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SOBOLEV INEQUALITY AND STABILITY OF

MINIMAL SUBMANIFOLDS

HIDEO MUTO

1. Introduction

Let Mn be an n dimensional connected minimal submanifold in an (n+l)
dimensional simply connected space form Mn+ι(b) with constant nonpositive sec-
tional curvature b. We denote the Lp norm of a function / by \\f\\p. Sobolev
inequalities of the following types play important roles in studying stability of
M in M:

(1) ll/IU/oi-i^ΛIIV/H! for all

in particular, when n>2,

(2) ||/l|2n/(n-2)^ΛI|V/||2 for all

We notice that (i) (1) is also called an isoperimetric inequality, (ii) Λ2 ^
(2(n—l)/n—2)Ai, and (iii) when Mn is a bounded domain in Mn(b), Aι—Aι{n)
and A2=A2(n) have the following asymptotic behaviors as n tends to oo :

and

Λ/Π{Π~2)

Here ωn-ι is the volume of (n — 1) dimensional unit sphere S71'1^).

D. Hoffman-J. Spruck [7] derived (2) from (1) with constant A1=A1{n)^

const. 2n\/n for minimal submanifolds in RN (see also J.H. Michael - L. M. Simon

[Π]).
On the other hand, S-Y. Cheng - P. Li - S. T. Yau [3] gave a comparison

theorem for the heat kernel of the Laplacian Δ and P. Li - G. Tian [8] showed
a similar comparison theorem for the heat kernel of the Laplacian of an alge-
braic subvariety in a complex projective space. We point out that E. B. Da vies
[4] derived a Sobolev inequality of type (2) from can estimate of the heat kernel.
But the constant is not given concretely.
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In this paper, we give the constant explicitly (Theorem 3) and prove the
following:

__ THEOREM 1. Let Mn be an n dimensional minimal submanifold (n>2) in
Mn+ι(b) (b£0). Then we have that

for all /eCftΛf).

THEOREM 2. Let Mn be an n dimensional algebraic subvariety (n>l) with
a singular set ΣM in an (n+l) dimensional complex projective space CPn+ι (/>0)
with sectional curvature K, l^K^A. Then for the induced Riemannian metric
on Mn\ΣM from the standard Fubini-Study metric on CPn+ι, we have

for all f<ΞCζ(M\ΣM).

As geometric applications of Theorem 1, we study stability of a minimal
submanifold in Mn+ι(b) in section 3.

2. Proof of Theorems 1 and 2

We denote the operator norm of a linear operator H of Lp to Lq by \\H\\qtP.
Let Ω be an n dimensional compact Riemannian manifold. Let H be a positive
definite elliptic differential operator on Ω and Ht—e~tH be the semi-group gen-
erated by H (under Dirichlet boundary condition if Ω has boundary) with posi-
tive kernel function Hg(t, x, y). Then the following inequalities (1) and (2) are
equivalent to each other.

(1) H0(t, x, y)£aΓn/2 for all t>0 and x, y(=Ω,
(2) \\Ht\U.i<at-nι* for all f>0.
When H is a Laplacian Δ, Hβ(t, xy y) is the heat kernel pβ(t, x, y) of Δ and

pβ and £~ίΔ satisfy

\ Po(t, x, y)dy£l for all t>0 and x e β ,

We-^Wp.p^l for all t>0 and l£p^oo,

HΔ 1 / 2 / | | 2 -N/| | 2 for all / e C ϊ ( β ) .

The following theorem is proved in E. B. Davies [4] (Theorem 2.4.2). But
the constant is not given concretely.

THEOREM 3. Let Ω be an n dimensional compact Riemannian manifold with
boundary (n>2). Assume that
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lltfjp.p^l for all t>0 and l£p£oo ,

and there exists a positive constant a such that

/2 for all f>0 .

Then we have

for all

Proof. By Riesz interpolation theorem, we have for all />e[l, oo] and ί>0,

In particular, for />e[l, n) and f^Lp, we can define L by

where Γ(x) is the Gamma function and Γ(l/2)= Vπ . We notice here that

L\C^(Ω)=1(H\c^(Ω))~1/2. For / G P (l^p<n) and a positive constant T, we

write Lf by

where

'f dt

Define (̂/>), dip) and Aί(ί) by l/q(p)=l/p-l/n,

^ V ' τ k and

And define Tλ for all >ϊ>0 by ί/2=C1(ί)| |/| |pTί1 / 2 )- ( n / 2P ). Then we see that
and {xei3: |L/(x)| ^ f c ( ^ f l : \gτx{x)\^λ/2). So we have

On the other hand,
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Therefore

vol{χς=Ω:

For all px and p2 (I^=pi<2<p2<n), define qu g2 and θ(plf p2) by g1z=g(ρ1)f g2=
g{p2) and l/2 = (l-θ(pίf p2))/p1

Jrθ(pί, p2)/p2. We here apply Marcinkiewicz
interpolation theorem to L for px and p2 above. We use the constant K in A.
Zygmund [16] (see also D. Gilbarg-N. S. Trudinger [6], p. 228 and p. 254).
Then we have for all

\\Lf\\2n/(n_2)£K(plf

Here

Set F(pu p2, x) by

— pxx

Since \\Lf\\2n/(n.2)<F(pu p2f l/n) | |/ | | 2 , we may show

inf F(pίf p2> x)<^jί for x = l/3, 1/4, 1/5, ••• .
2 < < 1 / VJΓ

Since F(1.7, 2.2, 1/3)^10.3946 ••• < 8 V 6 " / V ί , we consider F(l, 5/2, x) for all
0<%^l/4. We easily see that

F(l, 5/2, l/4)=7.59103 ,

(j) SI for 0<x<l,

l-JX)(j) ^ f o r I | |

^ 1 f o r

Therefore we have
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F ( l , 5/2, * ) < ^ = r for * = l/5, 1/6, ••• ,

and

D

To prove Theorems 1 and 2, we prepare some comparison theorems for the
heat kernel of the Laplacian. We notice here that the heat kernel pit, x, y) of
Laplacian on a symmetric space depends only on t>0 and the distance d(x, y)
of x and y. So we can write pit, x, y) on a symmetric space as pit, dix, y)).

THEOREM 4 (S-Y. Cheng-P. Li-S. T. Yau [3]). Let Mn be an n dimensional
minimal submanifold of Mn+ιib) (/>0, b^O) and Ω compact domain in M and any
p^Ω. Let pit, x, y) be the heat kernel of the Laplacian on M under Dirichlet
boundary condition. We define the extrinsic outer radius at p by

a= sup dip, z).
z<=Ω

Then

Pit, P, y)^pait, dip, y))

for all y^Ω and t^iO, oo). Here dip, z) is the distance function on M and
pait, dip, y)) stands for the heat kernel under Dirichlet boundary condition on
the ball centered at some fix point with radius a in Mnib).

THEOREM 5 (P. Li-G. Tian [8]). Let Mn be an n dimensional embedded
algebraic submanifold of CPn+K Let pit, x, y) be the heat kernel of M with
respect to the induced metric. When M has boundary, pit, x, y) is taken to be
the heat kernel under Dirichlet boundary condition. Then for all x, y^M and
ίe(0, oo), we have

pit, x, y)^pit, dix, y)).

Here_pit, dix, y)) is the heat kernel of CPn and dix, y) is the distance function
of M.

Proof of Theorem 1. Let pdjt, x, y) be the heat kernel of the Laplacian
of a bounded domain Ω in M under Dirichlet boundary condition. By Theorem
4, we have

Poit, x, y) < ,. ,n/2 for all x, y^Ω and t>0 .

So by Theorem 3, we have
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for all /eCj(M),

D

Proof of Theorem 2. Let Ω be a bounded domain M\Σ and let i?(ί, d(x, y))
be the heat kernel of the Laplacian on CPn with the Fubini-Study metric. The
kernel function H(t, x, y) of e~tH for H=(—Δ+1) on 42 under Dirichlet boundary
condition is e'tpoit, x, y). By Theorem 5, we have

Pdt, x, y)£P(t, 0) for all x, y^Ω and t>0.

On the other hand, a heat kernel p(t, x, y) on an m dimensional compact con-
nected Riemannian manifold (Mw, g) with nonnegative Ricci curvature satisfies

p(t, x, mp(t+s, x,

for all t, 5>0 and x, y^M (see P. Li and S. T. Yau [10]). Let D be the dia-
meter of M. Integrating the both sides in j/eM and substituting s=D2, we
have

t X X) <=

vol(M, £)
2 1

vol(M, g)
Therefore we have

H(t, x, y)£e-ιp(tf 0)

-r

Applying Theorem 3 to //, we have for all / G C O ( M \ I # ) ,

D

3. Applications

A compact minimal submanifold Ω with boundary is a critical point of
volume functional for variations fixing boundary. Define the index of Ω,
index(Ω), by the number of negative eigenvalues of the elliptic differential
operator / called a Jacobi operator arising from the second variation of the
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volume functional. For a noncompact minimal submanifold M, define the index
of M, index(M), by lim^oo {index(Ωt): {Ωi\ is an exhaustion of M}. And M
(resp. Ω) is said to be stable when ιndex(M)=0 (resp. index(Ω)=0).

As geometric applications of Theorem 1, we give an estimate of the index
of a minimal submanifold Mn in Mn+ι(b) (b^O) and give some conditions for
M n in /2n + l to be an n dimensional plane.

For index(M), J. Tysk [15] showed the following theorem using Sobolev
inequality of type (2) derived from Sobolev inequality of type (1).

We denote the second fundamental form of M in M by B.

THEOREM 6 (J. Tysk [16]). Let Mn be an n dimensional oriented complete
minimal hypersurface in Rn+1 (n>2). Then we have

n n—l

So we can prove the following theorem in the same way as in [13]. Since
we only replace the Sobolev inequality of type (2) in [13] by the inequality in
Theorem 1, we omit the proof. Set / + = m a x ( / , 0).

THEOREM 7. Let Mn be an n dimensional oriented noncompact complete
minimal hypersurface (n>2) in Mn+1(b) (b<0). Then we have

(\B\2+nb)l'*.

We next study the stability of a minimal submanifold in Rn+i.

THEOREM 8 (P.H. Berard [1]). Let Mn be an n dimensional noncompact
complete minimal submanifold (n>2) in RN. Set

Cι(n)=2n-ιπ(n-\-iYn+l)lnωnιln/{n-l),

tt-1
C,(n)=2Cι(n)

C8(n, N)=2

n-2 '

n+a(n, N ) -
Jn2C2(n)2β(n,N)'

If | |B | |I<C3(n, N), then M is an n dimensional plane.

In [1], P.H. Berard used an inequality of J. Simons [13] and a Sobolev
inequality of type (2) in section 1. Replacing an inequality of J. Simons by T.
Okayasu [12] and a Sobolev inequality of type (2) by Theorem 1, we can im-
prove the above condition.
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THEOREM 9. Let Mn be an n dimensional noncompact complete minimal sub-
manifold (n>2) in RN. If

- l / π

U
then M is an n dimensional plane.

Under a weaker condition, we show that M is stable as follows (see J.
Spruck [14]).

THEOREM 10. Let Mn be an n dimensional noncompact complete minimal
submanifold (n>2) in Mn+ι(b) (b<0). If

then M is stable.

In particular, if Mn is a minimal hypersurface in Rn+ί satisfying

7Γ/4Λ/6~ and | |£ | | 2 <oo, then M is an n dimensional hyperplane.

Proof. Let Ω be a bounded domain in M. By Theorem 1, for a variation
vector field X on Ω in M fixing boundary, u=\X\ satisfies that U\da=0 and

, X)

47
(n-2)/n

1 - 2 ) / r e

Therefore, every bounded domain in M is stable. And a complete stable minimal
hypersurface in Rn+1 with | |β | | 2<oo, it is a hyperplane (see M. do Carmo and
C.K. Peng [5]). •
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