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ON POLARIZED MANIFOLDS OF SECTIONAL

GENUS THREE

HlRONOBU ISHIHARA

i 1. Introduction

Let L be an ample line bundle on a complex projective manifold M of
dimension n^2. The sectional genus g—g{M, L) of a polarized manifold (M, L)
is defined by the formula 2g(M, L)—2 = {K+{n—l)L)Ln'lt where K is the
canonical bundle of M. For polarized manifolds over C, it is known that g
takes non-negative integers ([Fl Corollary 1] or [12; Lemma 7]).

In many papers the structure of (M, L) with low g has been studied: see
[Fl] or [12] for g£l; [BeLP] for g=n=2; [F2] for g = 2 ; [Ma] for # = 3
and n=2. As for the case g=3 and n>3f we see from the results of [Fl] or
[12] that (M, L) is one of the following types.

(1.1) There is an effective divisor E on M such that (E, LE)^(Pn-\ O(l))
and [ £ ] t f ( l )

(1.2) There is a fibration Φ: M-^C over a smooth curve C such that
every fiber F of Φ is a hyperquadric in Pn and L F =C

(1.3) There is a fibration Φ: M->C over a smooth curve C such that
(F, LF)=CP 2, 0(2)) for every fiber F of Φ.

(1.4) (M, L) is a scroll over a smooth surface S.

(1.5) K+{n-2)L is nef.

(1.6) (M, L) is a scroll over a smooth curve of genus three.
In the case (1.6), we have nothing more to say.
In the case (1.1), using the theory of minimal reduction (e.g. [12 (0.11)], [F2

(1.9)], or [ F ; (11.11)]), we see (M, L) is obtained by a finite number of simple
blow-ups of a polarized manifold (AP, V) which is of type (1.3) or (1.5).

The cases (1.2) and (1.3) are further studied in §2 and §3, which is the
main part of this paper. We shall see our classification results are similar to
those in case g=2, but the computations are more complicated.

In the case (1.4), (M, L) = {Ps{β), H{β)) and g(S, det £ ) = 3 for some vector
bundle 6 on S, thus the classification of (M, L) is reduced to the classification
of ample vector bundles β for each polarized surface with g = 3 . Under the
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additional condition that L is spanned, the classification was obtained in [BiLL].
Without this condition, however, we have only some partial results and our
classification is not yet complete. The author hopes this case will be treated
in a future paper.

The case (1.5) is a kind of "general type". For any fixed n, there are only
finitely many deformation types of (M, L). (See [F (13.1)].) But it seems to
be difficult to enumerate all such deformation types.

The author would like to express his sincere thanks to Professor T. Fujita
for kind encouragement and for many valuable comments during the prepara-
tion of this paper. The author would also like to thank the referee for his
useful suggestions, which made this paper more readable than in previous version.

Notation and Terminology

Basically we use the customary notation in algebraic geometry as in [H2].
All varieties are defined over C and assumed to be complete. Vector bundles
are often identified with locally free sheaves of their sections and these words
are used interchangeably. Line bundles are identified with linear equivalence
classes of Cartier divisors, and their tensor products are denoted additively,
while we use multiplicative notation for intersection products in Chow rings.
The linear equivalence class is denoted by [ ], and its corresponding invertible
sheaf is denoted by O\_ ] . We use { } for the homology class of an algebraic
cycle.

Given a morphism / : X->Y and a line bundle A on Y, we denote f*A by
Ax, or sometimes by A for short when there is no danger of confusion. The
canonical bundle of a manifold M is denoted by KM, unlike the customary
notation KM. The O(l)'s of projective spaces Pa, Pβ, ••• will be denoted by
Ha, Hβ, •••. Given a vector bundle 8 on X, we denote by Px{β) (or P (<£?)) the
associated projective space bundle, and denote by H{6) the tautological line
bundle on P{0) in the sense of [H2]. The pair (P(£), H(£)) is called the scroll
of e.

§ 2. The case of a hyperquadric fibration over a curve

In this section, we study the case (1.2), following the idea in [F2; §3].

(2.1) Since h\F, LF)=n+l, S :=Φ*OMIL'] is a locally free sheaf of rank
•n+1 on C and a natural map Φ*e->L is surjective. This yields a C-morphism
p: M->Pc(e) and for every point x on C the restriction of p to Fx:=Φ~1(x)
is an embedding of Fx into Pn. Hence p itself is an embedding and M is a
member of \2H(β)+BPii)\ for some line bundle B on C. We put d=Ln, e=
cλ(e), b=άegB and denote by g(C) the genus of C. After simple computation,
we get d=2e+b, 2g(C)+e+b=4t, and s : = 2 e + ( n + l ) 6 ^ 0 . Furthermore in the
last inequality, equality holds if and only if every fiber of Φ is smooth by
[F2; (3.3)]. From these results, we have (n+l)d+s+4ng(C)=8n, hence g(C)
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= 0 or 1.

(2.2) We first study the case g(C)=l. In this case, C is an elliptic curve
and we have e=d— 2 and b—^—ά from the equality above. Hence we obtain
d^6, since s>0 and n ^ 3 .

(2.3) We consider the ampleness of 8. If 8 is ample, then det£ is ample
and β=Ci(£)>0. It follows that d>2, hence 8 is not ample when d^2. On
the other hand, 8 is ample when d^5 by the argument in [F2 (3.13)]. In
general, for any indecomposable vector bundle £F on an elliptic curve, 9" is
ample if and only if Ci($)>0 (for a proof, see e.g. [HI]). Thus when d—?> or
4, 8 is ample if it is indecomposable.

(2.4) When d—3 or 4, we can find an example of (M, L) similarly as in
[F2; (3.12)]. We can also find an example of (M, L) with d=6 as follows.
Let C be a smooth elliptic curve and take a line bundle X on C with deg X —
1. We put 8=Xm, then β is ample, Ci(<f?)=4, Pc(S)=CxPl, and H(ε) = Hσ +
XP(ε), where //* is the pullback of 0(1) on P*. Putting B — —2X, we have
d e g £ = - 2 and 2H(8)+BP(ε)=2Hσ. Then a general member Af of \2H(8)+
Bp(s)\ is smooth and, putting L = \_H(8)~\M, we obtain an expected example of
(M, L) with d=6.

(2.5) From now on, we study the case g(C)=Q. In this case, C=P\ and
we have e—d—4 and b=S—d from the equality in (2.1). Hence we obtain d^
12, since s^O and n^3. Furthermore when d=ll or 12, we have n=3; when
d=12, we have s=0 and Φ is a P ^ P ^ b u n d l e over P | .

(2.6) We put P=Pc(ε), H=H(8), and denote by Hξ the pullback of 0(1) on
P | . Since C^P\, we can describe (?^0(^o)Θ ••• ®O(en), where β0, •••, en^Z,
eo< ^en, a n d Σ ? - o β i = e . W e d e n o t e O(e0)ξB •- ®O(en) by O(e0, •••, en) for
s i m p l i c i t y . W e sha l l c lass i fy 8^O(e0, ••• , en) for e a c h d=l, 2, ••• , 12.

(2.7)
L E M M A . 2 ( β w _ ! + β n ) < ί ί when

Proof, (cf. [ F 2 ; (3.24)]). A natural surjection 8^O(e0, •••, βn-0 gives a
prime divisor Dλ :=P(O(e0f •••, en_i)) on P. Similarly 8-*O(e0, •••, en_2, en) gives
a prime divisor D2:=P(O(e0, ••• , en_2, en)) on P and <?-+O(e0, ••• > ^n-O gives a
subvariety W: = P(O(e0, •••, <?n_2)) of P. We have D1 e \H-enHξ\, D2 e
IH—βn^Hξ], and W—DιΓ\Ό2 as schemes. When £ 0 ^ 0 , we have IFζztM since
7/nr is not ample. Hence d i m ( M n i F ) = ? 2 - 2 and
H(Hen.1Hξ)=d-2(en^+en). •

(2.8) Suppose that d = l . We have e = - 3 , ^ = 7 , and MeΞ\2H+7Hξ\. By
(2.7), £ s 0 ( - 3 , 0, ••• , 0), O ( - 2 , - 1 , 0, ••• , 0), or O(~l, - 1 , - 1 , 0, •••, 0).

(2.8.1) When 8^0(-l, - 1 , - 1 , 0, ••• , 0), we have n£4 by the argument
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in [F2; (3.21)]. Indeed, we have

d: <**'- σso: σn: •••: σno: σnι

H=Hσ-Hξ, and Me\2Hσ+5H ξ\. Thus we can describe

••• +g,(σ)ξl=0 in P},

where #0, •••, gs are homogeneous polynomials of degree two in σ0, σu •••, (rnl.
In this defining equation of M, we put

where a00, a01, •••, αn are constants. Then we obtain an equation

where Qo, •••, ̂ 7 are homogeneous polynomials of degree two in (a):=(a00,
floi, •••, βΛ) If ft2^5, then Q0(a)= ••• r=Q7(α)=0 has a non-trivial solution. We
fix such a solution (a) and define a rational map a: P\->Pln~'L by

If a i s n o t a m o r p h i s m , t h e n a00: flio # 2 0 = ^ 0 1 : flu ^21 a n d α 3 — ••• = α n = 0 .

Since (α) is non-trivial, the equations

determine a point >? on P ^ " 2 . Let Z be the fiber of P\xPln-2->P2

σ

n-2 over z.
Then we have Z c M by the definition of Z, hence 0<LZ = HZ=(Hσ-Hξ)Z=
—1. This is a contradiction, thus α is a morphism. Let T7 be the graph of a.
Then ΓdM by the definition of a, hence 0<LΓ^HΓ=(Hσ-Hξ)Γ. However,
since HσΓ—HξΓ=l, this is a contradiction too. Hence we have proved that
n^4, thus e~O(-lf - 1 , - 1 , 0) or tf(-l, - 1 , - 1 , 0, 0). If β^O{~l, - 1 , - 1 ,
0), then P={(f 0 : £i)X(*0: σ*: ^ : ^30: α 8 i ) e P | x P ί | ί 0 : fi=tf3 0: ^31}. Thus
the projection μ: P-^Pi is the blowing-up of Pi with center W : = {σ30=σ"31=0
in P ^ } = P 2 . Since the exceptional divisor E of μ is a member of \Hσ—Hξ\,
we have Me |7// σ —5£| . Hence M is the strict transform of a hypersurface
of degree seven in Pi, which has singularities with multiplicity five along W.

(2.8.2) When £ S 0 ( - 2 , - 1 , 0, •••, 0), we claim that n^L The following
argument is similar to (2.8.1). We have
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0"o: 0 i o : 0 i i : 0 2 0 : 0 2 i ^ 022 '> •••: 0 n o ^ 0 » i : 07!

1"~01O 0 1 1 ~ : : 0 2 O 0 2 1 ~~" 0 2 1 * 0 2 2 = ~ '** - ~ 0 n θ @ n\~~ @ nl

H=Hσ-2Hξ, and M e |2i/α+3i7€ | . Thus M = {^(σ)^+^
#3(tf)?i=0 in ? } , where #0, ••• > tfs are quadric polynomials in O). We put

Then from the defining equation of M above, we obtain an equation

where Qo, •••, Q7 are quadric polynomials in (a):—(a00, aOi, ••• , αΛ). If ^ ^ 5 ,
then Q0(α)=.. =Q 7 (α)=0 has a non-trivial solution (α). We fix it and define a
rational map a: P ^ P J " " 1 by

If α is not a morphism, then αg^ ^fln^O and for some (c 0 : Ci)eP| , we have
flio^o+βii^i^O and α0oCo+βoî oCi + βo2^ϊ::i=0. In the case αiO=αn=O, let Z be
the fiber of P\xPln-l~^Pln~l over s : = ( l : 0: •••: 0). Then we have Z c M ,
hence 0<LZ=^HZ^(Hσ—2Hξ)Z——2. This is a contradiction, thus α ^ O or

In this case, α0oίo+βoifoίi + βo2ί! is devided by alo£o+fln£i in C[f0, f 1] we
denote by fro?o+frifi its quotient. We put

Z= {σo=boσlo+biσn, σ20= ••• —σn2—0 in P}.

Then άimZ=l and Z c M by the definition of Z, hence 0<LZ=HZ=(Hσ-2Hξ)Z.
However, since HσZ—l and HξZ—l, this is a contradiction too. Thus a is a
morphism.

Let Γ be the graph of a. We have ΓdM and then 0<LΓ=HΓ=(Hσ-
2Hξ)Γ. However, since HσΓ—2 and HξΓ=l, this is also a contradiction. Hence
we have proved that n^4, thus £S0(-2, - 1 , 0, 0) or O(-2, - 1 , 0, 0, 0).

(2.8.3) When β = O(-3, 0, •••, 0), we claim that n ^ 4 as before. P i s
isomorphic to

H=Hσ-3Hξ, and MϊΞ\2Hσ+Hξ\. Thus M={go(^)fo+^(^)fi=O in P}, where ^
and x̂ are quadric polynomials in (σ). We put
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Then from the defining equation of M above, we obtain an equation

where Qo, •••, 0? are quadric polynomials in (a):=(a00, aOί, •••, an). If ft ^ 5 ,
then Q0(a)=" =QΊ(a)=0 has a non-trivial solution (α). We fix it and define a
rational map α : P\->Pin by

If α is not a morphism, then a1= " = an=0. Let Z be the fiber of
P*n over * : = ( 1 : 0: •••: 0). We have ZdM and then 0<LZ=HZ=(Hσ-3Hξ)Z
— —3. This is a contradiction, hence a is a morphism. Let Γ be the graph
of a. We have Γ c M and then 0<LF=HΓ =(Hσ-~3Hξ)Γ. However, since
HσΓ=3 and HξΓ=l, this is a contradiction too. Hence we have proved that
n^4, thus £ S 0 ( - 3 , 0, 0, 0) or tf(-3, 0, 0, 0, 0).

(2.9) Now we study the case d=2. We have β=—2, /?=β, and M e | 2 / / +
6/^|. By (2.7), έ?s(?(-2, 0, ••• , 0) or ^ ( - 1 , - 1 , 0, •••, 0).

(2.9.1) When <?sθ(- l , - 1 , 0, ••• , 0), we have rc^4 as in (2.8.1). Hence
£ S 0 ( - 1 , - 1 , 0, 0) or O(- l , - 1 , 0, 0, 0).

(2.9.2) When e=O(-2, 0, •••, 0), we have n^4 as in (2.8.2). Hence β^
O(-2, 0, 0, 0) or tf(-2, 0, 0, 0, 0).

(2.10) Suppose that d=3. Then e = - l , 6=5, and M e \2H+5Hξ|. From
(2.7), we have £ S 0 ( - 2 , 0, ••• , 0, 1), <? = O(-l , - 1 , 0, ••• , 0, 1), or β^O{~l, 0,
- , 0 ) .

(2.10.1) When £ S 0 ( - 1 , 0, •••, 0), we have n£4 as in (2.8.1). Hence β^
O(-l , 0, 0, 0) or 0 ( - l , 0, 0, 0, 0).

(2.10.2) When <f?s©(—1, —1, 0, •••, 0, 1), we have n ^ 4 by the argument
in [F2; (3.23.2)] which is similar to (2.8.1). Hence £ = O(-1, - 1 , 0,1) or
<X-1, - 1 , 0, 0, 1).

(2.10.3) When £ ^ O ( - 2 , 0, ••• , 0, 1), we have n ^ 4 as in (2.8.2) and (2.10.2).
Hence £=<χ~2, 0, 0, 1) or O(-2, 0, 0, 0, 1).

The next lemma is useful for d^4.
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(2.11)
L E M M A . When d^>4, — 1 does not appear twice in {e0, •••, en}.

We can prove this lemma by the argument in [F2; (3.18)].

(2.12) Now we study the case d=4. We have e=Q, b=4, and
4Hξ\. By (2.7) and (2.11), έ ? s θ ( - l , 0, - , 0, 1) or 0(0, - , 0).

(2.12.1) When £ ^ 0 ( - l , 0, •••, 0, 1), we have w^4 as m (2.10.2). Hence
£ = 0 ( - l , 0, 0, 1) or O(-l, 0, 0, 0, 1).

(2.12.2) When £^0(0, ••• , 0), by the argument in [F2; (3.23.1)], we have
rc^4, P=P\xP%, B$\L\=φ, and the morphism ψ: M-+P? defined by \L\ is
a finite morphism of degree four. Conversely, a general member M of \2Hσ+
4Hξ\ on P does not contain any fiber of the projection P^P%, thus L\—HM is
ample and (M, L) is a polarized manifold of the above type.

The next lemma is useful for

(2.13)
LEMMA. eo^—l when d:>5.

We can prove this lemma by the argument in [F2; (3.19)].
Similarly we obtain the following two lemmas.

(2.14)
LEMMA. eo^O when

(2.15)
LEMMA. eo^l when

(2.16) Now we study the case d=5. We have e = l , 6=3, and M e | 2 # +
3Hξ\. By (2.11) and (2.13), eς*O(-l, 0, •••, 0, 2), O(- l , 0, •••, 0, 1, 1), or 0(0,
- , 0 , 1 ) .

(2.16.1) When £ S 0 ( - 1 , 0, •••, 0, 2), we have n ^ 3 similarly as in (2.10.2),
hence e^O(—l, 0, 0, 2). Furthermore Bs |L | is one point as in [F2; (3.23.2)].

(2.16.2) When £ S 0 ( - 1 , 0, •••, 0, 1, 1), we have n^A and Bs |L | is one
point as in (2.16.1). Thus <£S0(—1, 0, 1, 1) or 0(—1, 0, 0, 1, 1).

(2.16.3) When e^Oφ, ••• , 0, 1), by the argument in [F2; (3.24)], we have
tt^4 and \L\ makes M the normalization of a hypersuface of degree five in
Pn+1, which has triple points along a P2 in Pn+1.

(2.17) Suppose that d=6. We have e=2, 6=2, and M e | 2 / / + 2 / / e | . From
(2.7), (2.11), and (2.13), we have β^O{-l, 0, •••, 0, 1, 1, 1), 0(0, •••, 0, 1, 1),
O(0, - , 0 , 2 ) .
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(2.17.1) W h e n O S £ ( — 1 , 0, ••• , 0, 1, 1, 1), w e s h o w t h a t n = 3 s i m i l a r l y a s
in (2.7). N a t u r a l s u r j e c t i o n s S-^O(e0, •••, en-ι), £->Q(e0, ••• , en-i, en), a n d £->
Θ(e0, •••, e n _8, έ?;ι-i, 0 n ) g i v e p r i m e d i v i s o r s A : = P(Θ(e0, ••• , β n - i ) ) , Λ : =
P(O(e0, •-, en_2, en)), a n d Z> 3: = P ( ( ? ( e 0 , ••• , 0n-s, 0«-i, O ) r e s p e c t i v e l y . A
n a t u r a l s u r j e c t i o n <5^O(e0, ••• , £ π _ 3 ) g i v e s a s u b v a r i e t y W:=P(O(e0, •••, en_z))
of P=P(€). We have Ae | / / - 0 n / 7 f | , D2^\H-en^Hξ\, D^\H-en.2Hζ\, and
W—DiΓλDzΓΛDz as schemes. Since //^ is not ample, we have VFςέM, hence
dim(MrW)=n-3 and 0<Lw-3{Mn^}-//w-3(2//+27/ l)(//-i^)3=2e-4-0 if n
^4. This is a contradiction, thus we have n=3 and £=O(—1, 1, 1, 1). By the
argument in [F2; (3.26)], M is a double covering of P\xP2

σ and its branch
locus is a smooth member of |4i/$+2//"σ|. We also have £ = [

(2.17.2) When £S0(O, •••, 0, 1, 1), we have n£4 as in (2.16.3), hence β^
O(0, 0, 1, 1) or O(0, 0, 0, 1, 1). We show the existence of (M, L). When £ ^
O(0, 0, 1, 1), we have P={(ξ0: ξi)X(σ0: σλ\ σ20: σ2 1: σ30: <T 3 i)eP|xP^|f o : ^ l =

0"2o ^2i::::=<?'3o: (73i} and H—Hσ. Let M be a general member of \2Hσ-\~2Hξ\ and
put £ = [#, ]#. Then B$\L\=φ and the restriction of P-+PI to M is the
morphism ^ defined by \L\. \ί ψ\ M~->φ(M) is not finite, M contains a fiber
Z of P-+PI over one point z on the line / : = {σ2o

z=σ2i=σ3O=σn=O in PI}.
Using homogeneous polynomials q0, qu and q2 of degree two in (σ), we can
describe that M= {qo(σ)ξl+q1(σ)ξoξ1+q2(σ)ξ2

1=0 in P]. Then Z c M if and only
if ^0(^)r=^1(z)~^2(2')=0. Thus if we choose q0, qu and q2 generally to satisfy
that ίΓ\{qo(σ)=q1(σ)—q2(σ)=O in P*}=φ, then ^ becomes finite and L is ample.
Similarly we can find an example of (M, L) when <S=O(0, 0, 0, 1, 1).

(2.17.3) When β^Oφ, •••, 0, 2), we have n ^ 3 as in (2.16.3), hence £ =
O(0, 0, 0, 2). We can show the existence of (M, L) similarly as above.

When d^7, the situation is much simpler.

(2.18)
LEMMA. Bs\L\—φ and L is very ample when d^Ί.

We can prove this lemma similarly as in [F2 (3.31)]. This lemma tells
us that our results overlap [II Theorem 4.3], but our method is different
from his.

(2.19) Now we study the case d=7. We have e=3, 6=1, and M e | 2 / / +
Hξ\. Furthermore eo^O by (2.14), and e2^l by the argument in [F2: (3.25)].
Hence £^O(0, 0, 1, 2), 0(0, 1, 1, 1), or O(0, 0, 1, 1, 1). In each case, (M, L) exists
similarly as in (2.17.2). By the morphism defined by | L | , M is isomorphic to
a manifold of degree seven in pn+\

(2.20) Suppose that d=8. We have e=4, b=0, a n d M e | 2 / / | . Furthermore
eQ>0 by (2.14), and e^l by the argument in [F2;(3.26)]. Hence β^O(0,1,1, 2),
O(0, 1, 1, 1, 1), or 0(1, 1, 1, 1).
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(2.20.1) When €2*0(1, 1, 1, 1), we have P~P\xPl H=H$+Hσ, and Me
\2Hσ+2Hξ\. Hence M is a smooth divisor of bidegree (2, 2) on P. Conversely,
let M be a general member of \2Hξ+2Hσ\ and put L = [// f+//"JAf. Since € is
ample, L is ample and (M, L) is a polarized manifold of the above type.

(2.20.2) When έ?s<5(0, 1, 1, 1, 1), by the argument in [F2; (3.26)], M is a
double covering of P\xPl and its branch locus is a smooth member of \2HξΛ-
2Hσ\. We have also L =

(2.20.3) Even when έ?s0(O, 1, 1, 2), by the argument in [F2; (3.26)], we
have a morphism h: M->P\xPl and L — h*(Hξ-\-Hσ). Since L is ample, /ι:
M->h(M) is finite and h(M)<^\a1Hξ+a2Hσ\ for some non-negative integers «i
and α2. Then 8=L 3 =(deg/ι) [//^+//(;]J(Λί)—(deg/ι)(αi+3α2). From the con-
struction of h, we get άegh=2 and β 1 = α 2

: = l . Hence h(M)&\Hς+Hσ\ and
M-+h(M) is a double covering.

(2.21) Suppose that d=9. We have β=5, 6 = - l , and M^\2H-Hξ\. Since
^ l by (2.15), £s<5(l, 1, 1, 2) or 0(1, 1, I, 1, 1).

(2.21.1) When €^0(1,1,1,1,1), similarly as in [F2; (3.27)], the restriction
of the projection P^P\xPi-^Pi to M is a blowing-up of Pi and its center
is a complete intersection of two hyperquadrics in Pi.

(2.21.2) When €2*0(1, 1, 1, 2), we have Ps{(£ 0 : £i)X(<τ0: <Ί : ^ : ^ 3 0 : <τ3i)
e P | χ P ί | £ o : ί i^^so: σ3i}, hence JP is the blowing-up of Pi with center {σso^
σsi=0 in Pi}. The exceptional divisor E is {σ30—σu=0 in P}<=\Hσ—Hς\, thus
Me|3// σ—E\ and M is the strict transform of a smooth hypercubic in Pi.

(2.22) Suppose that d=10. We have <?=6, fe=-2, and M e \2H-Hξ\. Since
^ l by (2.15), 5=0(1, 1, 1, 3), 0(1, 1, 2, 2), 0(1, 1, 1, 1, 2), or (5(1, 1, 1, 1, 1, 1).

(2.22.1) When €2*0(1, 1, 1, 1, 1, 1), we have P2*P\χP*, H=Hξ+Hσ, M e
\2Ha\, and £ = [#$+//, ]* . Hence M^P\xQ, where 0 is a smooth hyper-
quadric in P | .

(2.22.2) When €2*0(1, 1, 1, 1, 2), by the argument in [F2; (3.28)], we have
M is the blowing-up of a hyperquadric in PI and its center is a smooth quadric
surface.

(2.22.3) When €2*0(1, 1, 2, 2), we have P = {(f0: ξ1)X(σ0: σt: σ 2 0: σ2 1: σ3o:
(T 3 i)GP|xPJ | f 0 : ^ - o ̂ : σ21 - σ3o: σ91), H=Hξ+Hσ, MtΞ\2Hσ\, and L = lHξ+
Hσ~\M> Since 5 is ample, H is ample and then L is ample for any general
member M of \2HO\. Because of (2.18), M is embedded in P 9 as a manifold
of degree nine by the morphism defined by \L\. On the other hand, the
restriction of the projection μ: P—>P% to M is the morphism defined by \L —
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Hξ\, and M is birationally mapped onto μ(M). We have 10=L8=3[// f]J f[//< r]S f

+ C^]if and [//f]if[/ί,]lf=2 since M-*P\ is a hyperquadric ίibration. Thus
the degree of μ(M) is four. Furthermore, since μ(P)— {θ2oθ3i — o3oθ2i—ΰ in PI)
and M e | 2 i / f f | , μ(M) is a complete intersection of two hyperquadrics in PI.
Even when €2*0(1, 1, 1, 3), we have the same result as above.

(2.23) Suppose that d = ll. We have * = 7, δ = - 3 , and M e \2H-3Hξ\.
Since e o ^ l by (2.15), and since rc=3 by (2.5), €2*0(1, 1, 1, 4), 0(1, 1, 2, 3), or
0(1, 2, 2, 2).

(2.23.1) When €2*0(1, 1, 1, 4), we claim that (M, L) does not exist. Assume
that (My L) exists. A natural surjection 8 —* O(l, 1, 1) gives a prime divisor
W:=P(0(l, 1, 1)) on P. We have W^P\xPl, Hw=Hξ+Hσ, and WφM, hence
[M] ι Γ =MπW Γ G 1 2 ^ — 3 ^ 1 = 1 2 ^ — ^ 1 . This is a contradiction, thus we have
proved the claim.

(2.23.2) Even when €2*0(1, 1, 2, 3), we can show that (M, L) does not
exist. We have P2*{(ξ0: ξi)X(σ0: or. o20: σu: σ30: on: o32)^P\xPl\ξQ: £i =
σ20: σ2ι=o30: σsl=σ31: o32} and H=Hσ+Hξ. Assume that there exists a smooth
member M of \2Hσ—Hξ\. Then there is an exact sequence of normal bundles

o — > mBIM — > mBIP — > IJIMIPIB — > o,

where B :=Bs|2//σ—//^| = {o2o=o21—σ30—on=oS2=0 in P} s P ( 0 ( l , 1)). Since
B is the complete intersection of D1 :={σ20=o21=0 in P) 2*P(0(l, 1, 3)) and
^2:={(T3o=<y3i=^32=O in P}sP((?(l, 1, 2)), we have mB,P=\βlDι,p\B®[mD2ιlp\B^
[Hσ-H{\B®[Hσ-2Hξ]B. Also we have mM/p=t2Hσ—Hς]B. Then the morphism
φ: lHσ—Hξ'2B@lHa—2Hξ']B->[2Hσ—Hς']B corresponding to fnBip-*[2lMip~]B is given
by some ψι^H\Bf [#,]*) and φ2^H\B, [#„+//£*) . Since [ / / J B C ^ + Z / J ^ ^ I ,
>̂i and φ2 have a common zero point, at which φ is not surjective. This is a

contradiction and (M, L) does not exist.

(2.23.3) When €2*0(1, 2, 2, 2), we can show the existence of (M, L). We
have P^{(ξo\ ξι)X(σ0: oί0: on: o20: o2l: σ 3 0 : on)^PξXP%\ξ0' ξι = o10: σn =
o2o'> o21=o30: o31} and H—Ha-\-Hξ. Putting ^ = { ^ ^ 0 in P\ and Vj={σjΦθ
in P), we take a rational section sx'.— {(UiΓλVj, σl/ξO'ξi/σ^)}ttJ of 2Hσ—Hξ.
Note that h°(P, 2H-3Hξ)=h0(P\, S 2 (<^)®[-3// 6 ])-15. Let flf •••, / 1 5 be rational
functions on P such that

f
J 1

ft—-

ξo

σl

ξo

σl

ξo

σl

σaσιo
ξo

o0o30

ξo

σ10σn

ξo

ξo

σl

ξo

σl

ξo

σl

σoσu

ξl '

σoσzί

ξl '

σh

ξl '

ft

ft

r
J 6

ξo

σl

ξo

σl

ξo C

σl

σoσ2O

ξo

σ\0

ξo

hoσio

ξo

ξo

σl

ξo

σl

ξo

σl

<

o0o21

ξl

VioOn
ξl '

ξl '
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r fθ 010021 fo 011021 r SO 01Q03O fo

/ . =

0o fo 0o fi ' 0o fo σ2

0 ί i

SO 010031 SO 011031 r SO 020 SO 02Q021

00 fo 00 fl ' 00 fo 00 ί

r SO 02Q021 SO 021 r SO 020030 SO 020031
/ll~—2 X — ~Z2'~Ϊ > /l2— "

0o fo 0o fi ' 0o fo 0o fi

SO 0 2 0 0 3 1 SO 0 2 1 0 3 1 r SO 030 SO 0 3 Q 0 3

00 fo 00 fl ' 00 fo 00 fl

r SO 030031 SO 031
/l5—-—£• X — " ^ X

0o ςo 0o ς i

Then C</i, •••, /1B>, the vector space spanned by /i, ••• , flδ over C, is isomor-
phic to H°(P, 2Hσ—Hζ) by mapping each ft to / t Si. Thus we can describe

where div(/ Si) is an effective divisor defined by a regular section f-Sι of
2Hσ-Hξ. Since B s | 2 ^ - ^ | = {(T1o=a11 = - = <T3i=O in P) ^P\χ {(1: 0 : •••: 0)},
if we take / = Σ £ i C » / i E C < / 1 , •••, /15> with (cu c2, c3)Φ(0, 0, 0), div(/ sθ is
nonsingular along Bs|2//σ—/^|. Thus a general member M of \2Hσ—Hξ\ is
smooth by Bertini's theorem. For such M, L : = / / ^ is ample since β is ample,
hence (M, L) is a polarized manifold as desired. Furthermore, similarly as in
(2.16.3), \L—Hξ\ makes M a desingularization of a variety of degree five in PJ.

(2.24) Suppose that d=12. We have e=8, Z>=-4, and Meί\2H-4Hξ\.
Since e0 ̂  1 by (2.15), and since n = 3 by (2.5), S^O{1, 1, 1, 5), 0(1, 1, 2, 4),
(9(1, 1, 3, 3), 0(1, 2, 2, 3), or 0(2, 2, 2, 2).

(2.24.1) When £^0(2, 2, 2, 2), we have P^P\xPl, H=Ha+2Hξ, M^\2Hσ\,
and L = [i/ σ +//|]^. Hence M=P\xQ, where Q is a smooth quadric surface
in PI. Since Q^Pι

μxP\, we have M^P\xPι

μxP\ and L=2Hζ+Hμ+Hλ.

(2.24.2) When <?s(?(l, 1, 1, 5), (M, L) does not exist by the argument in
(2.23.1).

(2.24.3) Even when 6=0(1, 1, 2, 4), we can show that (M, L) does not exist
similarly as in (2.23.2).

(2.24.4) When g^O(l, 2, 2, 3), we can show the existence of (M, L) similarly
as in (2.23.3). In fact, we have Ps{(f 0 : ξi)X(σ0: σ10: σn: σ20: σ21: σ30: σn:
( T 3 2 ) e P | χ P ί | f 0 : ί i = ̂ i 0 : on = σ20: σ21 — σ30: σ^—σn: σZ2), H=Hσ+Hξ, and
h\P, 2H-4Hξ)=h\P$, S2((?)(g)[-4//e])=ll. We take a rational section s 2 : =
{{UiΓλVj, σ2o/ξo ξi/σ2j)}t>J of 2Ha—2Hξ, where ί/t and V'3 are the same as in
(2.23.3). Let fu •••, fn be rational functions on P such that
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f — _f°_ σoσ™ f __ _fL _?^JL /• — _!?_ ( 7 l 0 < y 2 0 f — _f?_ . σ i o σ 3 0

/ l — 2~ * Λ2 ' / 2 — Λ.2 ' Λ2 7 /" 3 ^ 2 £2 > J 4 - 2 ' £2 '
0^0 SO 00 SO 00 SO 00 Cθ

0"l<)031 r _ ί θ 0"!θ /• _ j f0

Co #o Co #o Co 0o Co

^30^31 r SO 0*300*32

Then HχP,2Hσ-2Hζ)=C(fu - , /„> and B s | 2 i / f f - 2 / / e | = P | x {(1: 0: •••: 0)}.
For any / ^ Σ J L i ^ / t with Ci^O, div(/ s2) is nonsingular along Bs|2//σ—2//||,
thus a general member M of \2Hσ—2Hξ\ is smooth. Putting L—HMy we obtain
a polarized manifold (M, L) as desired. In this case, \L—Hξ\ makes M a
desingularization of a variety of degree six in P\

(2.24.5) Even when e=O(l, 1, 3, 3), we can show the existence of (M, L)
similarly. We have P^{(ξ0: ξί)X(σ0: σλ\ σ20: σ21: σ22: σ30: σn: σ32) e P | x
P J I f o : ζi=σ20: σ21=σ21: σ22=σS0: σ3i=σsl: σs2} and H\P,2Ha-2Hζ)
•••, /1 3>, where

fθ OΌ^SO r _ ^ 0 ^ l ^ O . _ fr _ ^ 0

£2 > ^ 2 — 2 ' £2 ' J *~~ n ϊ ° £2

ξo Go ξo Go Co

fθ
o

4*0 0*20 r f θ 0>2O0121 /• SO 0*21 /• S/• SO 021 /•

" 2 " * £ 2 ' / 6 -.2 ' £2 » / 7 ~T2~ * ~ £ 2 » / 8 2 * £ 2
^ 0 CO ^ 0 CO 00 CO 00 CO

SO 0"2O0"31 r SO 0"21031 r SO 030 r SO

/ f I

2
0^0

Since Bs|2//σ-2//^| = {(τ2o=^2i= = 032=O in P}, if we take f = ΣlUctft with
î̂ 4—^2^3=^0, then div(/ s2) is nonsingular along Bs\2Hσ—2Hξ\. Thus a general

member M of \2Hσ—2Hξ\ is smooth. Putting L~HM} we obtain a polarized
manifold (M, L) as desired, and \L—Hξ\ makes M a desingularization of a
variety of degree six in P\

(2.25) Summarizing the results above, we obtain the following.

THEOREM. Let (M, L) be a polarized manifold of the type (1.2). Then g(C),
the genus of C, is 0 or 1, β: - Φ*#jf[L] is β locally free sheaf on C, Me"
|2/ί(<?)+5p(β,| /or same //we fawd/β 5 on C, and L = [H(e)~]M. Putting d = Ln,
e=Cι(€), and b=άegB, we have the following results.

When g(C)—l, we have l^d^β, e~d—2, b=4—d, and
( i ) if d — \ or 2, then β is not ample
(ii) // <i=3 or 4, then 6 is ample as long as it is indecomposable
(iii) if d=5 or 6, then β is ample.



340 HIRONOBU ISHIHARA

When g(C) we have C^P\, l<d£12, e=d-4, b=8-d, M(=Ξ\2H{ε)+bHξ\,
and their lists are in the table below.

O(-3, 0, 0, 0)

0(-3, 0, 0, 0, 0)

O(-2, - 1 , 0, 0)

£>(-2, - 1 , 0, 0, 0)

0 ( - l , - 1 , - 1 , 0)

0 ( - l , - 1 , -1,0,0)

O(-2, 0, 0, 0)

O(-2, 0, 0, 0, 0)

O(-l, - 1 , 0, 0)

0 ( - l , - 1 , 0, 0, 0)

O(-2, 0, 0, 1)

0(-2 , 0, 0, 0, 1)

0 ( - l , - 1 , 0, 1)

Θ(-l, - 1 , 0, 0, 1)

0 ( - l , 0, 0, 0)

0 ( - l , 0, 0, 0, 0)

O(- l , 0, 0, 1)

0 ( - l , 0, 0, 0, 1)

Ĉ (0, 0, 0, 0)

0(0, 0, 0, 0, 0)

(M, L)

The existence is uncertain.

The existence is uncertain.

The existence is uncertain.

The existence is uncertain.

The existence is uncertain.

ILI makes M a quadruple covering of Pz.

\L\ makes M a quadruple covering of P 4 .

0 ( - l , 0, 0, 2)

O(- l , 0, 1, 1)
O(- l , 0, 0, 1, 1)

Oφ, 0, 0, 1)

O(0, 0, 0, 0, 1)

Bs ILI is a point.

B s | L | is a point.

Bs |L | is a point.

ILI makes M the normalization of a hypersur-
face of degree five in P 4 .

ILI makes M the normalization of a hypersur-
face of degree five in P 5 .
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d

6

7

1
ί

8

9

10

11

12

!

e

0 ( - l , 1, 1, 1)

O(0, 0, 1, 1)

O(0, 0, 0, 1, 1)

O(0, 0, 0, 2)

0(0, 0, 1, 2)

0(0, 1, 1, 1)

0(0, 0, 1, 1, 1)

0(0, 1, 1, 1, 1)

0(0, 1, 1, 2)

0(1, 1, 1, 1)

0(1, 1, 1, 1, 1)

0(1, 1, 1, 2)

0(1, 1, 1, 1, 1, 1)

0(1, 1, 1, 1, 2)

0(1, 1, 2, 2)

0(1, 1, 1, 3)

0(1, 2, 2, 2)

0(1, 1, 3, 3)

0(1, 2, 2, 3)

0(2, 2, 2, 2)

(M, L)

M is a double covering of P | χ P J with branch
locus being a smooth divisor of bidegree (4,2).

Exist.

Exist.

Exist.

Exist.

Exist. !

Exist.

M is a double covering of P\xP% with branch
locus being a smooth divisor of bidegree (2,2).

M is a double covering of a divisor of bidegree
(1, 1) on P$yζPσ. L/:=z\_Hξ-\-H<r\M

M is a smooth divisor of bidegree (2,2) on

M is the blowing-up of Pi with center being a
complete intersection of two hyperquadrics.
T Γ £/ I 1-7 "1
l_j JLlt~Ύ~ll(j \ M

M is the strict transform of a smooth
hypercubic in Pi by the blowing-up of Pi
with center being a P 2 . L=[//^+-H,] J f .

M = P|X<5, where Q is a smooth hyperquadric
in PJ. L=[^+i/J J f .

M is the blowing-up of a hyperquadric in PI
with center being a smooth quadric surface.

M is a desingularization of a complete intersec-
tion of two hyperquadrics in PJ.

Γ Γ~ Γ7 i 7 7 ~]
/ y 1 JΓlt~τ~ lift \ M.

M i s a desingularization of a complete intersec-
tion of two hyperquadrics in PJ.

\L—Hξ\ makes M a desingularization of a
three-dimensional variety of degree five in P 6 .

|L—i/fl makes M a desingularization of a
three-dimensional variety of degree six in P\

\L—Hξ\ makes M a desingularization of a
three-dimensional variety of degree six in PΊ.

M = jΓίΛjΓ « Λ ί ji dllU. Xv £jΠξ~\~ 11 n~\~ 11 X.



342 HIRONOBU ISHIHARA

§ 3. The case of a Veronese fibration over a curve

In this section we study the case (1.3), using the argument in [F (13.10)].

(3.1) Put H=K+2L, then β: = Φ*OM\_H'] is a locally free sheaf of rank
three on C and (M, H) is the scroll of β. We have L=2H+Φ*B for some
J3ePic(C). Similarly as before, we put d = L3, e=d(£), b—άegB and denote by
g(C) the genus of C. Then e^O, e+b=l, and d=8β+12b. By the canonical
bundle formula, we obtain that / f c + d e t £ + 2 5 = 0 , hence 2g (C)-2+e+26=0.
From these results, (e, d)=φ, 12) or (2, 4).

(3.2) When {e, d)=(0, 12), we have b=l and £(C)=0, hence C^P\ B=O(1),
and e^O(e!)®O(e2)®O(ez) for ex, βa, e^Z. For each l^z '^3, a natural surjec-
tion e—>O(et) gives a section Z t of Φ and HZι=O(et). Since e1+ez+ei=e=0
and LZt=O(2et+l) is ample, we have e1=e2=

:e3=0 and <S=O$\ thus M s P f x
P* and L=--Hξ+2Hσ.

(3.3) When (e, <i)=(2, 4), we have 6 = - l and £(C)=1. Hence C is an
elliptic curve and det£+2/3=O since ^^=0(7. Let Q be any quotient bundle
of e. If rank 0 = 1 , then Z:=PC(Q) is a section of Φ and HZ=c,(Q). Then
d(ζ?)^l since 0 < L Z = 2 c 1 ( Q ) - l . If rank (?=2, then D :=PC(Q)ΪΞ\H-Φ*$\,
where £F is the kernel of £->Q. Since 0<L 2 D=4(l — d(β)), we have Ci(Q)=
e—c1(2Γ)^2. In both cases we have (rank (5) Ci(6>)<(rank<?) ί:1(Q), hence β is
stable. Conversely, let 6 be a semistable vector bundle on C with rank £ = 3
and ci(£)=2. We put M=PC{<2), H=H(€) and let Φ : M-^C be the bundle map.
By the semistability criterion in [Mi; (3.1)], 3//— Φ*(det£) is nef. Since C is
an elliptic curve, we can find some jBePic(C) satisfying det£+2i3=0. Then
3(2//+Φ*i3)=2(3i/+Φ*(2i3))-Φ*β is ample. Hence L :=2//+Φ*5 is ample and
(M, L) is a polarized manifold of the type (1.3).

(3.4) Summing up, we obtain the following theorem.

THEOREM. Let (M, L) be a polarized of the type (1.3). We put d = L* and
denote by g(C) the genus of C. Then (M, L) is one of the following two types.

( I ) g(C)=0, heuce C^P\; d=12, M^P\xP2

a, and L=Hξ+2Hσ.
(Π) g(C)=l and M^Pc{e), where e :=Φ*OM[K+2L] is a stable vector

bundle of rank three on C with cx{β)=2 d = 4 and L=2H(€)+Φ*B, where 5 G
Pic(C) with det^+2J5=0.
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