BA) be the 1-cochain mapping each
1-simplex σ=(DiDj) of N(&) in Uji^^A(rλσ). Then C^Z\N{W\ &A), i.e. C
so built is a 1-cocycle with coefficients in gA. Finally γ(A)<^H\A, &A) is the
equivalence class of \_C~]^Hι(N(Θ), <£A). Note that each pseudohermitian im-
mersion / : M—>A (so that / : M-^f(M) is a homeomorphism) induces a map on
cohomology / * : HP(A, &A)->HP(M, s). Let Cov(^) be the set of all open
coverings of A. Let Γ^HV{A, <PA). Since
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H*(A, g>A = \V£H*(N{£», & A),

there is iZ)e=CovG4) and h*ΞH*{N{3J), &A) so that Γ=[Λ]. Let V^f'K
and set cV={VJ}JeΣ. Then <^eCov(M). Set /*Γ=[/*A] where /*:
HP(N($), &A)-*Hv{N(fV), £) is described as follows. Let CΪΞZV(N(®), £E>A) so
that A = [c] and set /*A = [/**] where / * : CP(N(W), &A)-+CV(N(<V), S>) is
described as follows. Let σ=(F< 7 o ••• VJp) be a ^-simplex of N{fV) and set

(f*c)σ=pfmσ,σc(f*σ),

where f*σ=(DjQ —DJp) while £/**,<, : &A(Γ\f*σ)-+&(ΓΛσ) is given by

for any CR-pluriharmonic function v\ DJoΓΛ -- nDJp->R. It is an elementary
matter to check that the definition of /* doesn't depend (at the various stages)
on the choice of representatives. We may state the following

THEOREM 1. Let f: M-*A be a pseudohermitian immersion (so that f:
M-*f(M) is a homeomorphism) between two strictly pseudoconvex CR manifolds
M and A of CR dimensions n and N=n+k. Assume that both M, A are locally
realizable {e.g. either M, A are compact on n>2). Then

where j : H1(Mf £P)—>H\M, 6) is the map induced on cohomology by the natural
sheaf morphism Q^e (and β is the sheaf of C°° functions on M). Set ψj—f^Θj,
VJ^f-ι(DjΓΛf(M))f jξ=Σ. If each (VJ} ψj) is pseudo-Einstein then f*γ(A)=γ(M)
in particular, if A admits a global pseudo-Einstein structure, then so does M.

Given a pseudohermitian immersion, between two strictly pseudoconvex CR
manifolds (M, θ) and (A, θ) so that θ is pseudo-Einstein, it is natural to ask
(on account of Theorem 1) whether θ is pseudo-Einstein, as well. We obtain
the following

THEOREM 2. Let f: M-+A be a pseudohermitian immersion between two
strictly pseudoconvex CR manifolds (M, θ) and (A, θ). If the normal Tanaka-
Webster connection is flat (i.e. RL=0) then

(26) Raβ=trace{Z*-*RA(Z, f*Ta)f*Tβ\.

In particular, if θ is pseudo-Einstein then θ is pseudo-Einstein, too.

COROLLARY 1. Let M^S2N+1 be a pseudohermitian immersion with a flat
normal Tanaka-Webster connection, of a strictly pseudoconvex CR manifold M in
the standard sphere. Then γ(M)=0.
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4. Consequences of the embedding equations

We shall need the following

LEMMA 1. For any X, Y<=T(M) and any ξ<=v2k(f) the following identity
holds

(27) gθ{aξJX+JaξX, Y)=gθ(JorA(f*X, f*Y), JAS)

+gθ(JorA(f*JX9UY),ξ).

Proof. Using (21), (16), (22) and again (16) we may conduct the following
calculation

ge(aξJX, Y)=gθ(a(f)(JX, Y), ζ)

, JX)+TorA(f*JX, f*Y), ξ)

, X)+TovA{f*JX, f*Y), ξ)

=gθ<jAa(f)(X, Y), ξ)+gΘ(TorA(UJX, UY), ξ)

-gθ<JAnor{ΎoτΛ(f*X, f*Y)\, ξ).
Finally

(28) JA=-I+Θ®TA,

(29) geUAX, jAY)=ge(X, Y)-Θ(X)Θ(Y),

lead to (27). Q.E.D.

Let ξei;2ί(/) so that R^X, Y)ξ=0 for any X, Yt=T(M). Then (20) and (23)
furnish

(30) RA(f*X, UY ξ, jAξ)=gθUaζY, aξX)-gθ(JaζX, aξY).

Throughout R(X,Y;Z,W)=gθ(R(X,Y)Z,W), etc.. Note that (16) may be
restated as

(31) gθ(a$X, Y)=gθ(X, aξY)+gθ(JorA(f*X, UY), ξ).

By (31) and / 2 = - / + ^ ( g ) T we obtain

(32) gθUaζY, aξX)=-gθ(aξJaξX, Y)-gθ(TorA(UY, UJaξX), ξ).

Let us replace X by aξX in (27) of Lemma 1 so that to yield

(33) gθ(aξJaξX, Y)=-ge(Ja\X, Y)+gβ(^orA(UaξX, UY), JAξ)

+gθ(JorA(UJaξX, f*Y), ξ).

Substitution from (33) into (32) now leads to
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(34) gθ(JaξY, aξX)=gθ{Ja%X, Y)-ge<yorA(f*a&, f*Y), /

On the other hand we may replace X by Y and Y by JaζX in (31). The
resulting identity and (33) furnish

(35) gθ(JaζX, asY)=-gθ(JaϊX, Y)+gθ{TorA{f*aζXy /*F), J Aξ).

Finally, by (34)-(35) the (CR analogue of) Ricci's equation (30) becomes

(36) RΛ(f*X, f*Y ξ, JAξ)=2gθ(JalX, Y)-2gθ(TorA(f*aςX, f*Y), JAξ),

for any J , Y<=ΞT(M) and ξ£Ξv2k(f) with the property RL(Xy Y)ξ=0. Let
{ζu -", ξk, JASU -"> Jλξk} be a local orthonormal frame of v2k(f) and \EU •••,
Ezn+i] a local orthonormal frame of T(M), with £ 2 n + 1 = T and Ej<=H(M),
l£j£2n. Let /ί(Z, W0=trace{7-^^(7, Z)W). It is our purpose of compute
tf(/*Z, /*F) for any X, YeT(M). To this end, note that (18) may be restated
as follows

(37) RA(f*X,UY;f*Z,f*W)

= R(X, Y Z, W)+gθ(a(J)<y, W), a{f){X, Z))

-geW)(X,W), a(f)(Y, Z)),

for any X, Y, Z, W^T(M). To compute traces we use

+ Σ RA{ξa, UX f*Y, U+RAUAξa, f*X f*Y,
a-1

We may assume that Ea+n=JEa, l<La^n. Consequently

2 W , £ )=0.

Here a(f) is not the second fundamental form of / (with respect to the Webster
metrics of M and A) but rather its pseudohermitian analogue. Nevertheless (as
observed in the introduction) the 'true* second fundamental form of / is trace-
less as well (and / is a minimal isometric immersion). This is natural since
pseudohermitian immersions appear to behave very much like holomorphic iso-
metric immersions between Kaehlerian manifolds. The implications of minimality
have been discussed in [Dl] (cf. Theorems 7, 8 and 12 there). Next (37) leads to

(38)

- Σ {RA(ξa, f*X f*Y> ξa) + RAUAξa, f*X \ f*Y, JAξa)\
α l

Έgθ(a{f)(X, Et), a(f)(Eι> Y)),
t l
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for any X, YEΞT(M).

5. Proof of Theorem 2

We shall need the 1 s t Bianchi identity for VΛ (cf. e.g. S. Kobayashi & K.
Nomizu [KN], vol. I, p. 135)

(39) Σ R\Vy Z)W= Σ {(WTor^XZ, W)+TorA(ΎorΛ(y, Z\ W)},
vzw vzw

for any V, Z, W<=T(A). Here Σ,vzw denotes the cyclic sum over V, Z, W. Set
V=f*X, Z=JΛf*Y and W=ξa in (39) and take the inner product of the result-
ing identity with JΛξa This procedure leads to

(40) RΛ(f*X, JAUY ξa, JAξa)

=RA(ξa, JAUY f*X, JΛξa)-RA{ξa, f*X JAUY, jA$a)+Ea(X, Y),

where

Ea(X, Y)=ge((Vj,xTorA)(JAf*Y, ξa), JAξa)

UX), JAξa)

, JΛf*Y\ JAξa)

+gθ(ΎorΛ(ΎorA(UX, JAUY), ξa), JAξa)

+gθ{ΎoτA{ΎoτAUAUY, f«), f*X), Λ5«)

+ gθ(ToτA(ΎorA(ξa, UX), JAUY), JΛξβ).
Note that

(41) RA(V, Z)JAW=JAR
A(V, Z)W,

(as a consequence of VΛJA=0) for any V, Z, W(=T(A). By (41) and θ(ξa)=0
we obtain

(42) RΛ(ξa, UX JAUY, JAξa)=RA(ξa, f*X f*Y, ξa).

Next, replace ξ by ξa and Y by JY in (36) so that to obtain (provided R1=0)

(43) RA(f*X, UJY I ξa, JAξa)

=2gβ(alaX, Y)-2gθ(ΎorA(UauX, UJY), JAξa),

for any X, YeT(M). At this point we may use (42)-(43) such that to write
(40) as follows

(44) 2g,(a\aX, Y)-2gθ(Ύor(UaξaX, UJY), JΆξa)

=RA(ξa, JAUY f*X, jAξa)-RA{ξa, f*X UY, ξa)+Ea(X, Y),

for any X, Y^T(M). To deal with the torsion terms in (44) we need the
following
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LEMMA 2. Let Ta=ί/2(Ea-iJEa), l^a^n. Then

(45) Ea(Ta, Tβ)=igθ(τAξa, JAξa)haβ.

The proof of Lemma 2 is a straightforward consequence of

ΎorA(Z, W)=ΎorΛ(Z, W)=0,

ΎoτΛ(Z, W)=iGθ{Z, W)TA,

for any Z,

LEMMA 3. For any X, YZ, W^H(A) the following identity holds

(46) RA(X, Y ;Z,W)

= R\Z, W X, Y)+AΘ(Y, Z)ΩΘ{W, X)+AΘ{X, W)ΩΘ(Z, Y)

+AΘ(W, Y)ΩΘ(X, Z)+AΘ{Z, X)ΩΘ{Y, W),

where AΘ(X, Y)=gθ{τAX, Y).

We shall prove Lemma 3 later on. Using (46) we may compute the first cur-
vature term in (44) as

(47) R\ξa, UJY UX, JAξa)

= R\UX, JAξa ξa, UJY) + Adf*JY, f*X)ΩθUAξa, ξa)

+ Aθ(ξa, JΛξa)Qθ(f*X, f*JY),

for any X, Y<=H(M). Also

(48) R\f*X, JAξ« ξa, f*JY)=-RA(JAξa, f*X f*Y, M . )

Let us substitute from (47)-(48) into (44) and use the identities

Ωθ(f*X,UJY)=-gθ(X,Y),

so that to yield

(49) 2gθ(alaX, Y)-2gθ(ΎoτA(UaξaX, f*JY), JAξa)

=-RAUΛξa, f*X f*Y, jΛξa)-RΛ(ξa, f*X f*Y, f«)

+A(X, JY)-gθ(X, Y)Aθ(ξa, JAξa)+Ea(X, Y),

for any X, Y<=H(M). On the other hand (using (27)) one may show that
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(50) 21Σgθ(a(f)(X, Et), «(/)(£„ Y))
1

= Σ! {2g,{a\aX, Y)+gθ(ΎoτA(UY, UauX), ξa)

-gθ(ΎorΛ(UY, UJauX), JΛζa)}.

Finally, substitution from (49)-(50) into (38) gives

(51) Ric(*, Y)=K(f*X, UY)- Σ {ge(TorA(UJaSaX, /*7), JAξa)
α = l

, f*Y), ξa)-2gθ(TorA(f*aξa, f*JY), JAξa)

-A(X, JY)+g(X, Y)Aθ(ξa, JAξa)-Ea(X, Y)}9

for any X, Y^H(M). Let us extend both sides of (51) by C-linearity to
H(M)®C. It follows that (51) holds for any X, Y e= H(M)®C_ (as both sides
are £(g)C-linear and coincide on real vectors). Set Z = Z , Y = W, with Z,
Γ1 ) 0(M). We obtain

(52) Ric(Z, W)=K(f*Z, f*W)+ Σ {i4β(fα, JAξa)g9{Z9 W)-Ea(Z, W)}.
a l

Finally, we set Z=Ta and W=Tβ in (52) and use (45) of Lemma 2 so that to
yield (26). Q.E.D.

6. Pseudohermitian Ricci curvature and the first Chern class
of the normal bundle

Let (M, θ) and {A, θ) be two strictly pseudoconvex CR manifolds and
/ : M-^A a pseudohermitian immersion. The purpose of the present section is
the converse of Theorem 1, i.e. it may be asked whether (26) yields R±~0.
We establish the following weaker result. Let v2k(f)-*M be the normal bundle
of /. By a result in [Dl], v2k(f)xdH(A)f{x) for any x e M so that JA descends
to a complex structure J1 in v2k(f). Extend J1 by complex linearity to v2k(f)®C
and let v2k(f)U0 be the eigenbundle corresponding to the eigenvalue i. We may
state

THEOREM 3. Let f: M-+A be a pseudohermitian immersion with the property
Raβ=Kaβ, where Kaβ = K (/*Tα, f*Tβ). If the Tanaka-Webster connection of A
has parallel pseudohermitian torsion (VΛτA=Q) then

Throughout, if £->M is a C-vector bundle then c](E)^H2(M; R) denotes its
first Chern class. To prove Theorem 3 we need the following
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LEMMA 4. Let f: M—*A be a pseudohermitian immersion. If the ambient
space A has parallel pseudohermitian torsion then

(53) (VXA)(Y, Z)=gθ(a{f){X, Z\ {Qf)Z)+gθ{{Qf)Y, a(f)(X, Z))9

for any X, Y, Zt=T(M).

The proof of Lemma 4 follows from VAτA=0 and (14)-(15), (17) in a
straightforward manner. Recall that cι (Tlt0M) is represented by (i/2π)dω%
where

dω*=Raιθ*/\βί+Wlβθt/\θ-W%tθt/\θ,

and
Wΐr=Aβr.9h°°,

where
Aaβ.f=<yTfA)<Ta, Tβ)

are the covariant derivatives of the pseudohermitian torsion (with respect to
the Tanaka-Webster connection). Also ωf are the connection 1-forms of V.
Cf. [LI] , p. 162. Let {Θ\ •••, ΘN) be the admissible coframe dual to {Tu --,Tn,
Ci, - , ζ*} where ζa=l/2(ξa-iJAξa). Then f*Θa=θa and f*θa+n=0. Next C l

(T1>0i4) is represented by (i/2π)dΩJj where Ω) are the connection 1-forms of VΛ

and (Aθ)ij,s=0 yields

Finally (53) gives Aaβ<f=0 so that f*c1(TU0A)=c1(TUQM) and the direct sum
decomposition

for each x e M , yields c1(v2*(/)1 °)=0. Q.E.D.

Let f\M-^A be a pseudohermitian immersion. Assume that RΛ—0 (e.g.
A = ^ ) . Then (38) gives

Ric(Z, Y)=-2Σgθ(a(f)(Xf E%)9 a{f){Et, Y))9

or (by computing traces)

(54) 2 / ? = - |

THEOREM 4. There zs no pseudohermitian immersion of

(Hn(s)9 I x I~%\dt+2 jb (x α ^ α -^ α ^^ α ) } )

α Tanaka-Webster flat strictly pseudoconvex CR manifold.

Proof. By a result of [D2], p. 42, we have
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(55) i?^-=(rc + l ) | x Γ 2 | z | 2 / z ^ ,

or (by computing traces)

(56) R=n(n+l)\x\~2\z\\

Assume there is strictly pseudoconvex CR manifold A with RA—0 and a
pseudohermitian immersion / : Hn(s)-+A. Then (56) contradicts (54) and Theorem
4 is completely proved.

We end this section with a remark regarding the analogy with Kahlerian
geometry (cf. [CL], p. 554). Let f: M->A be a pseudohermitian immersion.
Assume that c1(T1>0(M))=0. Then, there is a real 1-form -η on M so that

(57) Γ=dη,

where Γ=(i/2π)dωa

ai_ A C-valued 2-form η on M is a (1, I)-form if T J η=0
and η(Z, W)=η(Z, ΪF)=0 for any Z, T7eT1 ) 0(M). Let Λ ^ W ) be the bundle
of (1, l)-forms on M. Define Lθ : β(M)®C-+Λι'\M) by setting L9f-fΩ0 for
any C°° function f:M-*C. Next we need Aθ: Λlt\M)-*ε(M)(&C given by
( Λ ^ , f)β=(W, Lef)θ for any ΨeiΓ~{Λι>\M)). Here (,)* is the usual L2 inner
product on (M, ^), i.e.

(φ, ώ)θ=:\ (φ, ψ)θΛ(dθ)71,
JM

for any (1, l)-forms φ, φ on M (at least one of compact support) where (φ, φ}
^φaβψ"^ and φ~φaβθaΛθP, φ=ψaβθaΛΘ&, and φaP=ψάP, φ^^—φλμhλRh^K
We may extend Aθ to an operator Aθ: Λ2T*M(g)C-*£(M)(g)C by declaring it
to be zero on A0'2®A2>0 (a (2, 0)-form η is a C-valued 2-form satisfying
To,i(M)Ji7=O). Then

1
θ π '

and we may apply Aθ to (57) so that to yield

(58) -^r-R—n ηo+i div(Z),

where η = ηaθ
a+ηάθ*+η«θ and Z = Z δ T « - Z α T « with Za=haPη-β. The diver-

gence in (58) is taken with respect to the volume form φ—θ/\(dθ)n (i.e.

άiv(Z)φ—Xzφ, where X denotes the Lie derivative). Therefore, if I ηoφ^O
JM

then (54) gives a(f)=0 and thus Rλ=0 (as a consequence of (20)) provided that
RΛ=0. Yet, by a result of [LI], p. 169, if (M, θ) is pseudo-Einstein, one rep-
resentative of Γ is η—{l/2πn)RΘ so that (in view of (54)) the hypothesis
\ ηoφ^O is generically not satisfied. Indeed, let η' be any other real 1-form
JM

so that Γ—dη\ If for instance H\M;R)=0 then -η'^η + du for some C°°

function u:M->R and (58) yields \ T(u)φ=0, that is \ rjΌφ=\ 7
JM T JM ' T JM '
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7. Curvature properties of the Tanaka-Webster connection

The main purpose of this section is to prove Lemma 3. Let (M, θ) be a
nondegenerate CR manifold. Let R, Rθ be the curvature tensor fields of V, V°,
respectively. Taking into account (9) we may derive the following identity

(59) RΘ(X, Y)Z=R(X, Y)Z-(LXΛLY)Z+Θ(Z)S(X, Y)

-gθ(S(X, Y), Z)T+2Θ{Z){Θ/\O){X, Y)

-2gθ((θΛO)(X, Y), Z)T-~ΩΘ{X, Y)JZ,

for any X, Y, ZΪΞT(M). We need to explain the notations in (59). Firstly
L=r+(l/2)/. Next (XΛY)Z=gθ(y, Z)X-gθ(X, Z)Y for any X, YZ^T(M).
Also we set

(60) S(X, Y)=(yxτ)Y-(Vγτ)X.

Finally, the operator O is given by O=τ2+Jτ—(1/4)/, where / denotes the
identical transformation. The proof of (59) is a rather lengthy computation
based on the identities

V/=0, 0 / = O , θ°τ=0,

A{X,JY)=A(JX,Y),

ΩΘ(X, τY)+Ωθ(jX, y)=0,

L*=τ~J, τL*=Lτ,

for any X, Y^T(M) (and is left as an exercise to the reader).
Let X, Y, Zy WΪΞH(M). Take the inner product of (59) with W. This

procedure furnishes

(61) Rβ(X, y Z, W)=R(X, Y Z, W)-gθ((LXALY)Z, W)

+^ΩΘ(X,Y)ΩΘ(Z,W),

for any X, Y, Z, W^H(M). Then we may use (61) twice so that to yield

R{X, Y Z, W)=R(Z, W X, Y)+gθ((LXΛLY)Z, W)

-gβ{{LZ/\LW)X,Y),

which in turn leads to (46) of Lemma 3. The general philosophy of this
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procedure is that one uses the known symmetries of the Riemann-Christoffel
tensor Rθ

jkim of (M, gθ) via (59), rather than establishing similar properties for
Rjkim- Nevertheless, let us observe that Rjkim+Rkjim^O because i? is a
2-form, and Rjkim+Rjkmi—O because Vgθ=0. The missing property is obviously
Rjkim^Rimjk Any tentative to obtain a CR analogue of Rjkim — Rίmjk passing
through the Bianchi identities (of the Tanaka-Webster connection) would have
to deal with the torsion terms there. As remarked in section 2, Raβ is only a
fragment of Ric and (as a consequence of (59)) we have

Raβ — haβ—— aβ,

(62) Raβ=i(n-l)AΛβ,

jp ζ*a ID D Λ
-/voyS — ^ a β y -** ΛO — -*^00— \) »

Here S°βr are (among) the complex components of S (given by (60)). Also we

set Rθ

aβ=trace{X^>Rθ(X,Ta)Tβ}. The proof of (62) is omitted. Finally, we

wish to show that

(63) 2#=trace(Ric).

Note that (63) was employed to derive the identity (54). By (59) the following
identities hold

(64) Ric(£a, Eβ)=i(n-iχAaβ-Aaβ)+Raβ+Rsβ,

(65) Ric(/£β, Eβ)=-(n-l)(Aaβ+Aaβ)+i(Raβ-Rsβ),

(66) Ric(Ea, JEβ)=-(n-l)(Aaβ+ASβ)+i(βs-Rβa),

(67) Ric(/£β, JEβ)=-i(n-l)(Aaβ-ASβ)+Raβ+Rsβ.

Then trace(Ric)=£^ Ric(£ t, E3), where

p.a + n, β + nz= Q aβ ^a, β + n—. pce + n, β

and the identities (64)-(67) lead to (63). Q. E. D.

8. Proof of Theorem 1

Let CU= {Ua}αG/eCov(M) and uβa(=&(UaΓ\Uβ) so that itβθβ=exp(2uβa)i%θa

where iaβ : U'aΓ\Uβ-*Uβ are inclusions. Then γ(M)(=H\M, £P) is the equivalence
class of Me/PCNCU), &), where c : A(aβ)*->uβa. Let S^eCov(M) so that CW<CU,

Set W={Wa}a&J. There are maps φ: J-+I and ψ: J-+Σ so that
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WadUφ(a)r\Vφίa) for each α e / . Set λa—rtθφ{a) and μa — stψψ{a) where
ra' Wa-^Uφ(a) and sα : Wa->Vψ(a) are inclusions. Note that

(68) k%bλb = QXp(2hba)ktaλa,

where k%b: WaΓ\Wb—>Wb are inclusions and hba — Uβa°rab with a=φ(ά) and
β=φ{b), and rab'WaΓ\WhC.UaΓ\Uβ. In other words hba — pφσ>σ{uβa) where
pφσ.c'.&(Γ\φ°)-*£(Γ\<i) is the restriction map (σ=A(ab)^N(<W)) and φ:NζW)-*
N(<U) the natural simplicial map. If $ : CKNiHJ), SE)-^C\N(?W), &) is the induced
map on cochains, then (φc)σ=hba, and if 0*: HKNCU), 2)-*H\N(W), i?) is the
induced map on cohomology then φ*g=[$c'] with g = [ c ] so that

(one checks that g^φ*g by looking at f as a common refinement of itself
and CU). Both (Wa, λa) and (Wα, ^ α ) are strictly pseudoconvex CR manifolds
so that

(69) μa=exp(2va)λa,

for some va^€(Wa). Let v^C1(N(^W)f β) be given by v: A(a)*-*va. Similar to
(68) we have

(70) ktbμb=εyφ{2hba)kfaμa,

where hba—Uji°Sab with i—ψ(a), j=ψ(b) and sab'-WaΓ\Wb(Z.ViΓ\Vj. Also Myί=
ί V / t , and Λ,: VtΓ\Vj-+DiΓ\DJ is induced by /. Finally (68)-(70) lead to

(71) hba—vb

okab-\-hba—va

okba.

Let j : C\N(HP), £)-*C\N(<W), &) be induced by the natural sheaf morphism
&->£ (i.e. &(U)-+ε(U) is the inclusion, for each U^M open). Then (71) may
be written

jψf*C=δ9v+jφc,
where

δε : C\N(<W), e)-»C\N(W\ β),

is the coboundary operator. Consequently

where / : H\N(?W)> 2)-^H\N(?W)> €)> Finally, as j and φ* (respectively j and
φ*) commute it follows that j(f*γ(A)—γ(M))=0. Note that in general Ker(/)^0
(because B\N(<W)> &)(ZB\N(fW)> £)> strict inclusion). If each μa is pseudo-
Einstein then V α E ^ α ) and (71) may be written

ψf*C=δv+φc,

where δ: C\N(W), ^ - C 2 ( i V W , 5>) is the coboundary operator. Thus
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that is

and Theorem 1 is completely proved.

9. Examples

1) (Heisenberg groups)
Let Hn be the Heisenberg group endowed with the (strictly pseudoconvex)

CR structure spanned by

T - a A.-A-
1 a~~d^+1Za dt'

(the Lewy operators). Fix the contact 1-form θ0 on Hn given by

n

t {zadza—zadza}.
\

The map f : Hn^HN, N=n + k, k^l, induced by the natural inclusion Cn-^CN

(i.e. f(z, f)=(z, 0, t), OeC*) IS a pseudohermitian tmmersion with a flat normal
Tanaka-Webster connection. Indeed, let (w, s)=(wu •••, wN, s) be the natural
coordinates on HN. Then

span the CR structure of HN while

N

θo=ds+ 2

is a contact 1-form on HN (whose corresponding Levi form is positive definite).
Next f*Ta=Wa, f*θo=θo and nor(r^)=0 (here Λ=HN, TA=d/ds) by straight-
forward calculation. Finally i? 1 =0 as a consequence of (20) (the CR analogue
of the Ricci equation) for A—HN.

2) (Quotients of Heisenberg groups by discrete groups of dilations)
Let Hn(s), 0 < s < l , carry the CR structure induced by the covering map

π: Hn—{0}-+Hn(s), and the contact 1-form θ given by

(72) θπix)=\x\-2ΘQ,Λdxπ)-\

for any x^Hn- {0}. The map F: Hn(s)->HN(s) induced by f: Hn- {0}-*HN- {0}
(i.e. F°π—Πof, where Π: HN— {0}-*HN(s) is the natural covering map) is a
pseudohermitian immersion. Indeed, if HN(s) is endowed with the contact 1-form
θ given by

(73)
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for any XEΞHN-{0} then |/(x) | = |x | , *<=#„, yields F*<9=0 (i.e. F is iso-
pseudohermitian). Moreover, we may write (72)-(73) as

θ=e2uθ0, θ=e2Uθ0,

(with ί/^ogl-XΊ"1 and u=U f). Therefore, the characteristic directions T and
TA of (J/n(s), 0) and (HN(s), θ) are respectively given by

Note that

and

where Φ(w, s)—\w\2-\-is (note that Φ is CR-holomorphic). Finally

Ua°f=Ua, Ua°f=Ua,

and
__ 1 _

(where φ—Φ°f) yield f*T—TA. Next, let us compute the curvature of the
normal Tan aka-Webster connection V1 of F. We perform our task in a more
general setting, as follows. Let f:M—*Ά be a pseudohermitian immersion
between (Af, 0) and {A, Θ) and set Θ=e2uθ, θ=e2Uθ with USΞC~(A), u=U*f.
Readily f*θ=θ. Set

where T is the characteristic direction of (M, 0). As Ua°f=ua we obtain

for any x ε M . ̂ Thus f*T~TA (i.e. / /s α pseudohermitian immersion from
(M, <?) into (A, θ)) if and only if ζff(t/)=O. Let us look now at the relation
between V1 and Vx (the normal Tan aka-Webster connection of (M, θ) in {A, θ)).
Let v2k{f)x be the orthogonal complement (with respect to #$,/<*>) of (dxf)Tx(M)
in T / U)G4), for any x e M Then 02k(f)x=v2k(f)x, although the Webster metrics
gθ, gθ are not conformally related.

Assume from now on that / is a pseudohermitian immersion both as a map
of (M, θ) into (A, θ), respectively of (M, θ) into {A, θ). We need to recall
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LEMMA 5 (cf. [D2], p. 39). Let (M, T l t 0(M), 0, T) be a non-degenerate CR
manifold. Then, under a transformation θ=e2uθ, the Christoff el symbols of the
Tanaka-Webster connection of (TΊi0(M), θ) and (T l i 0(M), θ) are related by

where uat

σ~uajh
σK

Using Lemma 5, the identity (15) and

for any X*ΞX(M), f eΓ°V*(/)) , we find

(74) v^ζα-V^-

If M=Hn and A=HN we have VΛζa=0 and thus 7 ^ = 0 . Thus (by (74)) if
M=Hn(s) and A~HN(s) the normal Tanaka-Webster connection of F is given by

(75)

with ί/=log|jc|""1. Next (as a consequence of (75)) we may use the identities

[Ta, T/,]=0,

[Tβ, 7>] = - 2 ^ ~ ,

and

so that to yield

(76) R ± ( β

and

Rλ(Ta, 7»C«= {-

Finally, taking into account the identities
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ua=-γ I x I ~4zaφ, Tβ(ua)=-— I x I ~4δaβφ,

l Γ 4 ί #

it follows that

(77) K (1 t

Summing up, the pseudohermitian immersion F: Hn(s)^HN(s) has (by (77)) RλΦθ.

However (55) yields Kaf=λRaβ with λ=(N+l)/(n+l).

3) (Pseudo-Si eg el domains)

Let (a, β)—(au •••, an, β)<=Z++1 be a fixed multiindex and Datβ={(zlf •••,
^ n , w ; ) e C n + 1 : Σ ? = = i | ^ | 2 ^ + I m ( w ^ ) - l < 0 } (cf. [BP]). Then Z> l t l is the Siegel
domain in Cn+1 (and dDιΛ^Hn). Assume β>l from now on. The boundary
dDa>β of Da>β inherits a CR structure (as a real hypersurface of Cn+1) spanned by

(78) T^4τ-

in some neighborhood of wΦO where

Hence we have the commutation relations

IT,, T»]=0,

(79, cr. r,]=f { ^ ^ ΐ +

Endow 9Dα i j S with the pseudohermitian structure θ = θa>β given by

(80) θ=βw?- 1dw+βwt-1dw+2i Σ

where

Therefore the Levi form of (dDa,β, θ) is diagWi, •••, ̂ n ) where

Therefore, if a3>l, l^ίj<n, then Gθ is degenerate at each point of U?=iM?,
where M3 is the trace of the complex hyperplane Lj={(z, w):zj =0\ on the
boundary of Da>β. Next Uaιβ=dDa>β—({JJ

Ίι=ιMj) (an open subset of dDa>β) is a
strictly pseudoconvex CR manifold. The characteristic direction T of
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is g i v e n b y

Note that (79) may be written

Also

Using (A.3HA.5) in [D2], p. 48, we derive the (Christoffel symbols of the)
Tanaka-Webster connection of (Ua>β, θ)

(81) ΓU^^^δjkδjs, ΓJ-*=0, Γ!*=0.

Therefore (Ua>β, θ) has a vanishing pseudohermitian torsion (r=0). As a

straightforward consequence of (81) the Tanaka-Webster connection of (Ua>β, θ)

is flat (R=0).

Finally we look at the structure of the points of weak pseudoconvexity of

dDa>β. Let l<p^n and set MJv..Jp^dDa>βΓ\LHr\ ••• Γ\LJp. Then

(a d i f f e o m o r p h i s m ) , w h e r e aJv..Jp=(aι, •••, α ; i , •••, α^^, •••, an). A n a t u r a l ques-

t ion is h o w d o e s MJv..Jp s i t in dDa>β i .e. e q u i v a l e n t l y s t u d y t h e g e o m e t r y of t h e

immersion f: dD(av...>ak)tβ->dDaιβ induced by the natural map CkxC->CnxC,

{z, w)^(zy 0, w), O e C * , 0<k<n. Using (78) one may show that / is a CR

immersion. Finally (80) yields f*θa,β — θ(av-,ak),β i.e / is isopseudohermitian.
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