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ON POLARIZED MANIFOLDS OF SECTIONAL
GENUS THREE
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§1. Introduction

Let L be an ample line bundle on a complex projective manifold M of
dimension n=2. The sectional genus g=g(M, L) of a polarized manifold (M, L)
is defined by the formula 2g(M, L)—2 = (K4+(n—1)L)L*"', where K is the
canonical bundle of M. For polarized manifolds over C, it is known that g
takes non-negative integers ([F1; Corollary 1] or [I2; Lemma 77).

In many papers the structure of (M, L) with low g has been studied: see
[F1] or [I2] for g<1; [BeLP] for g=n=2; [F2] for g=2; [Ma] for g=3
and n=2. As for the case g=3 and n=3, we see from the results of [F1] or
[12] that (M, L) is one of the following types.

(1.1) There is an effective divisor £ on M such that (E, Lg)=(P" !, o))
and [E]g=0(—1).

(1.2) There is a fibration @: M—C over a smooth curve C such that
every fiber F of @ is a hyperquadric in P™ and Lr=0(1).

(1.3) There is a fibration @: M—C over a smooth curve C such that
(F, Lp)=(P? 0(2)) for every fiber F of @.

(1.4) (M, L) is a scroll over a smooth surface S.
(1.5) K+(n—2)L is nef.

(1.6) (M, L) is a scroll over a smooth curve of genus three.

In the case (1.6), we have nothing more to say.

In the case (1.1), using the theory of minimal reduction (e.g. [I2; (0.11)], [F2;
1.9)], or [F; (11.11)]), we see (M, L) is obtained by a finite number of simple
blow-ups of a polarized manifold (M’, L’) which is of type (1.3) or (1.5).

The cases (1.2) and (1.3) are further studied in §2 and §3, which is the
main part of this paper. We shall see our classification results are similar to
those in case g=2, but the computations are more complicated.

In the case (1.4), (M, L)=(Ps(€), H&)) and g(S, det €)=3 for some vector
bundle & on S, thus the classification of (M, L) is reduced to the classification
of ample vector bundles & for each polarized surface with g=3. Under the

B Recéivele;_b;:l_a;; 1, 1994 ; revised February 24, 1995.
328



POLARIZED MANIFOLDS 329

additional condition that L is spanned, the classification was obtained in [BiLL].
Without this condition, however, we have only some partial results and our
classification is not yet complete. The author hopes this case will be treated
in a future paper.

The case (1.5) is a kind of “general type”. For any fixed n, there are only
finitely many deformation types of (M, L). (See [F; (13.1)].) But it seems to
be difficult to enumerate all such deformation types.

The author would like to express his sincere thanks to Professor T. Fujita
for kind encouragement and for many valuable comments during the prepara-
tion of this paper. The author would also like to thank the referee for his
useful suggestions, which made this paper more readable than in previous version.

Notation and Terminology

Basically we use the customary notation in algebraic geometry as in [H2].
All varieties are defined over C and assumed to be complete. Vector bundles
are often identified with locally free sheaves of their sections and these words
are used interchangeably. Line bundles are identified with linear equivalence
classes of Cartier divisors, and their tensor products are denoted additively,
while we use multiplicative notation for intersection products in Chow rings.
The linear equivalence class is denoted by [ ], and its corresponding invertible
sheaf is denoted by O ]J. We use { } for the homology class of an algebraic
cycle.

Given a morphism f: X—Y and a line bundle A on Y, we denote f*A by
Ay, or sometimes by A for short when there is no danger of confusion. The
canonical bundle of a manifold M is denoted by K%, unlike the customary
notation K. The O(1)’s of projective spaces P,, Pg, --- will be denoted by
H,, Hp, ---. Given a vector bundle € on X, we denote by Px(&) (or P(&)) the
associated projective space bundle, and denote by H(&) the tautological line
bundle on P(&) in the sense of [H2]. The pair (P(&), H(&)) is called the scroll
of &.

§2. The case of a hyperquadric fibration over a curve
In this section, we study the case (1.2), following the idea in [F2; §3].

(2.1) Since h%F, Lp)=n+1, &:=0404[L] is a locally free sheaf of rank
n+1 on C and a natural map @*£— L is surjective. This yields a C-morphism
p: M—Py&) and for every point x on C the restriction of p to F,: =@ '(x)
is an embedding of F, into P". Hence p itself is an embedding and M is a
member of |2H(&)+Bp,| for some line bundle B on C. We put d=L", e=
¢(€), b=deg B and denote by g(C) the genus of C. After simple computation,
we get d=2e¢+b, 2g(C)+e+b=4, and s:=2¢-+(n+1)b=0. Furthermore in the
last inequality, equality holds if and only if every fiber of @ is smooth by
[F2; (3.3)]. From these results, we have (n+1)d+s+4ng(C)=8n, hence g(C)
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=0 or 1.

(2.2) We first study the case g(C)=1. In this case, C is an elliptic curve
and we have e=d—2 and b=4—d from the equality above. Hence we obtain
d<6, since s=0 and n=3.

(2.3) We consider the ampleness of €. If &€ is ample, then det & is ample
and e=c,(€)>0. It follows that d>2, hence & is not ample when d<2. On
the other hand, & is ample when d=5 by the argument in [F2; (3.13)]. In
general, for any indecomposable vector bundle & on an elliptic curve, & is
ample if and only if ¢,(F)>0 (for a proof, see e.g. [H1]). Thus when d=3 or
4, € is ample if it is indecomposable.

(2.4) When d=3 or 4, we can find an example of (M, L) similarly as in
[F2; (3.12)]. We can also find an example of (M, L) with d=6 as follows.
Let C be a smooth elliptic curve and take a line bundle .£ on C with deg L=
1. We put €=.£%, then & is ample, ¢,(&)=4, P(&)=CX P?, and HE&)=H,+
Lpey, where H, is the pullback of ©(1) on P Putting B=-—2.L, we have
deg B=—2 and 2H(&)+Bp)=2H,. Then a general member M of |2H(&)+
Bp,| is smooth and, putting L=[H(&)]y, we obtain an expected example of
(M, L) with d=6.

(2.5) From now on, we study the case g(C)=0. In this case, C=P} and
we have e=d—4 and b=8—d from the equality in (2.1). Hence we obtain d<
12, since s=0 and n=3. Furthermore when d=11 or 12, we have n=3; when
d=12, we have s=0 and @ is a P'X P'-bundle over P}

(2.6) We put P=P¢(&), H=H(€), and denote by H. the pullback of O(1) on
P} Since C=P}, we can describe €=0(e,)P - B0O(e,), where e, -, e,EZ,
< .- <e,, and F_,e;=e. We denote O(eo)D - PO(e,) by ey, -+, e,) for
simplicity. We shall classify €=0(e,, ---, ¢,) for each d=1, 2, ---, 12.

2.7
LEMMA. 2(e,_;+e,)<d when ¢,£0.

Proof. (cf. [F2; (3.24)]). A natural surjection &—0(e,, -, e,_;) gives a
prime divisor D,:=P(O(e,, -, ¢,-1)) on P. Similarly &—0(e,, -+, en_s, €a) gives
a prime divisor D,:=P(O(e,, -, en_s, ¢5)) On P and &—0O(e,, -, es_s) gives a
subvariety W:= P(O0(e), -, ¢n_)) of P. We have D, & |H—e.H|, D, €
|H—e,_H:|, and W=D,ND, as schemes. When ¢,<0, we have W¢ M since
Hy is not ample. Hence dim(MNW)=n—2 and 0<L™*2{MNW}=H""2(2H~+
bHH—e He)( H—en_1Hy)=d—2(en_1+e,). O

(2.8) Suppose that d=1. We have e=-—3, b=7, and M<|2H+T7H;|. By
(2‘7)1 850(_3r 0’ Ty O)) O(_Z) ""11 Oy ) O)y or 0(_1y _lr _—lr 0; Ty O)-

(2.8.1) When €=0(—1, —1, —1,0, -, 0), we have n<4 by the argument
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in [F2; (3.21)]. Indeed, we have
Pz{(&: ENX(Og: O1: Gy: Gagt Gyl o+ % Opo an,)ePéxP,“;"'z}
&0t §1=030: Og1= " =0no: On
H=H,—H,, and Me|2H,+5H;|. Thus we can describe
M={qo(0)E8+q:(0)&8&:+ -+ +¢5(0)€1=0 in P},

where ¢, -+, g5 are homogeneous polynomials of degree two in a,, ¢y, -, Gpi.
In this defining equation of M, we put

Go=0a0&o+a0é1, 01=0a160+ 1161, 03=0a20E0+a2:&1,
O30=0s60, 051=0s&1, **, Ono=0n&, On1=0n&,

where aq, ao1, ==+, @, are constants. Then we obtain an equation

Qo(@)&i+Q1(a)sié i+ -+ +Q+(a)é1=0,

where Q,, -+, @, are homogeneous polynomials of degree two in (a):=(aq,
Qos, 5 Gn). If 125, then Qia)= - =Q,(a)=0 has a non-trivial solution. We
fix such a solution (e¢) and define a rational map a: P}—P2"? by

ao: §1):=(anbot+ a0 anbotané:: anbotané:)
Dasot a6t anbot @)

If @ is not a morphism, then agp: @p: G30=0qp: Q11: Gy and a,= -+ =a,=0.
Since (a) is non-trivial, the equations

Got 01 Cp=0g9: Q1o Qe=0o1: Q11: Qa1, Og0=0y= " =0py=05,=0

determine a point z on PZ*"% Let Z be the fiber of P{XPi*"*—P2i*"% over z.
Then we have ZCM by the definition of Z, hence 0<KLZ =HZ=(H,—Hy)Z=
—1. This is a contradiction, thus a is a morphism. Let I” be the graph of «.
Then I'CM by the definition of @, hence 0K LI'=HI'=(H,—H,)I". However,
since H,['=H.I'=1, this is a contradiction too. Hence we have proved that
n<4, thus ezo(-1, —1, —1,0) or o(—-1, -1, —1,0, 0). If e=o(-1, —1, —1,
0), then P={(&: &)X (0y: 011 Gy Tg: 031) € PEXP3lE: §:=04: 0y}. Thus
the projection p: P— P} is the blowing-up of P; with center W :={03=0;=0
in P3}=P? Since the exceptional divisor E of p is a member of |H,—H,|,
we have Me|7H,—5E|. Hence M is the strict transform of a hypersurface
of degree seven in P¢, which has singularities with multiplicity five along W.

(2.8.2) When €=0(—2, —1, 0, ---, 0), we claim that n<4. The following
argument is similar to (2.8.1). We have
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p {(So: EDX(Go: Gr0: Ot Oagl Opit Gaal =1 Grg’ Opyt an)epéxpgn_l}
[§0: 1= 010 011=020: 051=04 1 Op= " =0pg: Cp1=0pi: Ops

H= H,—2H,, and M € |2H,+3H;|. Thus M = {gy(0)&+q:(0)i&:+ge(0)EE+
¢:(0)&i=0 in P}, where g, ---, gs are quadric polynomials in (¢). We put

00= oo+ Brof1+a0ofl, 010=8o(a10§0+a161), on=E61(anéotauéy),
O20=0s55, Ou=0s§e§1, O22=0sE}, -+, Ono=0anél, On1=0anbeb1, Tna=anél.
Then from the defining equation of M above, we obtain an equation
Qo(a)§i+Q1(a)§se i+ -+ +Qq(a)§i=0,

where Q,, ---, @, are quadric polynomials in (a):=(ae, Go1, =+, @n). If n=5,
then Qy(a)=---=Q,(a)=0 has a non-trivial solution (¢). We fix it and define a
rational map a: P}—P:"! by

aléo: &) =(a0wft+a0nbb 1+ a0:bt: (@060t ané1): Ei(arbotanéy):
0500 @afofii aofl: o aa65: an€ibit an8Y).

If @ is not a morphism, then a,=---=a,=0 and for some (¢,: ¢;)= P} we have
A10Co+a1:6:=0 and aecd+aoicoci+aec?=0. In the case a,,=a,,=0, let Z be
the fiber of P{xX P3*'—Pi" ' over z:=(1: 0: ---: 0). Then we have ZCM,

hence 0<LZ=HZ=(H,—2H;)Z=-—2. This is a contradiction, thus a;,#0 or
(1113&0.

In this case, aoéi+an&éi+ a0t is devided by aéo+ané: in C[&, &]; we
denote by b,&,+b:&; its quotient. We put

Z={0,=by010+b:1611, G3p= -+ =0,,=0 in P}.

Then dimZ=1 and ZC M by the definition of Z, hence 0<LZ=HZ=(H,—2H;)Z.
However, since H,Z=1 and H.Z=1, this is a contradiction too. Thus « is a
morphism.

Let I" be the graph of . We have /'CM and then O<LI'=HI'=(H,—
2H;)I". However, since H,I'=2 and H¢['=1, this is also a contradiction. Hence
we have proved that n<4, thus €=0(—2, —1, 0, 0) or ©(—2, —1, 0, 0, 0).

(2.8.3) When €=0(-3,0,-,0), we claim that n <4 as before. P is
isomorphic to

{(50- ED)X(Gg: G1pt G11t Ogpt Gzl o+ Opot Oy’ Onzt ans)EPsxP;ﬁ"l }
b
0t §1=01: C11=011' 012=012. C13="""=0no: On1=0n1: Cn2=0na. Ops

H=H,—3H;, and Me|2H,+H:|. Thus M={g(0)&+¢:(¢)5:=0in P}, where ¢,
and ¢, are quadric polynomials in (¢). We put
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Go=Q00§0+a01&861 +@06eE1+a0s6t,
010=0:83, 011=0,E81, 01.=a.68, os=a.6}, -+,
Ono=0nEd, 0n1=0n6061, Ona=0,5:8%, Ons=0n8}.

Then from the defining equation of M above, we obtain an equation
Qo(@)&i+Q1(a)ssé:+ - +Q:(a)i=0,

where @, -+, @, are quadric polynomials in (a@):=(a¢, o1, ***, @n). If n=5,
then Q¢(a)=---=Q.(a)=0 has a non-trivial solution (a¢). We fix it and define a
rational map a: P;—Pi" by

a6y &1):=(a0oE3+ 0015861+ 0026065+ a0sEd: 0168 a:8i61: aiobi: aiéi:
i nbit @nbi61: @nbobli anél).

If a is not a morphism, then a,=---=a,=0. Let Z be the fiber of P{x Pi"—
Pi* over z:=(1:0:---: 0). We have ZCM and then 0<LZ=HZ=(H,—3H:)7Z
=-—3. This is a contradiction, hence « is a morphism. Let /" be the graph
of «. We have I'CM and then O0<LI'=HI =(H,—3H;)I'. However, since
H,I'=3 and H.I'=1, this is a contradiction too. Hence we have proved that
n=4, thus €=e(-3, 0, 0, 0) or (-3, 0, 0, 0, 0).

(2.9) Now we study the case d=2. We have e=—2, b=6, and Me|2H+
6H:|. By 2.7), €=0o(-2,0, -+, 0) or &(—1, —1,0, ---, 0).

(2.9.1) When e=0o(—1, —1,0, ---, 0), we have n=4 as in (2.8.1). Hence
e=o(—1, —1,0,0) or o(—1, —1, 0, 0, 0).

(2.9.2) When €=0o(—2, 0, ---, 0), we have n<4 as in (2.8.2). Hence &€=
o(—2,0,0,0) or (-2, 0,0, 0, 0).

(2.10) Suppose that d=3. Then e=—1, b=5, and M <|2H+5H;|. From
(2.7), we have €=0(—2,0,---,0,1), ¢=06(—1, —1,0, ---,0, 1), or €=6(—1, 0,
e, 0).

(2.10.1) When &=0(—1, 0, ---, 0), we have n<4 as in (2.8.1). Hence &=
o(—1, 0,0, 0) or o(—1, 0, 0, 0, 0).

(2.10.2) When €=0o(—1, —1,0, ---, 0, 1), we have n<4 by the argument
in [F2; (3.23.2)] which is similar to (2.8.1). Hence €=0o(—1, —1, 0,1) or
o(—1, ~1,0,0, 1).

(2.10.3) When €=0e(—2, 0, ---, 0, 1), we have n=<4 as in (2.8.2) and (2.10.2).
Hence €=06(—2, 0,0, 1) or 0(—2, 0, 0, 0, 1).
The next lemma is useful for d=>=4.
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(2.11)
LEMMA. When d=4, —1 does not appear twice in {ey, -, ea}.

We can prove this lemma by the argument in [F2; (3.18)].

(2.12) Now we study the case d=4. We have ¢=0, b=4, and Me|2H+
4H;|. By (2.7) and (2.11), €=0o(-1, 0, ---, 0, 1) or o0, ---, 0).

(2.12.1) When &=0o(-1,0, -+, 0, 1), we have n=<4 as in (2.10.2). Hence
&=0(—1,0,0,1) or ©(—1,0, 0,0, 1).

(2.12.2) When &=0(0, ---, 0), by the argument in [F2; (3.23.1)], we have
n<4, P=P}xP?, Bs|L|=¢, and the morphism ¢: M—P7 defined by [L| is
a finite morphism of degree four. Conversely, a general member M of |2H,+
4H;| on P does not contain any fiber of the projection P—P7, thus L :=H is
ample and (M, L) is a polarized manifold of the above type.

The next lemma is useful for d=5.

(2.13)
LEMMA. e¢,=—1 when d=5.

We can prove this lemma by the argument in [F2; (3.19)].
Similarly we obtain the following two lemmas.

(2.14)
LEMMA. ¢,=0 when d=7.

(2.15)
LEMMA. ¢,=1 when d=9.

(2.16) Now we study the case d=5. We have e=1, b=3, and Me|2H+
3H:|. By (2.11) and (2.13), ¢=0(—1, 0, ---, 0, 2), o(—1,0,--,0,1,1), or &0,
e, 0, 1).

(2.16.1) When €=0o(-1, 0, ---, 0, 2), we have n<3 similarly as in (2.10.2),
hence £€=0e(~1, 0, 0, 2). Furthermore Bs|L| is one point as in [F2; (3.23.2)].

(2.16.2) When €=0o(—1,0, ---,0,1,1), we have n<4 and Bs|L| is one
point as in (2.16.1). Thus €=zo(—1,0,1,1) or &(—1, 0,0, 1, 1).

(2.16.3) When €=0(0, ---, 0, 1), by the argument in [F2; (3.24)], we have
n<4 and |L| makes M the normalization of a hypersuface of degree five in
P, which has triple points along a P? in P"*%,

(2.17) Suppose that d=6. We have e=2, b=2, and M<|2H+2H;|. From
2.7, (2.11), and (2.13), we have &=o(-1,0, -, 0,1, 1, 1), o, ---, 0,1, 1),
o, ---, 0, 2).
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(2.17.1) When 0=&(—1,0, -+, 0, 1,1, 1), we show that n=3 similarly as
in (2.7). Natural surjections &—0(¢,, -+, €n_1), E—0O(ey, -, €n_s, 3), and &—

O(eo, ', @n_s, @n_1, ¢,) give prime divisors D,:= P(O(ey, ', €n_1), Dy:=
P(O(eo, =+, en-s, €n), and Dy:= P(O(ey, -+, ea-s, en_1, €.)) respectively. A
natural surjection & —0O(e,, -+, en_s) gives a subvariety W :=P(C(e,, -, €n_3))

of P=P(¢). We have D,e|H—e,H;|, D, |H—e, H;|, Ds&|H—e,_,H;|, and
W=D,ND;N\D; as schemes. Since Hy is not ample, we have W¢M, hence
dimMNW)=n—3 and 0<L**{MNW}=H"*QH+2H:)(H—H;)*=2¢—4=0 if n
=4. This is a contradiction, thus we have n=3 and &€=0o(-1, 1, 1, 1). By the
argument in [F2; (3.26)], M is a double covering of P}XPZ and its branch
locus is a smooth member of |4H:+2H,|. We also have L=[H.+H,]x.

(2.17.2) When £=0(0, ---, 0, 1, 1), we have n<4 as in (2.16.3), hence &=
00,0,1,1) or ©0,0,0,1,1). We show the existence of (M, L). When &=
00, 0,1, 1), we have P={(&: §)X(0¢: 011 Oz Gai O30 03)EPEX P& &=
G5 Oun=0y: 0y} and H=H, Let M be a general member of |2H,+2H,| and
put L=[H,]y. Then Bs|L|=¢ and the restriction of P—P; to M is the
morphism ¢ defined by |L|. If ¢: M—¢(M) is not finite, M contains a fiber
Z of P—PE over one point z on the line [:={0,=04=03=05,=0 in PZ}.
Using homogeneous polynomials ¢, ¢;, and ¢, of degree two in (g), we can
describe that M= {q,(0)&5+q:(0)5eE1+¢2(0)65=0 in P}. Then ZCM if and only
if go(2)=q.(z)=¢x(z)=0. Thus if we choose ¢,, ¢,, and ¢, generally to satisfy
that IN{go(0)=¢i(0)=¢:(c)=0 in P} =¢, then ¢ becomes finite and L is ample.
Similarly we can find an example of (M, L) when €=¢(0, 0, 0, 1, 1).

(2.17.3) When £€=0(0, ---, 0, 2), we have n<3 as in (2.16.3), hence &=
o0, 0, 0, 2). We can show the existence of (M, L) similarly as above.
When d=7, the situation is much simpler.

(2.18)
LEMMA. Bs|L|=¢ and L is very ample when d=7.

We can prove this lemma similarly as in [F2; (3.31)]. This lemma tells
us that our results overlap [I1; Theorem 4.3], but our method is different
from his.

(2.19) Now we study the case d=7. We have ¢=3, b=1, and Me|2H+
H;|. Furthermore ¢,=0 by (2.14), and e,=1 by the argument in [F2: (3.25)].
Hence €=0(0, 0, 1, 2), (0, 1, 1, 1), or ©(0, 0, 1, 1, 1). In each case, (M, L) exists
similarly as in (2.17.2). By the morphism defined by |L|, M is isomorphic to
a manifold of degree seven in P"*3,

(2.20) Suppose that d=8. We have e=4, b=0, and M=|2H|. Furthermore
¢,=20 by (2.14), and e;=1 by the argument in [F2; (3.26)]. Hence €=0(0,1, 1, 2),
00,1,1,1,1), or &1, 1, 1, 1).



336 HIRONOBU ISHIHARA

(2.20.1) When €=0(1, 1, 1, 1), we have P=P}ixX P}, H=H:+H, and Me
|2H,+2H;|. Hence M is a smooth divisor of bidegree (2, 2) on P. Conversely,
let M be a general member of |2H;+2H,| and put L=[H+H,]y. Since & is
ample, L is ample and (M, L) is a polarized manifold of the above type.

(2.20.2) When €=0(0, 1, 1, 1, 1), by the argument in [F2; (3.26)], M is a
double covering of P}X P? and its branch locus is a smooth member of |2H;+
2H,|. We have also L=[H:+H,]x.

(2.20.3) Even when €=0(0, 1, 1, 2), by the argument in [F2; (3.26)], we
have a morphism h: M— PiXP; and L = h*(Hs+H,). Since L is ample, h:
M—h(M) is finite and h(M)=|a,Hs+a.H,| for some non-negative integers a,
and a,. Then 8=L*=(degh)-[H:+H,]iy=(deg h)a,+3a,). From the con-
struction of h, we get degh=2 and a,=a,=1. Hence h(M)e|H:+H,| and
M—h(M) is a double covering.

(2.21) Suppose that d=9. We have e¢=5, b=—1, and Me|2H—H,|. Since
e,=1 by (2.15), €=06(1,1,1,2) or 61,1, 1, 1, 1).

(2.21.1) When €=0(1,1,1,1,1), similarly as in [F2; (3.27)], the restriction
of the projection P=P};XP;—P; to M is a blowing-up of P; and its center
is a complete intersection of two hyperquadrics in Pj.

(2.21.2) When €=0(1, 1, 1, 2), we have P={(&: &)X(0¢: G1: G5: O30 G31)
ePiX P&, &=03: 04}, hence P is the blowing-up of P; with center {o5=
g5, =0 in Pj}. The exceptional divisor £ is {03 =04,=0 in P}<|H,—H;|, thus
Me|3H,—E| and M is the strict transform of a smooth hypercubic in PZ.

(2.22) Suppose that d=10. We have e¢=6, b=—2, and Me|2H—H,|. Since
e=1 by (2.15), €=0(1, 1, 1,3),0(1,1,2,2),0(1,1,1,1,2), or 1, 1,1, 1, 1, 1).

(2.22.1) When €=0(1,1,1,1,1,1), we have P=P{x P}, H=H:+H, Mes
|2H,|, and L = [H¢+H,]y. Hence M= P}xQ, where Q is a smooth hyper-
quadric in P¢.

(2.22.2) When €=0(1, 1, 1, 1, 2), by the argument in [F2; (3.28)], we have
M is the blowing-up of a hyperquadric in P} and its center is a smooth quadric
surface.

(2.22.3) When &=0(1, 1, 2, 2), we have P= {(&: &) X(0¢: G1: Oag: Tar: Ts0:
0s)EPEX P36 §1=035: 001 =0y 0u}, H=H+H, Me|2H,|, and L =[H:+
H,ly. Since & is ample, H is ample and then L is ample for any general
member M of |2H,|. Because of (2.18), M is embedded in P° as a manifold
of degree nine by the morphism defined by |L|. On the other hand, the
restriction of the projection p: P—P% to M is the morphism defined by |L—
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He|, and M is birationally mapped onto u(M). We have 10=L*=3[H1x[H,1%
+[H,]% and [Helx[H,]%=2 since M —P} is a hyperquadric fibration. Thus
the degree of u(M) is four. Furthermore, since p(P)=1{04,051—03005:=0 in P}
and M<|2H,|, p(M) is a complete intersection of two hyperquadrics in PG.
Even when €=0(1, 1, 1, 3), we have the same result as above.

(2.23) Suppose that d =11. We have ¢=7, b= —3, and M < |2H—3H;].
Since e¢,=1 by (2.15), and since n=3 by (2.5), €=0(, 1, 1, 4), {1, 1, 2, 3), or
o1, 2, 2, 2).

(2.23.1) When €=0(1, 1, 1, 4), we claim that (M, L) does not exist. Assume
that (M, L) exists. A natural surjection € —©(1, 1, 1) gives a prime divisor
W:=P((1,1,1)) on P. We have W= P}X P2, Hy=H;+H,, and W¢&M, hence
IMly=MnWe|2Hy—3H;|=|2H,—H.|. This is a contradiction, thus we have
proved the claim.

(2.23.2) Even when €=0(1, 1, 2, 3), we can show that (M, L) does not
exist. We have P={(&: &)X(0¢: 01! Og: Gail Gyt Oyl O)EPEXPEE: &=
Os0 O1=0g: 05 =03 : 03} and H=H,+H,. Assume that there exists a smooth
member M of |2H,—H;|. Then there is an exact sequence of normal bundles

0 — Jlg/sr —> Tpip —> [Tlyypls —> 0,

where B :=Bs|2H,—H;|={020=0,=03=03=03,=0 in P}=P(0O(1, 1)). Since
B is the complete intersection of D,:={¢;=0,=0 in P} =P((1, 1, 3)) and
D, :={04=0u=0,=0 in P} =P(O(, 1, 2)), we have jZB/PE[le/P]B@[mDZIP]BE
(H,—H:1sP[H,—2H:]p. Also we have Jly,p=[2H,—Hs]p. Then the morphism
¢: [H,—H:sD[H,—2H;]p—[2H,— H¢]p corresponding to Jlp/p—[Jly,r]s is given
by some ¢, €H(B, [H,]s) and p,€H%B, [H,+H:]p). Since [H,])ps[H,+H:15=1,
¢; and ¢, have a common zero point, at which ¢ is not surjective. This is a
contradiction and (M, L) does not exist.

(2.23.3) When €z0(1, 2, 2, 2), we can show the existence of (M, L). We
have P={(&: §&)X(a0: G1p: Gi1t Gopt Gail Oyt (rgl)EP%XPﬂEo: Ei=0y: ou=
Gy Gu=0y: 0y} and H=H,+H,. Putting U,={£;#0 in P} and V,={o,+#0
in P}, we take a rational section s,:={(U;NV,, ¢§/&-&i/0%)}. , of 2H,—H;.
Note that h°(P, 2H—3H:)=h"(P}, S¥E)R[—3H:])=15. Let f,, -+, fis be rational
functions on P such that

fi= E 0,01 _ & 0,01 fo= o 0005 & 0,0y
=== L = —a . 1
a3 & a3 & g} & a5 &
fo== & 000y _ E 0005 fi= & b _ & 0,0y
=20 = 20, = 10 o B0 Tl
Tt & at & gt & o &

o= & 0,0y, _ & ok _ & 0103 _ Sy 010y
= - - 50 =0, S 2T

= it fo= T100 _
o} & gy &’ gt & a§ &
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fa= & 010xn & 010y fo= & 0105 _ & 0wl
= L =20 -0,
a3 & ag & 7 : a5 &o g} &
fo= & 010y _ & 010y Fro= & 0% _ & 0x0a
= =20, =2 —._=0 720721
a3 & a3 & gl & as &
fu= & 050 _ & ok Fra= §o 03003 & 00w
11— 5 "7 a2 — T g T A 12— 5 ° — 5"
a5 & gy & a3 ) af &7
Frs= §o 0303 _ §y 02103 fra= & ok _ §y 05003
= =20, = 2 o 20 TR
a5 & a5 & et & e &
f _ & w0y _ & a5
157 e .
a5 & gy &
Then C<f,, -+, fisy, the vector space spanned by fi, ---, f1s over C, is isomor-

phic to H(P, 2H,—H;) by mapping each f, to f,-s;. Thus we can describe
|2H,— He| = {div(f-s)| fE€C{ [y, =+, f150—0},

where div(f-s,) is an effective divisor defined by a regular section f-s, of
2H,—H;. Since Bs|2H,—H;|={01,=01="=05=0 in P} =P}X{(1:0:-: 0)},
if we take f=XLic.f,€C{fy, -, fisy With (ci, ¢s, ¢)#(0, 0, 0), div(f-s,) is
nonsingular along Bs|2H,—H;|. Thus a general member M of |2H,—H;| is
smooth by Bertini’s theorem. For such M, L :=H, is ample since & is ample,
hence (M, L) is a polarized manifold as desired. Furthermore, similarly as in
(2.16.3), |L—H:| makes M a desingularization of a variety of degree five in P¢.

(2.24) Suppose that d=12. We have e=8, b=—4, and Me|2H—4H,|.
Since ¢, =1 by (2.15), and since n =3 by (2.5), ¢=0o(, 1, 1,5), &1, 1, 2, 4),
o1, 1, 3, 3), 6Q1, 2, 2, 3), or 02, 2, 2, 2).

(2.24.1) When €=0(2, 2, 2, 2), we have P=P}X P, H=H,+2H,, M= |2H,|,
and L=[H,+H:]y. Hence M=PxXQ, where @ is a smooth quadric surface
in P;. Since Q=P X P} we have M=PiXP,XP} and L=2H;+H,+H,;.

(2.24.2) When €=0(1, 1, 1, 5), (M, L) does not exist by the argument in
(2.23.1).

(2.24.3) Even when €=0(1, 1, 2, 4), we can show that (M, L) does not exist
similarly as in (2.23.2).

(2.24.4) When €=0(1, 2, 2, 3), we can show the existence of (M, L) similarly
as in (2.23.3). In fact, we have P={(&: &)X (Gy: Gio: O11: a9’ Ga1: Os0: Oy
032)E PEX P&y §1 =011 011 = 03 091 = Oy Opn=0y,: 0g}, H=H,+H,, and
h(P, 2H—4H)=h"(P}, SYE&)Q[—4H:])=11. We take a rational section s,:=
{(U:NV,, 63/85-83/0%)},,, of 2H,—2H:, where U, and V, are the same as in
(2.23.3). Let f,, ---, fu be rational functions on P such that
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2

fi= & 900y f _ & gl f _ & 0uon =22 T10930
R = R - T T
fi= & 0104 fom & ok fo= & 02003 f ___%“ 020031
— 5o P10%s1 — SO — 50 T2 = . ,
T - T R T S of &
fo= & 0% Fro= & 030031 Fr= & 030032
=" =t T n= Ty Ty .
R IS

Then HYP, 2H,—2H:)=C{fy, -+, fu> and Bs|2H,—2H | =Pix{(1: 0: ---: 0)}.
For any f=>WL ¢.f, with ¢,#0, div(f-s,) is nonsingular along Bs|2H,—2H;|,
thus a general member M of |2H,—2H;| is smooth. Putting L=H,, we obtain
a polarized manifold (M, L) as desired. In this case, |L—H:| makes M a
desingularization of a variety of degree six in P’.

(2.24.5) Even when €=0(1, 1, 3, 3), we can show the existence of (M, L)
similarly. We have P={(&: &)X(0o: G1: Gg9: 0o Gag: G5 0311 Og) € PEX
P&y : E1=04: 051 =02 Gp=03: G5, =03 : Oy} and H(P, 2Hu_2H$) = C<{fy,

-+, f1s>, Where
G oww & oo & oon & cow
R I R - T - T -
f __f_(zl_. a% f _ﬁ.£20621 f _"i._‘f%_l 1 :éi‘ 020030
et & et & 0 T e & e &
o= S8 OnOu 66 Onon o & 0k G Oudy
9 0_(2) Eg ’ 10 0_% 5% ’ 11 0% % y 12 0_(2) g

_vé_g’ o

fu="gr g

Since Bs|2H,—2H;| ={04=0s=--=03=0 in P}, if we take f=>3%,¢,f, with
¢1¢4—C2¢3#0, then div(f-s,) is nonsingular along Bs|2H,—2H,|. Thus a general
member M of |2H,—2Hg| is smooth. Putting L=H,, we obtain a polarized
manifold (M, L) as desired, and |L—H:| makes M a desingularization of a
variety of degree six in P".

(2.25) Summarizing the results above, we obtain the following.

THEOREM. Let (M, L) be a polarized manifold of the type (1.2). Then g(C),
the genus of C, is 0 or 1, &:= @Oyl L] is a locally free sheaf on C, M
|2H(E)+Bpy| for some line bundle B on C, and L=[H(&))y. Putting d=1L",
e=c(&), and b=degB, we have the following results.

When g(C)=1, we have 1<d<6, e=d—2, b=4—d, and

(i) if d=1 or 2, then & is not ample ;

(ii) #f d=3 or 4, then & is ample as long as it is indecomposable ;

(ili) if d=5 or 6, then & is ample.
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When g(C) we have C=P}, 1=d<12, e=d—4, b=8—d, Me|2H(&)+bH,|,
and their lists are in the table below.

d P (M, L) |
1 o(-3,0,0,0)
O<_3: 07 O, 07 0)
(=2, ~1,0,0) The existence is uncertain.
o(—2, —-1,0,0,0)
o(—1, -1, —1, 0)
o(—1, —1, —1,0,0)
2 O(—'z; 0) 0) 0)
0(=2,0,0,0,0) The existence is uncertain.
o(—-1, —1,0,0)
O("‘l, ‘—‘1, Oy O) 0)
3 o(—2,0,0,1)
o(—2,0,0,0,1)
o(=1, —1,0,1) The existence is uncertain.
o(—1, —-1,0,0, 1)
O(_ly O’ 0) O)
O(—'l’ Or 0: 0: O)
4 o(—1,0,0, 1) The existence is uncertain. |
o(—1,0,0,0, 1) The existence is uncertain.
(0, 0, 0, 0) | L] makes M a quadruple covering of P3.
(0, 0, 0, 0, 0) | L| makes M a quadruple covering of P*.
5 o(—1,0,0, 2) Bs|L| is a point.
o(—1,0,1, 1) Bs|L| is a point. ‘
o(—1,0,0,1, 1 Bs|L| is a point. ;
00, 0,0, 1) | L| makes M the normalization of a hypersur-
face of degree five in P,
©(0,0,0,0, 1) | L| makes M the normalization of a hypersur- |
face of degree five in PS5,
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I

d & M, L) .
6 o(—-1,1,1,1) M is a double covering of P{x PZ with branch
locus being a smooth divisor of bidegree (4,2).
L=[H:+H,]n.
00,0,1, 1) Exist.
©0,0,0,1, 1) Exist.
(0, 0,0, 2) Exist.
7 0, 0,1, 2) Exist {
©0,1,1,1) Exist
©0,0,1,1, 1) i Exist
8 00,1,1,1,1) M is a double covering of P}Xx P with branch
locus being a smooth divisor of bidegree (2,2).
L=[H:+H,] .
00,1,1,2) M is a double covering of a divisor of bidegree
(1, 1) on PixP: L=[H:+H]u.
o1,1,1,1) M is a smooth divisor of bidegree (2,2) on
PixP: L=[H:+H]u.
9 o01,1,1,1, 1 M is the blowing-up of P¢ with center being a
complete intersection of two hyperquadrics.
L=[H:+H,]u.
od1,1,1,2) M is the strict transform of a smooth
hypercubic in P? by the blowing-up of P}
with center being a P% L=[H:+H,]u.
10 o1,1,1,1,1, 1 M=Pix(Q, where @ is a smooth hyperquadric
in P:. L=[H:+H,]u.
01,1,1,1, 2) M is the blowing-up of a hyperquadric in P2
with center being a smooth quadric surface.
L:[H€+HG]M'
ol,1, 2, 2) M is a desingularization of a complete intersec-
tion of two hyperquadrics in PS.
L=[He+H,]u.
01,1,1,3) M is a desingularization of a complete intersec-
tion of two hyperquadrics in PE.
L:[He"i"Ha:lM-
11 o, 2,2, 2) | L—H;| makes M a desingularization of a
three-dimensional variety of degree five in P°.
12 o01,1,3,3) | L—H;| makes M a desingularization of a ]
three-dimensional variety of degree six in P’.
o1, 2,2, 3) | L—H:| makes M a desingularization of a
three-dimensional variety of degree six in P°.
02,2,2,2) M=P{xX P} X P} and L=2H:+H,+H;.
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§3. The case of a Veronese fibration over a curve

In this section we study the case (1.3), using the argument in [F; (13.10)].

(3.1) Put H=K+2L, then &£:=0.04[H] is a locally free sheaf of rank
three on C and (M, H) is the scroll of €. We have L=2H+®*B for some
Be&Pic(C). Similarly as before, we put d=L?% e=c,(€), b=degB and denote by
g(C) the genus of C. Then ¢=0, e+b=1, and d=8e-+12b. By the canonical
bundle formula, we obtain that K¢-+det&+2B=0, hence 2g(C)—24e-+2b=0.
From these results, (e, d)=(0, 12) or (2, 4).

(3.2) When (e, d)=(0, 12), we have b=1 and g(C)=0, hence C=P*, B=0(1),
and €=0(e;)PO(e)PO(es) for ey, e, es=Z. For each 1=/<3, a natural surjec-
tion £&—0(e,) gives a section Z, of @ and Hz,=0O(e,). Since e;+e;+e;=e=0
and Lz,=0(2e¢,+1) is ample, we have ¢,=e¢,=e;,=0 and €=0%*, thus M =P}X
P: and L=H:+2H,.

(3.3) When (e, d)=(2, 4, we have b=—1 and g(C)=1. Hence C is an
elliptic curve and det€+2B=0 since K°=0,. Let @ be any quotient bundle
of €. If rank Q=1, then Z:=P¢(Q) is a section of @ and HZ=c,(Q). Then
c;(@)=1 since 0<LZ=2¢,(Q)—1. If rank Q=2, then D:=Py(Q)c|H—0*F|,
where & is the kernel of €—Q. Since 0<L:D=4(1—c,(F)), we have c¢,(Q)=
e—c(F)=2. In both cases we have (rank Q)-c¢,(&)<(ranké&)-c,(Q), hence & is
stable. Conversely, let & be a semistable vector bundle on C with rank £=3
and ¢,(€)=2. We put M=P(&), H=H(€) and let @ : M—C be the bundle map.
By the semistability criterion in [Mi; (3.1)], 3H—®*(det &) is nef. Since C is
an elliptic curve, we can find some B&Pic(C) satisfying det £+2B=0. Then
3Q2H+9*B)=2(3H+®*(2B))—®*B is ample. Hence L :=2H+®*B is ample and
(M, L) is a polarized manifold of the type (1.3).

(3.4) Summing up, we obtain the following theorem.

THEOREM. Let (M, L) be a polarized of the type (1.3). We put d=L* and
denote by g(C) the genus of C. Then (M, L) is one of the following two types.

(I) g(C)=0, heuce C=P}; d=12, M=PiX P:, and L=H.+2H,.

() g(C)=1 and M =Py(&), where €:=0Oy[K+2L] is a stable vector
bundle of rank three on C with ¢,(&)=2; d=4 and L=2H(E)+®*B, where B&
Pic(C) with det £+2B=0.
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