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SOME FURTHER RESULTS ON THE UNIQUE RANGE

SETS OF MEROMORPHIC FUNCTIONS

PING Li AND CHUNG-CHUN YANG*

Abstract
By improving a generalization of BoreΓs theorem, the authors have been

able to show that there exists a finite set S with 15 elements such that for
any two nonconstant meromorphic functions / and g the condition E/(S) —
E g ( S ) implies f^g. As a special case this also answers an open question
posed by Gross [1] about entire functions, and has improved some results
obtained recently by Yi [10]. In the last section, the uniqueness polynomials
of meromorphic functions which is related to the unique range sets has been
studied. A necessary and sufficient condition for a polynomial of degree 4
to be a uniqueness polynomial is obtained.

1. Introduction

Let / be a nonconstant meromorphic function on the complex plane C and
S be a subset of distinct elements in C. Define

here a zero of f(z)—a of multiplicity m appears m times in Ef(S). Usually, the
notation Ef(S) express the set which contains the same points as Ef(S) but
without counting multiplicities. About sixty years ago, R. Nevanlinna [6] proved
two general results: (1). If two nonconstant meromorphic functions / and g
satisfy Ef(at)=Eg(at) (i=l, •••, 5) where al (i=l, •••, 5) are distinct points in
C, then /=g. (2) If two nonconstant meromorphic functions / and g satisfy
Ef(at)—Eg(al) (ι = l, ••• , 4) where (LI (i—l, ••• , 4) are distinct points in C, then
/ is a Mόbius transformation of g. Actually, above notations S and Ef(S) can
be regarded as a range set and a preimage set of / respectively. Recent years,
in several papers, for examples [1], [2], [4], [7] and [10], properties of range
set and preimage set which can, to some extent, uniquely determine the mero-
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morphic or entire functions were studied. In 1976 Gross [1] proved that there
exist three finite sets S, 0 — 1, 2, 3) such that for any two nonconstant entire
functions / and g if E f ( S j ) — E g ( S j ) 0 — 1, 2, 3), then f=g. In the same paper
Gross posed the following problem : can one find two (or possible even one)
finite sets Sj (j=l, 2) such that any two entire functions / and g satisfying
E f ( S j ) = E g ( S j ) 0 = 1, 2) must be identical? In 1982, F. Gross and C.C. Yang
proved the following result

THEOREM A [2]. Let T={z\ez+z=Q} . Let f and g be two nonconstant
entire functions. If Ef(T)—Eg(T), then f=g.

In [2] the set S such that for any two nonconstant entire functions / and
g the condition Ef(S)=Eg(S) implies f=g is called a unique range set of entire
functions (URSE in brief). Similar definition (URSM) for meromorphic functions
can be defined. Note that the set T—{z\eZJrz~^} contains infinite number of
elements. Recently, Yi [10] exhibited a finite unique range set of entire func-
tions with 15 elements which gave a positive answer to Gross's problem. In
[10] Yi asked that whether one can find a URSE with elements less than 15.
To answer this problem the authors [8] showed that the set S= {z\zg— z8+l=0}
with only 9 elements is a URSE. In this paper, we shall exhibit a URSM with
15 elements and a URSE with 7 elements by improving a generalization of
BoreΓs theorem

THEOREM 1. Let m^2, n>2m-\- 10 with n and n — m having no common fac-
tors. Let a and b be two nonzero constants such that the equation zn-\-azn~m-\-b—^
has no multiple roots. Let S— {z zn-}-azn~m-}-b— 0} . Then for any two nonconstant
meromorphic functions f and g, the condition Ef(S)=Eg(S) implies f=g.

THEOREM 2. Let m>2, n>2m+6 with n and n—m having no common factors.
Let a, b and S be as in Theorem 1. Then for any two nonconstant meromorphic
functions f and g, the conditions Ef(S)=Eg(S) and Ef{oo\ =Eg{oo) imply f=g.

THEOREM 3. Let m^l, n>2ra-|-4 with n and n—m having no common factors.
Let α, b and S be as in Theorem 1. Then for any two nonconstant entire func-
tions f and g, the condition Ef(S)—Eg(S) implies f=g.

In the last section, we define a concept "uniqueness polynomial of mero-
morphic functions" which is closely related to the unique range set, and it has
been used to prove that the cardinality of a unique range set of meromorphic
functions is at least 5.

The main tool will be Nevanlinna's value distribution theory of meromorphic
functions, and it is assumed that the reader is familiar with its basic notations
and results (see Hayman [5]). In the sequel the letter E will be used to denote
a set of r values of finite linear measure.
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2. Some lemmas

The following lemmas will be needed in the proof of our theorems.

LEMMA 1 [9]. Let f be a meromorphic function, and

be a polynomial in f of degree n, where a0 (^0), alt ••• , an are finite complex
numbers. Then

here and in the sequel, S(r, f) denotes the quantity o(T(r, /)), r-^oo, rφE.

In the following Nn-ι(r, /) is a counting function of / which counts a pole
according to its multiplicity if the multiplicity is less than or equal to n — 1 and
counts a pole n — 1 times if its multiplicity is greater than n — 1.

First we prove a result which is interesting on its own.

LEMMA 2. Let /Ί, /2, ••• , fn be nonconstant meromorphic functions such that
/1+Λ+ ••• +/» = !. // A, /2, ••• , /n are linearly independent, then the following
two inequalities hold

( 1 ) T(r, A)< Σ Nnr, --+A, Σ /V(r,

( 2 ) T(r,

1/2,

2n-3
3 '

2n+l-2v2w"
2

n=2,

n=3, 4, 5,

T(r)=max lstsn{T(r, /t)} αnrf r<££.

Proof. We give the proof of (1). The proof of (2) is similar. In the case
of n—2, the inequality (1) can be easily obtained from the second fundamental
theorem of Nevanlinna. Now we assume that n^3.

By the proof of a generalization of BoreΓs theorem (a generalization of
Picard's theorem) by Nevanlinna [6] (or [3]), we have

T(r, Λ)< ΣΛr(r, y-)- Σ#(r, Λ)+N(r, D)-N(r, -̂
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where D is the Wronskian of flt /2, •••, /„, i.e.

A - fn

(3) D=
f f •-• fJ 1 J 2 J n

/•(π-l) f(n-l) f(n-l)
J I J 2 J n

Write

and

W*(r)= ΣNn

Thus clearly Lemma 2 follows immediately from the following inequality

which is to be shown next.

For a given meromorphic function / and a complex number beC, we define

772, z is a b-point of / with multiplicity m^l,

0, z is not a £-point of /,

1, z is a b-point of f with multiplicity

0, z is not a &-point of /,
μ}(z)

and

Let

m,

0,

z is a ^-point of / with multiplicity m^n — 1,

z is a b-point of / with multiplicity m>n — l,

z is not a 6-ρoint of /.

and

Thus inequality (4) follows from μ(z)<^μ*(z) for any
consider following two cases for an arbitrary point

C. To prove this, we

Cass 1. z is not a pole of /t, l<Li<^n.
In this case, z is a zero of /ιn~1} with multiplicity at least μ{fi(z)—v*fi(z),

1^/^n, thus a zero of D with multiplicity at least ΣS-iCμ//*)— *>/*(*))•
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means that

Hence from the definitions of μ and μ*, we have μ(z)<*μ*(z).

Case 2. z is a pole of some /t.
We consider two subcases:

Subcase 1. z is not a pole of fl.
Without loss of generality, we suppose that z is a zero of /t with multi-

plicity TWt, z—1, ••• , k, l^Lk-^n—2 and a pole of fτ with multiplicity m%t

i=k+l, ••• , n. Since /Ί+ - +/„ = !, we have D=(-ΐ)n+1Dlf where

(5)

Let

/ί

k
Σ (

\
t=l

From (5) it is not difficult to verify that z is a zero of D with multiplicity at
least q if #^>0 and a pole of D with multiplicity at most —q'ή q<Q. Thus we
can get

and

It is easy to verify that — k — l)/2—l^An(n — k) for l<k^n-2. Hence

Subcase 2. z is a pole of /i.
Without loss of generality, we suppose that z is a pole of /Ί, /*+1, •••, fn

with multiplicity w* (/—I, £+1, •••, n) respectively, and a zero of /»(*=2, •••, ^)
with multiplicity mt, 2^fe^n —1, if any. Since /ι+ ••• +/n = l, we have D=D2,
where

/ί
(6)

»-l)

Let

)- Σ m*—
t = Λ + l
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From (β) we can see that z is a zero of D with multiplicity at least q if
and a pole of D with multiplicity at most — q if <?<0. Thus we can get

^ £ o / M (n+k-ΐ)(n-k)
)^ Σ *},(*)+-- ^

1=2 £

and

It is easy to verify that (n + k—l)(n — k)/2^An(n — k+l) forl<ίk^=n—l. Hence
μ(z)-ζμ*(z) which completes the proof of Lemma 2.

3. Proof of Theorem 1

Let n, r2, •••, rn be the roots of the equation zn+azn~m+b=Q. Since Ef(S)
=Eg(S) we have from Nevanlinna's second fundamental theorem

(n-2)T(r,

It follows that

( 7 ) T(r, g)£

Similarly the following inequality holds:

( 8 ) T(r, /)^-^T(

In the sequel, we use S(r) to express either S(r, /) or S(r, ,gr).
Consider now the following meromorphic function

(9) f*
^ } ψ gn

The condition Ef(S)=Eg(S) ensures that the zeros of φ come from the poles of
g, and the poles of φ come from the poles of /. This means that the following
inequalities hold:

(10) N(r, ^)<R(r, g)

and

(11) R(
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Let

(12) /1=_l/»-»(/»+α)) ft=jφg»-n(g*+a), /,=<&.

Then /i, /2 and /3 are meromorphic functions and fl is not a constant. From
(9), we have

(13) /!+/»+/,=! .

Now we distinguish following two cases.

Case 1. /3 is not a constant.
If /i and /2 are linearly dependent, then fz=cflf cφ — l. From (13) we

have

By using Lemma 1 and Lemma 2 together with the inequalities (7) and (10), we
deduce

nT(r, /)=T(r, Λ

which is contradictory to n>2m+W. Hence /i and /2 must be linearly inde-
pendent.

If fi, Λ and /3 are linearly independent and /2 is not a constant, then by
using Lemma 2, we have

T(r, /

From the identities (9) and (12), we can easy to see that the zeros of /2 can
not come from the zeros of ψ, and the poles of /2 must come from the poles
of /. By above inequality and Lemma 1 together with (10), (11) and (7), we
deduce that
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»T(r,

+2N(r, g}+N(r, f)+N(r, f)+N(r,

This contradicts to the assumption n>2m+10. It follows that when f l 9 /2 and
/3 are linearly independent, /2 must be constant and /2=£l, i.e. fι+fs=l—fz
is a nonzero constant. By Lemma 2,

This leads to

nT(r, /)^

which is a contradiction to n>2m+W.

If /!, /2 and /3 are linearly dependent, then there exist three constants c l f

c2 and cs, at least one of them is not zero, such that

(14) Cι/ι + C8/2 + C 8/sΞθ.

From this and the fact that /Ί, /2 are linearly independent, we must have
So

(15) C l A + = « C i .

If Cj=0, then ^n~m(^ m+α), hence ^ is a constant. This is impossible.
If £2=0, then

(16) -y-/n-m(/m+a)=c,0.

Let So^O, Si, •••, sm be the distinct roots of the equation: zn+azn~m=Q. Then
(16) shows that any BJ— point of / must be a zero of φ and hence a pole of g.
But from (9) and (16) one can see that the multiplicity of any zero of φ is at
least n, so the multiplicity of a Sj— point (/^O) of / is at least n and at least
m for a s0~ point of /. Hence, we have
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T(r,fl

/=!, 2, ••• , w, and

Again by the second fundamental theorem about the deficiencies of meromorphic
functions, we have

This is impossible because ra^2, n>2m+lQ.
Thus we have to conclude that CιC2c3^0. By Lemma 2 and equation (15)

Hence from Lemma 1 and equations (7), (11) and (12), we have

nT(r,

, g)+(m+2)T(r,

a contradiction to w>2m+10.

We can rule out Case 1.

Case 2. /3 is a constant.
In this case, ft can not be a constant. And from (9), we have

(17) T(r,/)

If /,=£!, then /ι+/8=l-/,^0. By Lemma 2
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T(r,

That is

nT(r, /)<#(r, j

<(3+m)T(r,

=2(m+2)T(r,

This contradicts to the assumption that ?2>2ra-hlO.
If /8=1, then from (9) we get

(18) gm(hn-l)=-a(hn-m-l)

where h—f/g is a meromorphic function. Further (18) can be rewritten as

(19) £m(/i-wι)(/ι-w2) - (h-un)=~a(hn-m-l)

where
uj=*w*>, y=l,2, -, n.

Since n and n—m have no common factors, we see that u?~m—1^0, /—I, •••,
n—1. Hence from (15) the multiplicity of a Uj—point of Λ is at least m.
Suppose that h is not a constant, then we have

L\ \Tm , I
πf Z.N ι r— ^ h — UjiΘ(u}, Λ)=l-hm _ ,/

r-*oo y (^r, AZ;

Thus

which contradicts to m^2 and 7i>2m+10. This shows that h must be a
constant. Furthermore from (18) we can see h must be equal to 1. Otherwise,
we will deduce that g is a constant. Hence f=g. This completes the proof
of Theorem 1.

Noting that the function φ in (9) will assume the form ea with a being an
entire function under the assumptions of Theorem 2 and Theorem 3. Further-
more under the assumption of Theorem 3 the inequalities (7) and (8) will be
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replaced by

T(r, £)^-^-jT(r, /)+S(r, g)

and

respectively, we can then prove these two theorems immediately following the
same procedure of the proof of Theorem 1.

Example 1. The set S={^|<r1B-z13+1^0} is a URSM with 15 elements.

Example 2. The set S^{z\z1-zG+ 1=0} is a URSE with 7 elements.

4. Concluding remarks

We would like to pose the following problems about the unique range set
of meromorphic functions and entire functions for further investigations.

PROBLEM 1. Can one find a URSE with less than 7 elements ?. What is
the smallest cardinality for a URSE ?

PROBLEM 2. Can one find a URSM with less than 15 elements ?. What is
the smallest cardinality for a URSM ?

Now we introduce following notations :

UM={S\S is a URSM},

ί/*={S|S is a URSE},

where n(S) denotes the cardinal number of the set S. Obviously,

Example 1 and Example 2 show that λE^7 and Λjf^lδ, respectively. In [8]
we have proved that Λ^4. In the following we want to give a lower bound
of λM First of all, we introduce two definitions related to unique range set.

DEFINITION 1. Let S={al9 •••, an\ be a subset in C with finite distinct
elements. If S is a URSM (URSE), then any polynomial of degree n which has
zeros al9 ••• , an is called a polynomial of URSM (URSE). We call it a PURSM
(PURSE) in brief.



448 PING LI AND CHUNG-CHUN YANG

DEFINITION 2. Let P be a polynomial. If the condition P(f)=P(g) implies
f=g for any nonconstant meromorphic (entire) functions / and g, then P is
called a uniqueness polynomial of meromorphic (entire) functions. We say P is
a UPM (UPE) in brief.

Obviously, any nonconstant linear transformation is a trivial UPM. We
shall concern the nontrivial UPM and UPE. The following two theorems can
easily be obtained from the definitions.

THEOREM 4. // P is a PURSM (PURSE), then P is a UPM (UPE).

THEOREM 5. // Px is a UPM (UPE) and P2 is a polynomial, then P^P2 is
a UPM (UPE) iff P2 is a UPM (UPE).

THEOREM 6. Let P, be a PURSM (PURSE) and P2 a UPM (UPE). If
P^P2 has no multiple zeros, then P^P2 is a PURSM (PURSE).

Proof. Let S— [ a ί 9 •••, an} be the zeros of P^P2 and Sι={&ι, •••, bm} the
zeros of Plt For any two nonconstant meromorphic (entire) functions / and g,
if Ef(S)=Eg(S), then

where h is a meromorphic function whose zeros come from the poles of g and
the poles come from the poles of /. From above equation we get

which means that

Since Pl is a PURSM (PURSE), we get P2(f)=P2(g). Hence f=g in terms of
the property of UPM (UPE) of P2.

In general, it is not easy to tell if a polynomial is a UPM (UPE) or not.
For the polynomial of degree less than 5, we have

THEOREM 7. Any polynomial of degree 2 or 3 is not a UPE.

Proof. By Theorem 5, we only need to prove Pι(z)— z2— a and P2(z)=
z*—az+b are not UPE. Pλ is clearly not a UPE. The following two entire
functions

0)2— (

and
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ae~z

s(^=-a)-—l

where ωk = eί2kπ/B (6 = 1, 2) satisfy f=£g and P2(f)=P2(g). Which means that P2

is not a UPE.

THEOREM 8. Lef P(z)=z*+asz*+azz*+a1z+aQ. Then
(a) P ί's not a UPM.
(b) P is a UPE if and only if

- Q 9
O L

Proof. By a transformation, we get

where

3αi αi <22α3n — nα — α2

When ^?^0, P is obviously not a UPM and UPE.
When b^Q, and 2762+8α3=0, the following two functions

and

, N 3ft 1 3ft

satisfy /=£# and Q(f)=Q(g).
When ft^O, and 27ft2+8fl3^0, we consider the following functions

where β is the Weierstrass elliptic function which satisfies

-
b

One can verify that Q(f)=Q(g) but /^^. Hence Q and thus P is not a UPM.
Now we prove the part (b) of Theorem 8. If there exist two distinct non-

constant entire functions / and g satisfying Q(f)=Q(g\ then

It is clear that h=f+g is not a constant. From the above equation we get
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,< -u_ (h~<>(20)
h

where ωt (ί=l, 2, 3) are the zeros of z*+2az+2b. When 6^0, one can see from
(20) that the entire function h has a exceptional value 0. Furthermore there
exists a ω< say α>3 such that ω3^ωlf ωB=£ω2. Hence the multiplicity of ωz—points
of Λ is at least 2. This is impossible. This also completes the proof of
Theorem 8.

From Theorem 4 and Theorem 8, it follows that

THEOREM 9. λM^5-
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