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PSEUDOHERMITIAN IMMERSIONS, PSEUDO-EINSTEIN
STRUCTURES, AND THE LEE CLASS
OF A CR MANIFOLD

ELISABETTA BARLETTA AND SORIN DRAGOMIR

Any nondegenerate CR manifold carrying a fixed contact 1-form is known
to possess (cf. N. Tanaka [T], S. Webster [W1]) a canonical linear connection
(the Tanaka-Webster connection) parallelizing the Levi form and the maximal
complex structure. This leads to an (already widely exploited, cf. D. Jerison
& J.M. Lee [JL1], [JL2], J.M. Lee [L17, [L2], H. Urakawa [Ul], [U2], etc.)
analogy between CR geometry on one hand, and both Hermitian and conformal
geometry on the other.

To describe our point of view, let M and A be two CR manifolds of CR
dimensions n and N=n-+k, k=1, respectively. A CR immersion f: M—A is
an immersion and a CR map. If f is the inclusion then M is a CR submanifold
of A (a CR hypersurface when k=1). For instance, let M***! be the inter-
section between the sphere S?"** and a transverse complex hypersurface in
C™*?, Then M?®"*! is a CR hypersurface of S?**® (in particular M?"*! is strictly
pseudoconvex). Let M be a CR submanifold of A. Then M is rigid in A if
any CR diffeomorphism F: M—M’ onto another CR submanifold M’ of A (e.g.
F may be the restriction of a biholomorphic mapping) extends to a CR auto-
morphism of A (e.g. if A=S%"** then F should extend to a fractional linear, or
projective, transformation preserving S®**%). A theory of CR immersions has
been initiated by S. Webster [W2]. There it is shown that S***! is rigid in
S#rts if n=2. Also, if n=3 then any CR hypersurface of S*"*® is rigid. The
basic idea in [W2] is to endow the ambient space S®**** with the Tanaka-
Webster connection (rather than the Levi-Civita connection associated with the
canonical Riemannian structure) and obtain CR analogues of the Gauss-Weingarten
(respectively Gauss-Ricci-Codazzi) equations (from the theory of isometric immer-
sions between Riemannian manifolds). In the end, these could be used to show
that the intrinsic geometry determines the (CR analogue of the) second funda-
mental form of the given CR immersion. The main inconvenience of this
approach seems to be the nonuniqueness of choice of a canonical connection on
the CR submanifold (i.e. the induced and the ‘intrinsic’ Tanaka-Webster con-
nections of the submanifold do not coincide, in general). In [D1] we compensate
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for this inadequacy by restricting ourselves to a smaller class of CR immersions,
as follows. Let f: M—A be a CR immersion between two strictly pseudoconvex
CR manifolds on which contact 1-forms # and ©® have been fixed. Then
f*©=40 for some C= function A: M—R. If 2=1 then f is called isopseudo-
hermitian (following the terminology in [J]). An isopseudohermitian immersion
f: M—A is a pseudohermitian immersion if f(M) is tangent to the characteristic
direction of (A4, @). If this is the case then (by a result in [D1]) f is an
isometry (with respect to the Webster metrics of (M, 8) and (A, @)). Also one
may use the axiomatic description (of the Tanaka-Webster connection) in [T]
to show that the induced and intrinsic connections on M coincide. Moreover,
by a result of H. Urakawa (any CR map f: M—A satisfying f«T=2aT, for
some A€ C>(M) with T(1)=0 is harmonic with respect to the Webster metrics
of M and A, cf. Corollary 3.2 in [U3], p. 236) any pseudohermitian immersion
is actually minimal. Cf. also Theorem 7 in [D1]. The present note is an
application of this theory in connection with the problem of the existence of
pseudo-Einstein pseudohermitian structures (i.e. for which the pseudohermitian
Ricci tensor of the Tanaka-Webster connection is proportional to the Levi form,
cf. J.M. Lee, [L1]) on (locally realizable) CR manifolds. As in [D1], our main
tool consists of pseudohermitian analogues of the Gauss and Weingarten
equations. In particular, we introduce the concept of normal Tanaka-Webster
connection V* (of a given pseudohermitian immersion between two strictly
pseudoconvex CR manifolds). When V* is flat we use the (pseudohermitian
analogues of the) Gauss-Ricci-Codazzi equations to relate the pseudohermitian
Ricci tensors of the Tanaka-Webster connections of the submanifold and ambient
space (cf. Theorem 2). As a corollary, we may regard the Lee class y(M) (a
cohomology class in the first cohomology group of the given (locally realizable)
CR manifold M with coefficients in the sheaf of CR-pluriharmonic functions
[L1]) as an obstruction toward the existence of pseudohermitian immersions
f: M—S?Y+! with a flat normal Tanaka-Webster connection of a strictly pseudo-
convex CR manifold M in an odd dimensional sphere. Our methods are similar
to those in B.Y. Chen & H.S. Lue [CL] (where holomorphic immersions
between Kaehler manifolds are dealt with). We exploit the symmetries of the
curvature tensor field of the Tanaka-Webster connection (rather than the
Riemannian-Christoffel tensor field in [CL]) and deal with the highly compli-
cated character (due to the presence of torsion terms there) of the Bianchi
identities (cf. e.g. (40)). The key points (leading from (52) to (26) in Theorem
2) are Lemma 2 (the (0, 2)-tensor field E, is proportional to the Levi form of
the submanifold) and a nontrivial cancellation of torsion terms.

As a byproduct of the considerations in section 6 we show (cf. Theorem 4)
the nonexistence of pseudohermitian immersions of H,(s) (a quotient of the
Heisenberg group by a discrete group of dilations, carrying the contact form
discovered in [D2] in analogy with the Boothby metric of a complex Hopf
manifold, cf. [D3]) into a Tanaka-Webster flat strictly pseudoconvex CR mani-
fold (e.g. Hy or U, g). The extension to which one may exploit the analogy
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with the case of holomorphic immersions in [CL] (cf. also our Theorem 3) is
demonstrated at the close of the same section.

Several examples of CR immersions are examinated in section 9. In partic-
ular, CR immersions

al)(al, e ag), ﬁ_’aD(al,-n. apn), B>

(between boundaries of pseudo-Siegel domains in C™*' and C¥*!' respectively)
arise when looking at the weak pseudoconvexity locus of D, g={(z, w)eC¥**:
3,1z, 1%%+Im(wf)—1<0}, cf. [BP]. The authors are grateful to the referee
for drawing their attention upon the works by H. Urakawa and for suggestions
which improved the first version of the present paper.

1. Definitions and basic formulae

Let M be a real (2n-+1)-dimensional C* manifold. A CR structure (of CR
dimension n) on M is a complex subbundle 7', (M), of complex rank 7, of the
complexified tangent bundle CTM=T(M)QC so that

(1) T1,o(MYNT,,(M)=(0),
and
(2) [Ty, o (M), I'*(T1,o(M)IST'=(T1,o(M)).

Here T, (M)=T, (M) (throughout an overbar denotes complex conjugation).
Also, if E—M is a vector bundle over M then ["(E) denotes the module of
C*= cross-section in E (defined on some open set US M, to be understood from
the context) and E, is the fibre in E over x&M. A pair (M, T, (M)) is a
CR manifold (of CR dimension n). Its Levi distribution

H(M)=Re (T, M)DT, (M)}
carries the complex structure J: HM)—H(M) given by
(3) JZ+2D)=iZ—Z),

for any Z&T, (M). Here i=+—1. Let KCT*(M) be the annihilator of
HM), ie. K.={wsT*M): Ker(w)2H(M),} for any x&M. Then K—M is a
real line subbundle of T*(M). Assume from now on that M is orientable.
Then K admits globally defined nowhere zero sections § =1"=(K) each of which
is referred to as a pseudohermitian structure on M. The Lew: form Gy of
(M, T,,(M), 6) is given by

(4) GoX, Y)=d0(X, JY),

for any X,Yel(HM)) and (M, T, M)) is nondegenerate if G, is non-
degenerate for some #</(K) (and thus for all). If (M, T,,M)) is non-
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degenerate and a pseudohermitian structure @ has been fixed, then there is a
unique globally defined nowhere zero tangent vector field T (the characteristic
direction of d@) on M transverse to H(M) and satisfying

(5) T160=1,T |]d6=0.
Here X | denotes the interior product with the tangent vector field X. Clearly
(6) T(M)=H(M)®RT.

Therefore one may extend / to a bundle morphism J: T(M)—T(M) by request-
ing that JT=0. Also, let g, be the Webster metric, i.e. the semi-Riemannian
metric given by g¢(X, YV)=GoX,Y), g¢X, T)=0 and g4T, T)=1 for any
X,YeHM). The CR manifold (M, T, (M)) is strictly pseudoconvex if G, is
positive definite for some § /'=(K). If this is the case then g, is a Riemannian
metric and, as it has been pointed out elsewhere (cf. e.g. [D1]) the synthetic
object (J, T, 8, go) is a contact metric structure on M (in the sense of D.E.
Blair [B], p. 25). In general (J, T, 0, g¢) is not normal, and the obstruction
to normality is the pseudohermitian torsion, a fragment of the torsion field of
the Tanaka-Webster connection which we now recall. Cf. [T], [W1], any non-
degenerate CR manifold M on which a pseudohermitian structure has been
specified carries a canonical linear connection V satisfying the following axioms :

i) H(M) is parallel with respect to V,
i) vJj=0,
iii) Vge=0,
iv) =m,.Tor(Z, W)=0 for any Z&T, (M), WeCTM,
where w,: CTM—T, (M) is the natural projection associated with the direct
sum decomposition :

(7) CTM=T, (M)DT o, (M)SCT,

and Tor is the torsion tensor field of V. The pseudohermitian torsion ¢ of the
Tanaka-Webster connection is the vector bundle valued 1-form on M given by

(8) tX=Tor(T, X),

for any XeH(M). Cf. [D1], trace(r)=0 and 7 is self-adjoint with respect to
the Webster metric g4. Also (J, T, 0, gs) in normal (in the sense of [B],
p. 48) iff z=0.

Let (M, T, o(M), ) be nondegenerate and let V? be the Levi-Civita connec-
tion of (M, gy). Then

(9) VO =V+ (500 A)RT+@0+00).

Here 24X, Y)=gs(X, JY) and AX, Y)=ge(zX, Y) for any X, YeH(M). Also
(® denotes the symmetric product (e.g. (0O))X, Y)=1/2{6(X)JY +0( )] X}).
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Furthermore, we shall need the identities

(10) Tor=20 At—82,QT,
(11) VT =0,
12) ]+ Jr=0.

Cf. [T]. Let R be the curvature tensor field of the Tanaka-Webster connection
V of (M, 0). Let Ric(X, Y)=trace{Z—R(Z, X)Y'} for any tangent vector fields
X,Y on M. If {T,, ---, T,} is a (local) frame of T, (M), the pseudohermitian
Ricei tensor R, g of (M, 6) is given by

R,g=Ric(T,, Tp),
where Tz=T,. Set also
haE:GB(TaJ Tﬁ)'

Then 6 is (globally) pseudo-Einstein if
(13) Rog=Ahqg,

for some C*= function A, i.e. the pseudohermitian Ricci tensor of (M, ) is
proportional to the Levi form (cf. [L1]). If this is the case then A=(1/n)R
where th“f‘}Ra,; is the pseudohermitian scalar curvature of (M, 8). The
pseudo-Einstein condition (13) is not so rigid as its Riemannian counterpart.
Indeed, the IInd Bianchi identity (associated with the Tanaka-Webster connec-
tion) no longer implies R=const. (due to the presence of torsion terms). It
should also be pointed out that (unlike the case of Kaehler geometry) R,z is
only a fragment of Ric (Ric is determined by R,s and certain covariant deri-
vatives of 7, cf. [D1]). Any odd dimensional sphere S***'cC"*! endowed with
the standard CR structure T ((S***)=T"%C**")YN\CTS5*"**' admits the pseudo-
Einstein pseudohermitian structure ¢*@ where 6=:/2(6—0)|z|? and ¢: S?**'cCC"*..
Throughout, if X is a complex manifold, then 7%°%X) denotes its holomorphic
tangent bundle. Also, if H,=C"XR is the Heisenberg group (cf. e.g. [FS], p.
434-435) and d,: H,— {0} > H,— {0} the dilation by 0<s<1 then G;={07: mcZ)
acts freely on H,— {0} as a properly discontinuous group of CR automorphisms
of H,— {0} so that (cf. [D2], p. 36) the quotient space H,(s)=(H,—{0})/G, is
a compact CR manifold (of CR dimension n) diffeomorphic to >}** X S*, where
Ser={xeH,:|x|=1} and |x|=(]z|*+1*)"* is the Heisenberg norm of x=(z, t).
By a result in [D2] the pseudohermitian structure §=|x|*{dt+23%_,(x*dy*—
yedx%)} on H,(s) is pseudo-Einstein (here x=(z, t), z=(z", ---, 2"), 2*=x%+iy ).

2. Pseudohermitian immersions

Let (M, T, «(M)) and (A, T (A4)) be two CR manifolds of CR dimensions n
and N=n+Fk, respectively. A C~ map f: M—A is a CR map if
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F5T 1 o M)TT o(A).

Let us assume from now on that (M, T ,(M)) and (A, T, ,(A)) are strictly
pseudoconvex and specify pseudohermitian structures # and @, on M and A
respectively, so that G, and Gg are positive definite. Let f: M—A be a CR
map. Then

f*0=pb,

for some C* function #>0. Assume from now on that f is a CR immersion (i.e.
an immersion and a CR map). A theory of CR immersions (between strictly
pseudoconvex CR manifolds) has been built in [D1]. We recall that in general
f is not an isometry with respect to the Webster metrics gy and ge. Yet, if f
is isopseudohermitian (i.e. p=1), then f*gg=g, iff nor(T 4)=0. Here T, is the
characteristic direction of d® and nor, : T ;) (A)—v**(f), is the natural projec-
tion with respect to the direct sum decomposition

Ty (A)=[(d:NT (M) IV (f)a,

for any xeM. Here v**(f)—M denotes the normal bundle of the given immer-
sion. Such f:M—A (i.,e. a CR immersion with f*©=6 and nor(T,)=0) is
termed pseudohermitian immersion. If this is the case then f4T=T,. Also (cf.
[D1]) there are natural CR analogues of the Gauss and Weingarten formulae

(14) Vi f«Y =F+VxY +a(f)X, V),
(15) Vixb=—fxa:X+V3,

for any X, YelI'(TM), é&I"=0**(f)). Here V, V4 are the Tanaka-Webster
connections of (M, 6), (A4, ©), respectively. Also a(f) and a are bilinear and
V* is a connection in v**(f), referred to as the normal Tanaka-Webster connection
of f. Unlike the second fundamental form of f, its CR analogue a(f) is not
symmetric, i.e.

(16) a(f) X, Y)—a(f)Y, X)=nor {Tors(f+X, f+Y)},

for any X,YeT(M). Here Tor, is the torsion tensor field of V4. Since
VAT 4=0 it follows that
a(f) X, T)=0,

for any XeT(M). We consider the normal bundle valued 1-form Q(f) on M
given by
QUNX=a(fXT, X),

for any X&T(M). If 7, is the pseudohermitian torsion of the Tanaka-Webster
connection V4 then

17 tafsX=frX+Q(N)X.

Taking into account (10) and (17), the identity (16) may be also written
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a(f )X, Y)—a()H)Y, X)=20 NQ KX, Y),

for any X, YeT(M). The equations (14)-(15) lead to CR analogues of the
Gauss-Codazzi-Ricci equations

(18) tan {RA(f+X, f«Y)f+Z} =R(X, Y)Z+a . x. Y —GacnH . 00X,

19) nor {RA(f+X, f+Y)f+Z}
=(Vxa(NY, Z)=Vya(fNX, Z)+a(f)(Tor(X, Y), 2),

(20 go(RA(f+X, f+Y)E, 1)
=go(R* (X, V)& n+gela,Y, aX)—go(a,X, a;Y),
for any X,Y, Z€T(M) and any &, pey**(f). Here tan,: T ;,(A)—-T .M is

the natural projection, x&M, and R4, R* are the curvature tensor fields of V4,
V+, respectively. Note that

@D go(aeX, Y)=go(a(f)(X, Y), §).

Therefore (on account of (16)), unlike the Weingarten operator of f, its CR
analogue a; is not self-adjoint (unless Q(f)=0). Also (by (21)) a. is H(M)-
valued. As f is a CR map

f+HM)C H(A),

f*°]=]A°f*’

where J4: H(A)—H(A) denotes the complex structure of H(A). Next V4]J,=0
and (14)-(15) yield

(22) (X, JY)=Jsa(/ )X, Y),
(23) aseX=JacX,
(24) V+J4=0,

for any X, YT (M), év?*(f). Cf.[D1], f*ge=gy vields v?*(f)C H(A) so that
J4& makes sense a priori (i.e. before the extension of J, to a (1, 1)-tensor field
on A by requesting that J,7,=0). Conversely, if v%(f), is the orthogonal
complement (with respect to the inner product ge, ;(x) of (d.f)H(M), in H(A);
and V¥(f).=v**(f). for any x&M, then f is an isometry with respect to the
Webster metrics of (M, ) and (4, 6).

3. CR-pluriharmonic functions and the Lee class

Let MCC™' be a real hypersurface. Then T, (M)=T*%C**YN\CTM is
a CR structure of CR dimension n on M. Such (M, T, (M)) is referred to as
an embedded CR manifold. A CR manifold (M, T, (M) is locally realizable if
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each point of M admits a neighborhood which is CR isomorphic to some embedded
CR manifold. If (M, T, ((M)) is a locally realizable CR manifold then pseudo-
Einstein pseudohermitian structures exist (locally) in some neighborhood of every
point of M (cf. Corollary B of [L1]) but there may be obstructions to the
existence of global pseudo-Einstein structures. Let & be the sheaf of CR-pluri-
harmonic functions on M, i.e. if USM is open then usPU) iff u=Re(F) for
some CR-holomorphic function F:U—C. Then there is a CR-invariant cohomo-
logy class y(M)e H'(M, &) (referred hereafter as the Lee class of M) which
vanishes iff M admits a global pseudo-Einstein structure (cf. [L1], p. 172). A
complex valued g-form 7 on M is a (0, g)-form if T | =0 and T, (M) | p=0.
For instance, if {8, ---, 8"} is an admissible coframe, i.e. §* are the (local)
1-forms determined by T |0%=03, T J6“=0 and T'5 | §*=0, then any (0, 1)
form 7 may be written locally as p=7;0% where #%=0=. Let A“Y(M) be the
bundle of (0, g)-forms on M. The tangential Cauchy-Riemann operator is the
differential operator dy : ["(A*Y(M))—1"=(A****(M)) defined as follows. Let %
be a (0, ¢)-form on M. Then oy is the unique (0, g+1)-form which coincides
with dy when restricted to T4 (M) -+ T, (M) (¢g+1 factors). A (0, g)-form
7 is CR-holomorphic if it satisfies the tangential Cauchy-Riemann equations

5M77 :0 .
Let f: M—A be a pseudohermitian immersion. Then
(25) ouf*n=r*0am,

for any (0, g)-form 7 on A. Let @, be the sheaf of CR-pluriharmonic functions
on A. Assume for the rest of this section that f is a homeomorphism on its
image. As a consequence of (25), if DS A is open and v P4(D) then ve feP(V),
where V=" DN f(M)). We need to recall the construction of the CR-invariant
cohomology class y(A)e H'(A, @,4) built in [L1], p. 172. Assume from now on
that A is locally realizable (e.g. if either A is compact or N>2, then by results
in L. Boutet De Monvel [BM] (for the compact case) and M. Kuranishi [K], T.
Akahori [A] (for the noncompact case) it follows that (A, T, ,(A)) is locally
realizable). Then, by a result in [L1], p. 158, there is an open covering 9=
{D;}jes of A and a pseudo-Einstein pseudohermitian structure @, on each D,,
jed. If I,: D;,N\D;—D, are inclusions, then /%60 ,=exp(2U;;)[%0, for some C*
functions U;;: D;N\D;—R. By Proposition 5.1 of [L1], p. 172, U;;€@4(D:N\D,).
Let N(9®) be the nerve of 9 (we use the notations and conventions in S.
Goldberg [G], p. 272-275). Let CeC'(N(D), ¥, be the l-cochain mapping each
1-simplex o=(D;D;) of N(D) in Uj;eP4Nc). Then C€Z(N(D), Py), i.e. C
so built is a l-cocycle with coefficients in @,. Finally y(A)eHY (A, P,) is the
equivalence class of [C]e H'(N(9), @,). Note that each pseudohermitian im-
mersion f: M—A (so that f: M—f(M) is a homeomorphism) induces a map on
cohomology f*: H?(A, ®,)—H?(M, ). Let Cov(A) be the set of all open
coverings of A. Let 'eH?(A, 2,). Since
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H?(A, @ )=lim H*(N(9), 2.),

there is 9=Cov(A4) and he H*(N(D), @) so that '=[h]. Let V,=f"*D;Nf(M))
and set V={V,};es. Then WeCov(M). Set f*['=[f*h] where f*:
H?*(N(9), ®)—HP(N(V), @) is described as follows. Let ¢c=Z?(N(9D), @,) so
that h=[c] and set f*h=[f*c] where f*:CP(N(D), L4)—C?(N(V), L) is
described as follows. Let a=(V, - V,,) be a p-simplex of N(<V) and set

(f*c)o'zﬂf*a, trc(f*a)l
where f*e=(D,, - D,,) while 07,0, 5: Pa(Nfx0)—L(N0) is given by

Prxs, sW)=0vof,

for any CR-pluriharmonic function v: D, f\D,p—>R. It is an elementary
matter to check that the definition of f* doesn’t depend (at the various stages)
on the choice of representatives. We may state the following

THEOREM 1. Let f:M—A be a pseudohermitian immersion (so that f:
M—f(M) is a homeomorphism) between two strictly pseudoconvex CR manifolds
M and A of CR dimensions n and N=n+k. Assume that both M, A are locally
realizable (e.g. either M, A are compact on n>2). Then

[Fr(A)—y(M)eKer()),

where j: H(M, P)—HYM, &) is the map induced on cohomology by the natural
sheaf morphism P—& (and & is the sheaf of C= functions on M). Set ¢;=f*6,,
V,=fD;NfM)), jeX. If each (V,, ¢;)is pseudo-Einstein then f*y(A)=y(M);
in particular, if A admits a global pseudo-Einstein structure, then so does M.

Given a pseudohermitian immersion, between two strictly pseudoconvex CR
manifolds (M, 8) and (A, @) so that @ is pseudo-Einstein, it is natural to ask
(on account of Theorem 1) whether @ is pseudo-Einstein, as well. We obtain
the following

THEOREM 2. Let f:M—A be a pseudohermitian immersion between two
strictly pseudoconvex CR manifolds (M, 8) and (A, @). If the normal Tanaka-
Webster connection is flat (i.e. R*=0) then

(26) R, g=trace{Z —RAZ, f+T )f«T s} .
In particular, if O is pseudo-Einstein then 0 is pseudo-Einstein, too.

COROLLARY 1. Let M—S*™*' be a pseudohermitian immersion with a flat
normal Tanaka-Webster connection, of a strictly pseudoconvex CR manifold M in
the standard sphere. Then y(M)=0.
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4. Consequences of the embedding equations

We shall need the following

LEMMA 1. For any X, YET(M) and any &E<v**(f) the following identity
holds

27) go(aeJX+JaX, Y)=ge(Tor ((f5X, f5Y), J 45)
+go(Tor(fxJX, fxY), &).

Proof. Using (21), (16), (22) and again (16) we may conduct the following
calculation

go(aeJ X, YV)=ge(a()JX, Y), &)
=go(a(NY, JX)+Tors(fxJX, f+Y), &)
=g6(J 4a(f)Y, X)+Toru(f+JX, f+Y), &
=go(J4a(/)X, Y), )+ge(Tora(f«JX, fxY), §)
—ge(J amor {Tor4(f+X, f+Y)}, &).

Finally

(28) Ja=—I1+60QTy,

(29) go(J4X, J4¥)=ge(X, V)—O(X)O(),

lead to (27). Q.E.D.

Let £€v?*(f) so that R*(X, Y)é=0 for any X, YT (M). Then (20) and (23)
furnish

30) RAf+X, f+Y 5§ Jab)=80(JagY, aeX)—go(JaeX, aiY).

Throughout R(X,Y ; Z, W)=gs(R(X, Y)Z, W), etc.. Note that (16) may be
restated as

@D 80(aeX, Y)=go(X, aeY)+go(Tora(f+X, f+Y), &).

By (31) and j?°=—I4+0®T we obtain

(32) go(JagY, aeX)=—go(ag) acX, Y)—go(Tor,(f+Y, fxJaeX), §).

Let us replace X by a.X in (27) of Lemma 1 so that to yield

33 golagJacX, Y)=—go(JadX, Y)+ge(Tors(fxaeX, fxY), J46)
+ge(Tora(fxjaeX, f+Y), &).

Substitution from (33) into (32) now leads to
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(34) go(Jagy, aeX)=go(JakX, Y)—ge(Tor(fxaeX, f+Y), J4).
On the other hand we may replace X by Y and Y by Ja.X in (31). The
resulting identity and (33) furnish

(35) go(JaeX, aY)=—go(JaiX, Y)+ge(Tor(f«xaeX, f+Y), J48).
Finally, by (34)-(35) the (CR analogue of) Ricci’s equation (30) becomes
(36) RAf+X, fxY ;& Ja8)=2g¢(JaiX, Y)—2g¢(Tor « fxaeX, fxY), ] ),

for any X,YeT(M) and &<u**(f) with the property R*(X,Y)é=0. Let
{&1, -+, Er, J4E1, -+, J4E:} be a local orthonormal frame of v?*(f) and {E,, -,
E;..i} a local orthonormal frame of T'(M), with E,,.,=T and E;€HM),
1<752n. Let K(Z, W)=trace{V—RA(V, Z)W}. 1t is our purpose of compute
K(f+«X, f+Y) for any X, Y&T(M). To this end, note that (18) may be restated
as follows

37 RAf+X, f4Y ; f+Z, fxW)
=RX,Y ; Z, W)+ge(a(/)Y, W), a(/)X, Z))
—ge(a( )X, W), ()Y, 2)),
for any X, Y, Z, WeT(M). To compute traces we use

n+

K(f+X, f+Y)= 3 RA(f+E., f4X ; f+Y, f5E.)

1=1

+ 3} RAG, f5X 5 1Y, G+ R s f3X 5 £, T}

We may assume that E,,,=JE,, 1<a<n. Consequently
2n+1
El a(f(E,, E,)=0.

Here a(f) is not the second fundamental form of f (with respect to the Webster
metrics of M and A) but rather its pseudohermitian analogue. Nevertheless (as
observed in the introduction) the ‘true’ second fundamental form of f is trace-
less as well (and f is a minimal isometric immersion). This is natural since
pseudohermitian immersions appear to behave very much like holomorphic iso-
metric immersions between Kaehlerian manifolds. The implications of minimality
have been discussed in [D1] (cf. Theorems 7, 8 and 12 there). Next (37) leads to

(38) Ric(X, )=K(f+X, f+Y)

— 3 ARMEe, foX 5[4, EQHRA s f5X 3 £, T

—8 ge(alNX, B, alN(E,, Y)),
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for any X, YT (M).

5. Proof of Theorem 2

We shall need the 1%t Bianchi identity for V4 (cf. e.g. S. Kobayashi & K.
Nomizu [KN], vol. I, p. 135)

(39) 2 RV, ZW= 3 {(V#Tor)(Z, W)+ Toru(Tor,(V, Z), W)},

Vzw

for any V, Z, WeT(A). Here Xy ,w denotes the cyclic sum over V, Z, W. Set
V=Ff«X, Z=],f+Y and W=¢&, in (39) and take the inner product of the result-
ing identity with J,£&,. This procedure leads to

(40) RAf«X, Jaf+Y ; €a, Juba)
=RA4Eq, Jaf+Y 5 [5X, Jaba)—RAEa, [5X 5 Juf+Y, Jubd)+EX, Y),

where
E (X, V)=go((VixTor)(Jaf«Y, &), J4§a)

+86((V7  rr Tora)(€a, f5X), Jaba)
+86((VE, Tor)(fsX, Jaf«Y), Ja€a)
+ge(Tora(Tora(f«X, Jaf«Y), Ea)s J46a)
+ge(Tora(Tora(Jaf«Y, &a), f3X), J4€a)

+ge(Tora(Tora(a, f+X), Jaf+Y), J4&a).
Note that

(41) RAV, Z)JW=J R4V, Z)W,

(as a consequence of V4] ,=0) for any V, Z, WeT(A). By (4l1) and O(£,)=0
we obtain

(42) R4Ea, [xX; Jaf+Y, Jafa)=R4Ea, f5X ; f+Y, §a)-
Next, replace & by &, and Y by JY in (36) so that to obtain (provided R*+=0)
(43) RACf+X, f+JY 5 &y J4ba)

=284(at, X, Y)—2g80(Tora(fxae, X, fxJY), J4&a),

for any X, Y&T(M). At this point we may use (42)-(43) such that to write
(40) as follows

(44) 2go(a, X, Y)—2g6(Tor(fxae, X, f+JY), Ja€a)
=R4Ea, Jaf+Y 5 [5xX, Juba)—R4Ea, f5X; f5Y, E) T EX,Y),

for any X, YeT(M). To deal with the torsion terms in (44) we need the
following
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LEMMA 2. Let T,=1/2E,—iJE,), 1<a<n. Then

(45) Eo(To, Tp=1g6(tala, Jaba)hah-

The proof of Lemma 2 is a straightforward consequence of
Tora(Z, W)y=Tor4(Z, W)=0,
Toru(Z, W)=iGe(Z, W)T 4,
42T, 1 (A),

for any Z, WeT, (A).

LEMMA 3. For any X, Y Z, We H(A) the following identity holds
(46) RAX,Y; Z, W)
=R4Z, W ; X, V)+AeY, 2)ReW, X)+Ae(X, W)Re(Z, Y)
+Ae(W, V)Re(X, Z)+ Ae(Z, X)R6(Y, W),
where Ag(X, Y)=ge(t4X, Y).

We shall prove Lemma 3 later on. Using (46) we may compute the first cur-
vature term in (44) as

(47) R4Ea, f4JY 5 [xX, Ja€o)
=RYf+X, Jaba; o f5JY)+As(f5]Y, [xX)R6(] 46a, &)
+Ae(Ea, JaE)R6(fX, f+JY),
for any X, YeHM). Also
48) RAf+X, Jaba; ) [xJY)=—R4(J sba, fxX; [5Y, Jubo).
Let us substitute from (47)-(48) into (44) and use the identities
As(f+X, fxY)=AKX, Y),

Qo(fsX, fxJY)=—geX, Y),
so that to yield
(49) 2g6(a3, X, Y)—2g6(Tors(fxae, X, f+JY), Ja€a)
=—RA(J 4o, [+X; f5Y, Jaba)—R4Ea, [+X ; [, &a)
+AX, JY)—goX, Y)As(a, Jaba)+EaX, Y),
for any X, YeH(M). On the other hand (using (27)) one may show that
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2n+1
(50) 2 go(a(N)X, Eu), a(f)(E,, Y))

= 3 280(8,X, V)+go(Toru fu¥ , frae,X), &0

—ge(Tora(f+Y, fxJag,X), J4€a)}.
Finally, substitution from (49)-(50) into (38) gives

k

QY RieX, Y)=K(f+X, fx¥)— 2 {ge(Tora(fx]ag, X, f+Y), ] aéa)

=1

—ge(TOI'A(f*aeaX, /+Y), 5a)—2g0(T0fA(f*aea, f+JY), Jaba)
—A(X’ JY)+g(X; Y)Ae(éa’ ]A&a)—Ea(X: Y)}’

for any X,YeH(M). Let us extend both sides of (51) by C-linearity to
HM)®C. 1t follows that (51) holds for any X, YeH(M)RXC (as both sides
are €QC-linear and coincide on real vectors). Set X=Z, Y=W, with Z, We
T, .M). We obtain

62 RiclZ, M=KfsZ, )+ 3 Aea ]ua)20(Z, W)—Eo(Z, W)

Finally, we set Z=T, and W=Tj in (52) and use (45) of Lemma 2 so that to
yield (26). Q.E.D.

6. Pseudohermitian Riceci curvature and the first Chern class
of the normal bundle

Let (M, 8) and (A, ©®) be two strictly pseudoconvex CR manifolds and
f: M—A a pseudohermitian immersion. The purpose of the present section is
the converse of Theorem 1, i.e. it may be asked whether (26) yields R*=0.
We establish the following weaker result. Let v**(f)—M be the normal bundle
of f. By a result in [D1], v**(f),CH(A);« for any x&M so that J, descends
to a complex structure J* in v**(f). Extend J* by complex linearity to »**(f)QC
and let v?*(f)"° be the eigenbundle corresponding to the eigenvalue ;. We may
state

THEOREM 3. Let f: M—A be a pseudohermitian immersion with the property
R.5=K.5, where K,g=K (f«T f+T ). If the Tanaka-Webster connection of A
has parallel pseudohermitian torsion (V4r,=0) then

(W ()")=0.

Throughout, if E—M is a C-vector bundle then ¢,(E)e H*(M ; R) denotes its
first Chern class. To prove Theorem 3 we need the following
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LEMMA 4. Let f: M—A be a pseudohermitian immersion. If the ambient
space A has parallel pseudohermitian torsion then

(53) (VxAY, Z2)=ge(a(/ )X, Z), QR)Z)+8e((QN)Y, a(f)X, Z)),
for any X, Y, ZeT(M).

The proof of Lemma 4 follows from V4r,=0 and (14)-(15), (17) in a
straightforward manner. Recall that ¢, (T, M) is represented by (/27)dwg
where

dwg=R 50 NOP+WSs0° NO—WEz08 N0,
and
Wgr=Apr,sh*?,
where
Aﬂﬂrf:(VTfoTw Tﬁ)

are the covariant derivatives of the pseudohermitian torsion (with respect to
the Tanaka-Webster connection). Also w§ are the connection 1-forms of V.
Cf. [L1], p. 162. Let {@, ---, O} be the admissible coframe dual to {T,, ---, Th,
Cy, -+, Lx} where £,=1/2(€,—i]4&.). Then f*@*=@0* and f*O@**"=0. Next c,
(T, ,A) is represented by (i/2n)d2} where ¢ are the connection 1-forms of V4
and (Ae)i;, =0 yields

dQ]'-:KjEQJ/\@E.

Finally (53) gives A, ;=0 so that f*c,(T, ,A)=c(T, M) and the direct sum
decomposition
T10(A) s =[(dNT1.o(M)IDv** ()",

for each x& M, yields c,(¥**(f)"*)=0. Q.E.D.

Let f: M—A be a pseudohermitian immersion. Assume that R4=0 (e.g.
A=Hy). Then (38) gives

. 2n+1

RicX, V)=~ 3 go(a(/)X, E.), a(f/)E,, V),
or (by computing traces)
(54) 2R=—|a(f)|*<0.

THEOREM 4. There 1s no pseudohermitian immersion of
(Ha(o), 1x172{dt+2 2 (x2dye—yedz)})
a=1

into a Tanaka-Webster flat strictly pseudoconvex CR manifold.

Proof. By a result of [D2], p. 42, we have
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(55) Rap=(n+1)[x]722[%hap,
or (by computing traces)
(56) R=n(n+1)|x|?|z|"

Assume there is strictly pseudoconvex CR manifold A with R4=0 and a
pseudohermitian immersion f: H,(s)—A. Then (56) contradicts (54) and Theorem
4 is completely proved.

We end this section with a remark regarding the analogy with Kéhlerian
geometry (cf. [CL], p.554). Let f:M—A be a pseudohermitian immersion.
Assume that ¢,(T,,,(M))=0. Then, there is a real 1-form 7 on M so that

(67 I'=dy,

where ['=(/2m)dwg. A C-valued 2-form 7 on M is a (1, 1)-form if T | n=0
and p(Z, W)=x(Z, W)=0 for any Z, WeT, (M). Let A (M) be the bundle
of (1, 1)-forms on M. Define L, : &(M)YRQC— A" (M) by setting Lof=f82s for
any C> function f:M—C. Next we need Ag: A (M)—e(M)QC given by
(AT, =T, Lyf)y for any Te'*(A"(M)). Here (,)s is the usual L? inner
product on (M, 8), i.e.

(@, $)0=\ <6 PONEO,

for any (1, 1)-forms ¢, ¢ on M (at least one of compact support) where <@, ¢>
=@,5¢** and P=0¢.50°NOF, p=¢,50°N0°, and P B=¢7B, PAP=(h; R EREE,
We may extend A, to an operator Ay: A*T*MQQC—&(M)QC by declaring it
to be zero on A"*PA*° (a (2, 0)-form 3 is a C-valued 2-form satisfying
To(M) ] n=0). Then
Ag[‘:—lR,
Fio

and we may apply 44 to (57) so that to yield
1
27
where 7=7,0%+79:0%+7,0 and Z=Z%T ;—ZT, with Z*=h*fyz. The diver-
gence in (58) is taken with respect to the volume form ¢=0A(d6)" (i.e.
div(Z)p=.L ¢, where L denotes the Lie derivative). Therefore, if SMr;ugbgO

then (54) gives a(f)=0 and thus R*=0 (as a consequence of (20)) provided that
R4=0. Yet, by a result of [L1], p. 169, if (M, 8) is pseudo-Einstein, one rep-
resentative of [' is 9=(1/2zn)RO so that (in view of (54)) the hypothesis

SMr;ogbgO is generically not satisfied. Indeed, let »’ be any other real 1-form
so that ['=dy’. If for instance H'(M; R)=0 then y’=7+du for some C*
function »: M—R and (58) yields SMT(u)gb:O, that is SMnSgb:SM;yogbgO.

(58) R=n po+i div(Z),
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7. Curvature properties of the Tanaka-Webster connection

The main purpose of this section is to prove Lemma 3. Let (M, ) be a
nondegenerate CR manifold. Let R, R? be the curvature tensor fields of V, V?,
respectively. Taking into account (9) we may derive the following identity

(59) RX,Y)Z=R(X, Y)Z—(LXALY)Z4+0(Z)S(X,Y)
—0(SWX, V), DT +20(Z2X0 AO)X, ¥)
~22/(OAOXX, ¥), 2T~ 204X, V)] Z,

for any X, Y, Z€T(M). We need to explain the notations in (59). Firstly
L=t+@1/2)]. Next (XAY)Z=gyY, Z)X—g¢X, Z)Y for any X,YZ&T(M).
Also we set

(60) SX, V)=(Vx)Y —(Vy1)X .

Finally, the operator © is given by ©=7’4Jr—(1/4)I, where I denotes the
identical transformation. The proof of (59) is a rather lengthy computation
based on the identities

vVj=0, 6-J=0, 6-v=0,
V¢T=LX, V2,=0, V=0,
AKX, JY)=AUX,Y),

Ro(X, tY)+824(X, Y)=0,

L*:z‘—%], tL*=Lr,

(@0)X, ¥)=—520(X, V),

for any X, YT (M) (and is left as an exercise to the reader).
Let X, Y, Z, WeH(M). Take the inner product of (59) with W. This
procedure furnishes

(61) RYX,Y ; Z, W)=R(X,Y ; Z, W)—go(LXNLY)Z, W)
1
+—2'90(X’ Y)‘Qﬂ(Z: W)y
for any X, Y, Z, WeH(M). Then we may use (61) twice so that to yield

RX,Y; Z, W)=R(Z, W; X, Y)+go(LXALY)Z, W)
—8o(LZNLW)X,Y),

which in turn leads to (46) of Lemma 3. The general philosophy of this
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procedure is that one uses the known symmetries of the Riemann-Christoffel
tensor RY,,n of (M, g¢) via (59), rather than establishing similar properties for
Rjrim- Nevertheless, let us observe that Rj,m+R:ji»=0 because R is a
2-form, and R;rim—+ R;rmi=0 because Vgy=0. The missing property is obviously
Rjrim=Rinjs. Any tentative to obtain a CR analogue of RY:;n=R}.;. passing
through the Bianchi identities (of the Tanaka-Webster connection) would have
to deal with the torsion terms there. As remarked in section 2, R,z is only a
fragment of Ric and (as a consequence of (59)) we have
1

R?;;é:haﬁ—fl?aﬁ,

(62) Rapg=i(n—1)A,p,
RoﬂZSgﬁ; Ra0=Ry=0.
Here Sgr are (among) the complex components of S (given by (60)). Also we

set Réz=trace {X—R%X, T,)Tj3. The proof of (62) is omitted. Finally, we
wish to show that

(63) 2R=trace(Ric).

Note that (63) was employed to derive the identity (54). By (59) the following
identities hold

(64) Ric(E, Eg)=i(n—1)(Aasg—Asp)+Rap+Rag,

(65) Ric(JE., Eg)=—(n—1)(Aap+Aazp)+i(Rap—Rap),
(66) Ric(E., JEp)=—(n—1)(Asp+Aap)+i(sa—Rpa),
(67) Ric(JE., JEg)=—i(n—1)(Ass—Azp)+Rap+Rap.

Then trace(Ric)=g" Ric(E,, E,), where
ga+n,ﬂ+n:ga,5’ ga,ﬁ*‘n:_gaﬂz,ﬂ’
gu=g'*=0, g"=1,
gor= (B hT), ge Pt (hei— ),

and the identities (64)-(67) lead to (63). Q.E.D.

8. Proof of Theorem 1

Let U={U,}ser=Cov(M) and ug,=PU.NUp) so that 50 s=exp(2ug,)i}.0.
where 7,5: U.NUp—Up are inclusions. Then y(M)= H'(M, %) is the equivalence
class of [c]e H{(N(U), @), where ¢ : Alaf)—ug.. Let WeCov(M) so that W< U,
W<V, Set W={W,}aes. There are maps ¢: /—I and ¢:J—2 so that
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WoCUgwNVyw for each ace]. Set A,=r§l4w and p.=sipyw Wwhere
ra: Wa—Ug and sq: Wo—Vyo are inclusions. Note that

(68) kEAy=exXp(2hsa)kFala

where k¥,: W,N\W,—W, are inclusions and hy,=ugsres With a=g¢(a) and
B=0¢®), and r.: W .NW,CU,NUg. In other words hya=p4s (4p,) Where
040.0 P(NGT)—P(N0) is the restriction map (6=A(ab)eN(®)) and ¢: N(W)—
N(?U) the natural simplicial map. If @: CY(N(U), )—CNW), @) is the induced
map on cochains, then (g¢)o=h,,, and if ¢*: HXN(V), L)—HNW), L) is the
induced map on cohomology then ¢*g=[dc] with g=[c] so that

r(M)=L¢*g],

(one checks that g~¢*g by looking at 9 as a common refinement of itself
and V). Both W,, 4,) and (W,, o) are strictly pseudoconvex CR manifolds
so that

(69) Ua =eXp(2Ua>/2a B

for some v,ec&W,). Let veC'(NW), &) be given by v:A(a)—v,. Similar to
(68) we have

(70) kEopr=exp@hoa) kfapta,

where Ayo=1i:0545 With i=¢(a), 1=¢(b) and sup: W NW,CV;NV,. Also ii;;=
Ujiof,, and f,,: V,N\V,;—=D;N\D, is induced by f. Finally (68)-(70) lead to
(71) Froa=v1° kap+Roa—vaoka
Let j:CYUN@®), @)—C'NW), &) be induced by the natural sheaf morphism
P—¢& (i.e. P(U)—&U) is the inclusion, for each USM open). Then (71) may
be written
g f*C=d.v+ 8¢,

where

de: CY(N(), &)—CHNW), &),

is the coboundary operator. Consequently
ISvw[*G=jduqg,

where j: H(NW), 2)—H'(N®), &). Finally, as j and ¢* (respectively j and
¢*) commute it follows that j(f*y(A)—y(M))=0. Note that in general Ker(;)+0
(because B'N®@), )CTBN@), &), strict inclusion). If each g, is pseudo-
Einstein then v,e®(W,) and (71) may be written

Jf*C=dv+gc,

where 0: C*(N(), P)—C*N(W), P) is the coboundary operator. Thus
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¢wfwf*G:¢fUng ,
that is

FrrA)=yM),

and Theorem 1 is completely proved.

9. Examples

1) (Heisenberg groups)
Let H, be the Heisenberg group endowed with the (strictly pseudoconvex)
CR structure spanned by

0 _ 0
Toa=~tiZagy

(the Lewy operators). Fix the contact 1-form 6, on H, given by
Oy=di-+i 3} {zdZa—Zadza}.

The map f: H,—Hy, N=n-+k, k=1, induced by the natural inclusion C"—C¥V
(i.e. f(z, H=(z, 0, ), 0=C*) 1s a pseudohermitian immersion with a flat normal
Tanaka-Webster connection. Indeed, let (w, s)=(w,, -+, wy, s) be the natural
coordinates on Hy. Then
0 ._ 0
W]——a?;+ZWj“a;

span the CR structure of Hy while
N
@OZdS+J§ {w]'dwj'—widw]'}

is a contact 1-form on Hy (whose corresponding Levi form is positive definite).
Next fxT =W, [*0,=0, and nor(T ,)=0 (here A=Hy, T 4=0/0s) by straight-
forward calculation. Finally R*=0 as a consequence of (20) (the CR analogue
of the Ricci equation) for A=Hy.

2) (Quotients of Heisenberg groups by discrete groups of dilations)
Let H,(s), 0<s<1, carry the CR structure induced by the covering map
n: H,— {0} —H,(s), and the contact 1-form & given by

(72) Orry=1x17200,2°(ds) 7,

for any x&€H,—{0}. The map F: H,(s)—Hy(s) induced by f: H,— {0} —Hy— {0}
(i.e. For=II-f, where Il : Hy— {0} »Hy(s) is the natural covering map) is a
pseudohermitian immersion. Indeed, if Hy(s) is endowed with the contact 1-form
6 given by

(73) Onr=1X1720, x-(dxIl)™,
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for any XeHy— {0} then |f(x)|=|x|, x&H,, yields F*60=0 (i.e. F is iso-
pseudohermitian). Moreover, we may write (72)-(73) as

0=e0,, O=e"0,,

(with U=log|X|™* and u=U-f). Therefore, the characteristic directions 7" and
T4 of (H.(s), @) and (Hx(s), ©) are respectively given by

T=e’“{—gt——2z'uﬁTﬁ+2iul§Tp} ,

TA=e’2"{-aa?—2iU’W,-+2z'U5W;} .

Note that
U(f(x)=1x"W50)s

and
1 -
WiU)=—51X1"w;P,

where @(w, s)=|w|?+is (note that @ is CR-holomorphic). Finally
Ut=|x|?Us,

Usof=uz, U*f=u*,
and
Ta(u)z—%lxl"zaﬁ,

(where ¢=@-f) yield f3xT=T, Next, let us compute the curvature of the
normal Tanaka-Webster connection V* of F. We perform our task in a more
general setting, as follows. Let f: M—A be a pseudohermitian immersion
between (M, 6) and (4, 0) and set §=e%"0, @=eYO with U= C=(A), u=U-f.
Readily f*©@=46. Set

T=e"{T —2iuPT s +2iufT g},

where T is the characteristic direction of (M, 6). As U¢% f=u% we obtain

T A(f()N=(fT)(f(x))
+2ie* @ U f (DWW azm(f ()= U ™ (f(OW arn(f (X))},

for any xeM. Thus f«T=T4 (.e. f is a pseudohermitian immersion from
(M, 6) into (A, ©)) if and only if {z(U)=0. Let us look now at the relation
between V* and V* (the normal Tanaka-Webster connection of (M, ) in (4, é)).
Let 9**(f). be the orthogonal complement (with respect to g4, ;(x) of (d./)T (M)
in T s (A), for any x&M. Then 9**(f),=v**(f),, although the Webster metrics
g6, Ze are not conformally related.

Assume from now on that f is a pseudohermitian immersion both as a map
of (M, 8) into (A, 0), respectively of (M, #) into (4, ©®). We need to recall
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LEMMA 5 (cf. [D2], p. 39). Let (M, T, (M), 8, T) be a non-degenerate CR
manifold. Then, under a transformation §=e**0, the Christoffel symbols of the
Tanaka-Webster connection of (T1,(M), 8) and (T,o(M), 8) are related by

o« =% 020505 +21,0%,
«=1"§a—2u"hja,
8 =8+ 2ue0%+iu,, * + 2 ouf —2i % ,ut,
where U, *=1u, ghb.
Using Lemma 5, the identity (15) and

ViaxE=—fs0:X+ViE,
for any XeX(M), éeI'*(0**(f)), we find

Vi &a=VtEa+2upla,
(74) Vh3Ca=V45La,
V3la=V3lat2ue L, .

If M=H, and A=Hy we have V4{,=0 and thus V*{,=0. Thus (by (74)) if
M=H,(s) and A=Hy(s) the normal Tanaka-Webster connection of F is given by

V%’ﬁCazzuBCa s
(75) V5La=0,
Vilo=2ue ",
with u=log|x|™!. Next (as a consequence of (75)) we may use the identities

[T Tpl=0,

o 0
[Ta, Tﬁ]_—:_zzaaﬁ"a_t’ )

and

V308a=2(us+2iuguf),,
so that to yield

(76) R T Tple=0, R (Ta TpLa=0,

and
RYT o, Tp)la={—2T p(ua)+4i0,p(uo+2{u,u")} Lo .

Finally, taking into account the identities
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Lo s L
ua:—§-|xl 4za¢) Tﬁ(ua):—flxl 5aﬁ¢)

w=—g ¥, §g=Ixl"

1
u u’=—|x|"*z|?

4
it follows that

(77) RL(T‘“ TB)CU-:_ | x | -4¢5aﬁCu .

Summing up, the pseudohermitian immersion F: H,(s)—Hy(s) has (by (77)) R*++0.
However (55) vields K,5=AR.z with A==(N+1)/(n-+1).

3) (Pseudo-Siegel domains)

Let (a, B)=(ay, -+, an, B)EZL*" be a fixed multiindex and D, z={(z, -,
Zn, W)EC™ 1 %, | z;|2%+Im(wP)—1<0} (cf. [BP]). Then D,, is the Siegel
domain in C™*!' (and 0D, ,=~H,). Assume $>1 from now on. The boundary
0D, s of D, g inherits a CR structure (as a real hypersurface of C***) spanned by

0 .. 0
(78) TJ=—a;]—“2’ffW,

in some neighborhood of w0 where
fy=g w Py,

Hence we have the commutation relations

[Ty, Tx1=0,
O A G I Ll
(79) [T]) Tk_l—"ﬂ_{ wﬁ“ aw wﬁ_l 735}5“ .

Endow 0D, s with the pseudohermitian structure 6=0, s given by
(80) O=puwb dw+ 8w dT+2 3 (8,42~ 2447y,
b=
where
g/ =z E.
Therefore the Levi form of (0D, s, #) is diag(4;, ---, 2,) where
A,=4a%|z,|2@™D,

Therefore, if a,>1, 1<j<n, then G, is degenerate at each point of \J, M,,
where M, is the trace of the complex hyperplane L,={(z, w): z;=0} on the
boundary of D, 5. Next U, s=0D, s—(\UJ~1 M;) (an open subset of 9D, ) is a
strictly pseudoconvex CR manifold. The characteristic direction T of



PSEUDOHERMITIAN IMMERSIONS, PSEUDO-EINSTEIN STRUCTURES, LEE CLASS 85
df=—4ia%|z,|*%i"Vdz, NdZ’
is given by

1 0 0
= ph-1_— p-1_~
T= 41w # {w aw TV om }

Note that (79) may be written
1#+k==][T,, Tz]=0,

[T,, T;1=ia,T.
Also
[T,, T1=0.

Using (A.3)~(A.5) in [D2], p. 48, we derive the (Christoffel symbols of the)
Tanaka-Webster connection of (U, s, 0)

s aj—l s
(81) ij: Z 5jk5j8y F;kzo, F3k=0.

J

Therefore (U, 5, 0) has a vanishing pseudohermitian torsion (r=0). As a
straightforward consequence of (81) the Tanaka-Webster connection of (U, s, )
is flat (R=0).

Finally we look at the structure of the points of weak pseudoconvexity of
0D, 5. Let 1=p=n and set M, ., ,=0Dq sN\L, N NL,,. Then

1p

~ n+l-p
MJI...JP~GD¢,]1...JP,5CC ,
(a diffeomorphism), where a,lu.]p:(al, ey Ry, Qg a,). A natural ques-

tion is how does M,,.., , Sit in 0D, s i.e. equivalently study the geometry of the
immersion f: 0D q,,... ay, 50D, 5 induced by the natural map C*XC—C"xC,
(z, w)y—(z, 0, w), 0=C*, 0<k<n. Using (78) one may show that f is a CR
immersion. Finally (80) yields f*0, 5=0(a,,..a.p i-€. f is isopseudohermitian.
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