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ON NONLINEAR, NONCONVEX EVOLUTION

INCLUSIONS

SHOUCHUAN Hu AND NIKOLAOS S. PAPAGEORGIOU*

Abstract

We consider a nonlinear evolution inclusion driven by an m-accretive
operator which generates an equicontinuous nonlinear semigroup of contrac-
tions. We establish the existence of extremal integral solutions and we show
that they form a dense, G^-subset of the solution set of the original Cauchy
problem. As an application, we obtain "bang-bang" type theorems for two
nonlinear parabolic distributed parameter control systems.

1. Introduction

Let T=[0, b~\ and X a separable reflexive Banach space, whose dual X* is
uniformly convex. We consider the following multivalued Cauchy problems :

f -x(t)ζΞAx(t)+F(t, *(*))
(1)

I x(0)=*o

-x(t)tΞAx(t)+extF(t,
(2) and

Here A : D^X-+2X\{Q\ is an m-accretive operator, F: TxX->2x\{Q\ is a
multifunction and extF(£, x) denotes the extreme points of the set F(ί, x). By
a solution of ( 1 ) (resp. of (2)), we mean a function x(-)<=C(T, X) which is an
integral solution in the sense of Benilan (see section 2) of the Cauchy problem
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-x(f)ς=Ax(t)+f(t), *(0)=*0, with fξΞL\TtX), /(*)€= F(f, x(t)) a.e. (resp. /(*)€=
extF(f, Λτ(0) a.e.). By S(x0) (resp. Sβ(*o)) we will denote the set of solutions
of (1) (resp. (2)). The purpose of this paper is to establish the nonemptiness
of Se(xQ) and show that it is dense in S(xQ) for the C(T, ^Q-norm (strong
relaxation theorem). Our work here extends that of DeBlasi-Pianigiani [8] (in
particular, Theorems 4.1 and 5.1), where A=Q. Also it extends the results of
Avgerinos-Papageorgiou [1] and Mitiederi-Vrabie [13], who treated problem (1)
with a nonconvex, closed valued perturbation term F(t, x) which was assumed
to be lower semicontinuous (l.s.c.) in x^X. We remark that the multifunction
(£, jc)—>extF(£, x) in general is not closed-valued and we can not say anything
about its continuity properties with respect to x, even if x-+F(t, x) is regular
enough (say Hausdorff-continuous (h-continuous)).

2. Preliminaries

Let (Ω, Σ) be a measurable space and X a separable Banach space. By
Pf(c)(X) we will denote the collection of all nonempty, closed (and convex)
subsets of X. A multifunction (set-valued function) F:Ω-*Pf(X) is said to be
measurable, if for all z^X ω-*d(z, F(ω))—inf {\\z— x\\: x<=F(ω)} is measurable.
Let μ( ) be a <τ-finite measure on Σ. By Sj? we will denote the set of
selectors of F( ) that belong in the Lebesgue-Bochner space Ll(Ω,X); i.e.
Sl

F—{f^Ll(Ω9X)\f(ώ)^F(ω) μ-a.e.}. Using Aumann's selection theorem (see
Wagner [16], Theorem 5.10), we can show that for a measurable multifunction
F: Ω-+Pf(X), S1

F is nonempty if and only if ω-*inf {||*|| : xeF(ω)} ̂ L\Ω\ Note
that the set S1

F is decomposable in the sense that, if (fίr /2, A^^S^xS^XΣ,
then %Afι+%Acf2^SF (here IA (resp. Ϊ.AC) denotes the characteristic function of
A (resp. of Ac)).

On Pf(X) we can define a generalized metric, known in the literature as the
Hausdorff metric, by setting

h(A, 5)=maxΓsup d(α, B

for all A, B^Pf(X). It is well-known that (Pf(X), h) is a complete metric space
(see Klein-Thompson [18]). A multifunction G : X~^Pf(X) is said to be Hausdorff
continuous (Λ-continuous), if it is continuous from X into the metric space
(Pf(X\ h\

Let F, Z be Hausdorff topological spaces and G:Y-+2Z\{9\. We say that
G( ) is lower semicontinuous (l.s.c.), if for all U^Z open, the set G~(£7)=
\y<=Y: G(y)Γ\Uφ®} is open. If Y, Z are metric spaces, then lower semi-
continuity of G( ) is equivalent to saying that if yn~*y in Y, then

Let J:X-*2X* be the duality map of X i.e. J(x)={x*£ΞX*: (x*, *)HW|2

— 1|%*|| 2} for each x&X. Clearly J(x) is a closed, convex and bounded subset
of X* and because of the Hahn-Banach theorem is nonempty for every x<=X.



NONCONVEX EVOLUTION 427

Recall that if X* is strictly convex, then /(•) is single valued and if X* is
uniformly convex, then / : X— >X* is continuous and uniformly continuous on
bounded subsets of X (see Zeidler [17]). If X is a pivot Hubert space (i.e. X
is identified with its dual), then /—Identity. Using the duality map we can
define an upper semi-inner product on X (denoted by (•,•)+) as follows:

(x, ;y)+=sup{(x*, y ) : **<Ξ/(X)}

for all x, y<^X. An operator A: D^X-^2X is said to be "accretive" if and only
if (x— x', y— y)+^0 for each x, x'<^D and y<=Ax, y'^Ax'. We say that A is
"m-accretive" if it is accretive and in addition R(I+λA)=X for each Λ>0. It
is well-known (cf. Barbu [3]) that an m-accretive operator generates a semigroup
{AΓ(ί)}ίer of nonlinear contractions via the Crandall-Liggett exponential formula
K(t)x=\imn^(f+(t/n)A)-nx, t&T, x^D.

We will say that the semigroup of contractions K(ί)( ), t^T is "equi-
continuous", if for every bounded subset B^D, the family {K( )x : x^B} is
equicontinuous at each te(0, b~\. This is the case if K(t)( ) is compact for each
fe(0, b~\ or if A—dφ (the subdifferential of a proper, convex, l.s.c. function) or
if A is locally bounded or finally if A is a homogeneous m-accretive operator
(see Gutman [11]).

Now Jet T = [0, b~\, A:D^X-^2X is an m-accretive operator, f<=L\T,X)
and XQ<=D. We consider the following Cauchy problem

1
(3)

I *(0)=*0 J

Following Benilan [5], we say that a function x( )&C(T, X) is an "integral
solution" of (3), if *(0)=*o and

for each (y, z)<=GrA and Q^s^ί^b. It is well-known that under the above
hypotheses, the Cauchy problem (3) has a unique integral solution, which
depends continuously on the data of the problem (x0, f)^DxL\T, X)\ i.e., if

, X) is the integral solution corresponding to the pair (xQ1, /i) and
, X) is the integral solution corresponding to (x02, /2), then we have

-*£^^^

for s, ί<=T with s^t,
and so

(Benilan's inequalities). Note that if A is linear, closed and densely defined,
then the notion of integral solution coincides with that of mild solution. Also
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recall that every strong solution is an integral solution. For further details
we refer to Barbu [3].

Finally by L^T, X) we will denote the space of equivalence classes of
Bochner integrable functions h:T-+X, with the ("weak") norm II/MU —

ct' I I IU
sup||\ h(s)ds\\:Q^t^t'^b}. The notation — > stands for convergence in

'

3. Existence of extremal solutions

In this section we establish the nonemptiness of Se(xQ) (i.e. of the set of
integral solutions for the multivalued Cauchy problem (2)).

We will need the following auxiliary result :
w*

LEMMA 3.1. If X is a Banach space, {**, x*}nzι£X* and c* — >**, then
(x%, M)— >(Λ;*, u] uniformly for all u^K^X compact.

w*
Remark. In the above lemma — > denotes convergence in the ι^*-topology

and ( , ) denotes the duality brackets for the pair (X*, X).

To establish the nonemptiness of Se(xΌ), we will need the following hypo-
theses on the data. Here T — [0, b~\ and X is a separable reflexive Banach
space whose dual X* is uniformly convex.

H(Λ): A:D^X->2X is an m-accretive operator, which generates an equicon-
tinuous semigroup of nonlinear contractions {K(f)( )}t^τ

H(F): F:TxX-+Pfc(X) is a multifunction such that
(1) t—>F(t, x) is measurable,
(2) x—*F(t, x) is /z-continuous,
(3) \F(t, *)|=sup{||i>||: v<=F(t, x)}^a(t)+c(t)\\x\\ a.e. with a, c<=L\T\

(4) for every B^X bounded, F(t, B)— (J F(t, x) is compact.
x<=B

THEOREM 3.2. // hypotheses H(A), H(F) hold and x^D, then

Proof. First let us obtain an a priori bound for the elements in S(x0)
(hence for the elements of Se(xQ) too). So let x<=S(xQ). From Benilan's
inequality (see section 2), we have

with /eSjrc.,^.)) (recall that y(ί)=K(f)x0 is the unique integral solution of (3)
when /=0). Since \\K(f)x0\\^M, M>0, for all teT, we have
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\\x(t)\\^M+(\a(S)+c(s)\\x(s)\\)ds, ίeT.
JO

Invoking Gronwall's lemma, we deduce the existence of Mι>0 such that

iwoiiccr.jD^M!
for all x^S(xQ). Let BMl— {x<^X: H x l l ^ M J . Then because of hypothesis

H(F) (4), F\ΓB^j=V(t) is compact in X for every ίeT. Also if 7^X1 1- 5 ,̂

then because of hypothesis H(F) (2) F(ί)=F(ί, BMJ=\JF(t, yn] and so /
1 »έl

is measurable. Also observe that |F(ί)l =sup{||v|| : veVr(ί)}^α(ί)+c(Owι=
a.e. with ψ(-)^Ll(T). Now define Sv={veΞL\T, X):v(t)<=V(f) a.e.}. This is
a nonempty, weakly compact subset of L\T, X) (Dunford-Pettis theorem). If
p: L\T9 X)-+C(T, X) is the map which to each f^L\T, X) assigns the unique
integral solution of (3), from hypothesis H(A) and Theorem 2.3 of Gutman [11],
we have that p(Sv}^C(T, X) is equicontinuous. In fact, we claim that the set
p(Sv) is compact in C(T, X). Indeed let \xn}n^^p(Sv). Then for every n^l,
xn—p(fn) with fn^Sγ. By passing to a subsequence if necessary, we may

w
assume that fn — >/ in L\T, X), /e5F. Let % — />(/). Then from Benilan's
inequality, we have

Recall that since ^* is uniformly convex {un(')=J(xn(')-x('))}n^1^C(T) X*)
and furthermore since the continuity of /(•) is uniform on bounded subsets of
X and {*tt( )}n:>ι^C(T, X) is equicontinuous, we have that {un(')}n^C(T, X*)
is equicontinuous, and of course bounded. Since bounded subsets in X* furnished
with the relative weak topology, are compact, metrizable, from the Arzela-Ascoli
theorem (see also Lakshmikantham-Leela [12], Theorem 1.1.6, p. 5), we deduce
that {u^nzi is relatively sequentially compact in C(T, X$). Here X$ denotes
the dual space X* equipped with the weak topology. So by passing to a sub-
sequence if necessary, we may assume that un—>u in C(T, X$). Then we have:

= Γ(Mn(s),
Jo

Since w( )e=C(T, ^*)^weL°°(T, ΛT*)=L1(T, ^)* and so

0 as 77-00.
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Also note that /»(«)—/(s)eVr(s)—V(s)=WΓ(s), seT and the latter is compact
w

in X. Since un(s)—>u(s) in X*, from Lemma 3.1, we have

sup \(un(s)—u(s), w)|—>0 as n—>oo,
weTP( ί )

=M (wn(s)—iί(s), /n(s)—/(s))ds-»0 as rc-^oo,
Jo

/(*»(s)-*(s)),/.(s)-/(s))ds-»0 as «-.«>,

n(0-*(OI|-»0 as n—oo for all

Therefore for all ίeT, {*n(0}nsi is compact in Z and since {xn( ) } n z ι is
equicontinuous, from the Arzela-Ascoli theorem, we conclude that xn—*x in
C(T, J*Q and x=p(f), /eSF; i.e. />(S7) is compact in C(T, ΛQ as claimed. Let
Γ=conv p(Sv). Then ΓgC(T, ΛΓ) is compact (Mazur's theorem).

Next let R:Γ->Pfc(L\T, X}) be defined by R(x)=S1

F{..x^}. Apply Tolsto-
nogov's selection theorem [15], to get r\Γ-*Ll

w(T,X) continuous, such that
r(*)eext R(x) for all x^Γ. From Benamara [4], we know that &xtR(x)=
ext 5J'(..a.(.))=SiχtF( ,x(.». Then let γ:Γ—»Γ be defined by γ=p°r. We claim
that γ(-) is continuous. To this end let xn-*x in C(T, ί̂), xn<^Γ, n^l. Note
that for all n^l and almost all ίeT, r(xn}(t)^K(f) and the latter set is compact.

I I IU
Since K^») — >r(x)ί we can apply the result of Gutman [10] and get that

w
K*n) — >r(x) in LJ(T, X). Then exactly as before we can have that γ(xn)—
P(r(xnΐ)-*γ(x}=p(r(xy)=$γ( } is continuous on Γ as claimed. Apply Schauder's
fixed point theorem to get x=γ(x). Then x( )^Se(x0). Q. E.D.

4. Strong relaxation theorem

In this section, by strengthening our hypothesis on the orientor field, we
show that Se(x0) is a dense, G^-subset of S(xQ) for the C(T, ^-topology. The
new hypothesis on the multivalued perturbation F(t, x) is the following:

H(F\: F:TxX-^Pfc(X) is a multifunction such that
(1) t-+F(t, x) is measurable,
(2) h(F(t, x), F(t, y})<k(t}\\x-y\\ a.e., with k^L\T\
(3) |F(ί, x)|=sup{||t;|| : veF(ί, x)}<a(ϊ)+c(t)\\x\\ a.e. with fl( ),

__

(4) for all £g^Γ bounded, F(ί, 5)= \J F(t, x} is compact in X.
x&B

THEOREM 4.1. // hypotheses H(Λ), H(F\ hold and xQ<=D, then Se(x0) is a
dense, G^-subset of S(x0) for the C(T, X)-topology.



NONCONVEX EVOLUTION 431

Proof. Let Γ^C(T,X) be the compact, convex set as in the proof of
Theorem 3.2. Let xeS(x0). Then by definition x—p(f) with
Given y^Γ and ε>0 define //:T-»2*\{0} by

H(t)={u*=X: ||/(ί)-M||<-2^+d(/(0, F(t, y(f))),

where Mι>0 is the a priori bound for the elements in S(x0) established in the
proof of Theorem 3.2. Note that because of hypotheses H(F\ (1) and (2),
(ί, x)-+F(t, x) is measurable and so GrH={(t, u)^TxX: u^H(ί)}^B(T)xB(X)f

with B(T) (resp. B(X)) being the Borel <7-field of T (resp. of X). So we apply
Aumann's selection theorem and get u:T—*X measurable such that u(i)
a.e. Thus if we define L : Γ-+2Ll(Γ'X) by

F(t, y(t))) a.e.}

we have just seen that this multifunction has nonempty values which are
decomposable (see section 2) and furthermore from Proposition 2.3 of Fryszkowski

[9], we also have that it is l.s.c. Hence y-*L(y) is l.s.c. with decomposable
values. So we apply Theorem 3.1 of Fryszkowski [9] and get uε: Γ-^Ll(T, X)

a continuous map such that uε(y)^L(y) for all y^Γ. Therefore we have:

\ F(t, y(m

a.e. (cf. hypothesis H(F) (2)).

Also from Tolstonogov's selection theorem [15], we can get vε : Γ~>L\T, X]
continuous such that fora l l ye/7, vε(y)^ext Γ(y] (hence vε(y}^Sl^F( , y ( ^ and

\\uε(y)-ve(y)\\w<ε.

Next let εn j 0 and set un~u&n and vn—vBn. As in the proof of Theorem
3.2, via Schauder's fixed point theorem, we can find xn^Γ such that xn —
p(vn(xn)}> Note that xn^Se(xo) n^l. Since {xn}n^^Γ and the latter is com-
pact in C(T, X)y by passing to a subsequence if necessary, we may assume
that xn->x in C(T, X). Using Benilan's inequality, we get

+2\'(J(xα(x)-x(s», un(s)-f(s))ds .
Jo
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Recall that /(•) is uniformly continuous on bounded sets in X, while by

l i IU
construction vn(xn)— un(xn) — >0 and so vn(xn)— un(xn} — >0 in L\T, X) (cf.
Gutman [10]). So we get

Ϊ
t
(J(Xn(s) — X(s)), Vn(Xn)(s) — Un(xnXs))ds-^0 aS ft->oo.

o

Furthermore, note that

(*»(«)-*(*)), un(xn)(s)-f(s»ds

Thus in the limit as n— >oo, we get

=$x=x (via GronwalΓs lemma).

Since xn<=Se(xo) and xn-*x in C(T, X), we conclude that

(recall that S(xQ) is compact in C(T, X ) ; see Avgerinos-Papageorgiou [1]).

Next let δF(t, x, v) be the Choquet function corresponding to F(t, x) (for the
definition and properties of δχ , , X we refer to DeBlasi-Pianigiani [8] and

Pianigiani [14]). Let Z^={x^S(x0): (bδF(t, x(t\ f(tydt<λ}, where x = p ( f ) with
Jo

/eSi.(.ta.(.)). Using the fact that δF(t, , ) is H.S.C., δF(ί, Λ:, •) is concave and
invoking Theorem 2.1 of Balder [2], we can easily check that ZΛ is open in
C(T, )̂. Let >^w j 0 and set Zjn=Z». Then since 0^^F(ί, Λ:, v) for all (f, ΛΓ, v)

and 3χί, ΛΓ, v)=0 if and only if vtΞextF(t, x\ we readily see that
Hence Se(x0) is also a Ga-subset of S(x0) Q.E.D.

5. Examples

In this section we present two examples illustrating the applicability of the
abstract results established in this paper.
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(A) Let Z be a bounded domain in RN, with smooth boundary. Let
β: R-*2R is a set-valued map. We consider the following distributed parameter
system:

r?r Γ
Λ . Λ / \ / , / , \ \ . I «/ / \ / / \ /ί, z, x(t, z))+\ l(z, z ) u ( z ) d z

(4) =0, x(Q, z)=x0(z)

u(t, )<=U(t, x(t, )) a.e. on T.

We will need the following hypotheses:

H(β) : β( ) is maximal monotone with Q^D(β). So β=dj with j : R—+R proper,
convex and l.s.c.

H(g) : g:TxZxR-*R is a function such that
(1) (£, z)-»g(t, z, x) is measurable,
(2) \g(t, z, x)-g(t, z, x'}\^k(t, z)\x-x'\ a.e., with k( , )t=L\TxZ),
(3) \g(t, z, x)\£a(t, z)+c(t, z)\x\ a.e. with α( ,.)eL1(T, LP(Z)),

c( , )^^1(^J L°°(Z)), l<^<c«.
//(/) : 1<ΞLP(ZXZ).
H(U): U:TxLp(Z)->Pfc(Lp(Z)) is a multifunction

(1) £—»£/(£, Λ:) is measurable,
(2) Λ(ί/(/, Λ:), f/(ί, Λ OJ^fe 'WII^-^ΊIp a.e., with kf( }^L\T\
(3) |ί/(ί, x) |=sup{ | |w | | J 9 : ι/eί/(ί, τ)} ^α'CO+^COII^IU a.e., with α'( ),

In this case X~LP(Z), which is uniformly convex together with its dual
L«(Z)(l//>+l/<7=l). Let /3( ) be the lifting of /3( ) on LP(Z); i.e. β(x)=
{y <ΞLP(Z) : 3;(^)e/3(jc(2)) a.e. on Z} with D(j§)= {xe LP(Z) : there exists y e LP(Z)
such that 3;(z)e^(x(z)) a.e.}. It is easy to check that /5 is m-accretive on
X=LP(Z). Define Λ:Z)g^-X by Ax = -Δx+β(x) for all ,τe,D-^J'p(Z)Π
W*'p(Z)Γ\D(β). It is known (cf. Brezis [7] and Barbu [3]) that this is an
m-accretive operator which generates an equicontinuous semigroup of nonlinear
contractions.

Let g'.TxX-^X and B^X(X} be defined by

g(t, x)( )=g(t,-, λ'( )) (the Nemitsky operator corresponding to g( ,

and Bu( )={ /(•, z')u(z')dz' .
JZ

Recall that £(•) is a compact linear operator on LP(Z) (cf. hypothesis
So if we set F(ί, x)~g(t, x)+BU(t, x), we readily see that it satisfies hypothesis
H(F\. Rewrite ( 4 ) in the following equivalent deparametrized (i.e. control-free)
form :
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t, x(t)Y

with #o— x0( )^D. Invoking Theorem 4.1, we get the following result:

THEOREM 5.1. // hypotheses H(β), H(g\ H(l\ H(U) hold, *0(-)eJD and
*eC(T, Lp(Z)) 2s a solution for (4) then given ε>0, we can find jyeC(T, LP(Z))
a solution of (4) generated by a control u(t, )eext U(ty *(ί. )) a.e. such that

supf \x(t, z)-y(t, z)\2dz<ε.
t(=T JZ

(B) Again, let Z be a bounded domain in RN, 2^r<oo, 0>0, Dk—d/dzk,
k— {1, ••• , N] and /)— grad. We consider the following optimal control problem :

χ\r *~g(t, Z, x(t,

(5)(
.-, , ̂  Λ ^ , , - , , . , , a^

x(Q, z)=x0(z) a.e. and u(t, )^U(t, x(t, )) a.e.

Assume that hypotheses H(β), H(g), H(ί) and H(U) hold with ρ=2,
Let X—L\Z} and define τ4:D^X-^X by

Ax^=~ ΣDk(\Dkx\r-*Dkx)+θx\x\r-2=-Δθ

rx (the pseudo-Laplacian)

and D={x<^Wl'r(ZY. Δθ

rx^L\Z\ —J^-^B(x(z)) a.e. on Γ\.

We know (cf. Brezis [7], p. 43) that A( ) is m-accretive. In fact A~ dφ
where φ: X— >R=R^J{ + °o} is defined by

' -ί \\DxKdz+-\ x ( z ) \ r d z + \ j ( x ( z ) ) d z if xέW\Z\ j(x( ))^L\n
φ(x)— r ^z r ^z JΓ

+ TO otherwise.

Clearly φ( ) is proper, convex and l.s.c. Furthermore it is of compact type;
i.e. for every λ^Q{x<^X: ^(^)+||x||2^^} is compact in X. This follows im-
mediately from the compact embedding of W l ' r ( Z ] into L\Z) (recall 2^r<cχ>).
So by the Brezis-Konishi theorem (cf. Brezis [7], A( ) generates a compact
semigroup, which in particular is equicontinuous.

Rewrite ( 5 ) in the following equivalent abstract form :
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s.t. — x(t)^Ax(t)+F(t, x(t)) .

We make the following hypotheses concerning the cost functional η :

H(η) : η : X-+R is continuous.

Then invoking Theorem 4.1 and regularity results concerning subdifferential
evolution inclusions (see Brezis [6]), we get the following "bang-bang" principle
of (5) :

THEOREM 5.2. // hypotheses H(β) (with ;>0), H(g), H(U) (with p=2), H(l),

H(η) hold and xQ^Wί'r(Z) with j(x0('))^Ll(Z), then problem (5) admits a
solution x<=C(T, L2(Z)) with dx/dt^L2(TχZ) and given ε>0 we can find a

trajectory y^C(T, L\X)) with dy/dt^L\TxZ) generated by a control

weL 2 (TxZ) such that w(f, )eext U(t, *(f, )) a.e. ("bang-bang" control) and
(ε-opt^mality of y( , )).

Acknowledgement. The authors wish to thank the referee for his(her)
corrections and helpful remarks.
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