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SOBOLEY INEQUALITY AND STABILITY OF
MINIMAL SUBMANIFOLDS
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1. Introduction

Let M™ be an n dimensional connected minimal submanifold in an (n-{)
dimensional simply connected space form M "*!(b) with constant nonpositive sec-
tional curvature b. We denote the L? norm of a function f by | f|l,. Sobolev
inequalities of the following types play important roles in studying stability of
Min M:

1) I fla/-n=AdVSl  for all f€eCTM),
in particular, when n>2,
@) 1 flensn-y S AlVSll.  for all feCTM).

We notice that (i) (1) is also called an isoperimetric inequality, (ii) A, =<
2(n—1)/n—2)A;, and (iii) when M™ is a bounded domain in M*(b), A,=A,(n)
and A,=A,(n) have the following asymptotic behaviors as »n tends to co:
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A=Am=(-) Wi~
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Vn(n—=2)"""" " Nme v/n
Here w.,_, is the volume of (n—1) dimensional unit sphere S™~*(1).

D. Hoffman-J. Spruck [7] derived (2) from (1) with constant A,=A;(n)~
const. 2®+/n for minimal submanifolds in RY (see also J.H. Michael - L. M. Simon
[11D).

On the other hand, S-Y. Cheng-P. Li-S.T. Yau [3] gave a comparison
theorem for the heat kernel of the Laplacian A and P. Li-G. Tian [8] showed
a similar comparison theorem for the heat kernel of the Laplacian of an alge-
braic subvariety in a complex projective space. We point out that E.B. Davies
[4] derived a Sobolev inequality of type (2) from can estimate of the heat kernel.
But the constant is not given concretely.

Ay=Ay(n)=
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In this paper, we give the constant explicitly (Theorem 3) and prove the
following :

_ THEOREM 1. Let M™ be an n dimensional minimal submanifold (n>2) in
M™b) (b<0). Then we have that
1 flanrnn=2LE NVl for alt feCz).

THEOREM 2. Let M™ be an n dimensional algebraic subvariety (n>1) with

a singular set Xy in an (n+1) dimensional complex projective space CP"*' (I>0)

with sectional curvature K, 1<K<4. Then for the induced Riemannian metric
on M™\ZXy from the standard Fubini-Study metric on CP"*', we have

ﬁ 2

1w (B2E)

for all feC M\ y).

n.Z
Z:

el/in max{

nhos IV I+ 19,

As geometrig_ applications of Theorem 1, we study stability of a minimal
submanifold in M**!(b) in section 3.

2. Proof of Theorems 1 and 2

We denote the operator norm of a linear operator H of L? to L? by ||H||g, p-
Let 2 be an n dimensional compact Riemannian manifold. Let H be a positive
definite elliptic differential operator on £ and H,=e ‘¥ be the semi-group gen-
erated by H (under Dirichlet boundary condition if £ has boundary) with posi-
tive kernel function Hg(¢, x, ¥). Then the following inequalities (1) and (2) are
equivalent to each other.

(1) Hgt, x, y)<at—™? for all t>0 and x, yeQ,

2) |Hiw Zat™™? for all t>0.

When H is a Laplacian A, Ho(t, x, v) is the heat kernel po(t, x, y) of A and
po and e~** satisfy

ngm(t, x, y)dy<1l  for all >0 and x4,
e~ , =1 for all >0 and 1<p=<oco,

A2 £l =) df s for all feCR).

The following theorem is proved in E.B. Davies [4] (Theorem 2.4.2). But
the constant is not given concretely.

THEOREM 3. Let Q2 be an n dimensional compact Riemannian manifold with
boundary (n>2). Assume that
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I1Hellp.p<1  for all t>0 and 1<p<co,
and there exists a positive constant a such that

|Hillo, 1 Sat™™2  for all t>0.
Then we have

[ hsnicnn = S am i), for all feC3A).

Proof. By Riesz interpolation theorem, we have for all p[1, ] and t>0,
[Hilloo, p St/ P22,

In particular, for p[l, n) and fL?, we can define L by
L f=]’(1/2)“grt"’2Ht fdt,

where ['(x) is the Gamma function and /(1/2)=+/7 . We notice here that
L.C?(g)z(ch%o(g))“/z. For feL? (1<p<n) and a positive constant T, we
write Lf by

Lf=gr+hr
where

—*‘I—"STt_l/ZHfdf h —_]'_
gT—‘/E 0 t » T_\/E

Define ¢(p), Ci(p) and M(p) by 1/¢(p)=1/p—1/n,

« -1/2
STt H.f dt.

. 1 . Zp —~4_ N p pln
Cl(p)—ﬁa/Pm and M(p)-—\/;a" <—~n_p> .

And define T,; for all 2>0 by 2/2=C.(p)| fll,T{®- 2", Then we see that
lhrll«<4/2 and {x€Q: |Lf(x)|ZAC{xcQ: |gr,(x)|=2/2}. So we have

vol{reQ: |Lf(x)| 24} Svol{xeQ: |gr,(x)| =4/2}

s@ere| g @lrdx

|3T11;1
=(4/2)°?|gr,l} .
On the other hand,
1 ¢r
”ngllp:“:’/“E_SO “tep, f dt”p
1

< =T Hop e
=\/7L' 0 ¢ e
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Therefore

vol (xe: 11500 22 < (M 71,)

For all p, and p, 1=<p:<2<p,<n), define ¢, g, and 0(pi, p2) by ¢1=q(p1), g.=
q(p2) and 1/2=(1—6(p1, p))/p1+0(ps, p2)/p.. We here apply Marcinkiewicz
interpolation theorem to L for p, and p, above. We use the constant K in A.
Zygmund [16] (see also D. Gilbarg-N.S. Trudinger [6], p. 228 and p. 254).
Then we have for all feL?,

1L fllenrcn-oy SK (B, )M (p)' =0 PP M (po)? P22 | 5.
Here

(pi/2)1/ 21 ([)2/2)‘121172)1/«1(2)

— 1/q(2
Kby, p)=202" () = T 0ma®)]

Set F(pi, ps, x) by
8 :
F(ps, b, X)‘—_ﬁ(z—gi(I—D,x)(pl/z)plx/u—mz)

P
pa—2

X( plx >p1x(1/2—1/p2)/(llpl—1/p2>
1—pix

+ (1—pzx)(p2/2)p2‘t/(l—pzr)>1/2-J:

)(( pzx )pzz(1/p1—1/2)/(1/p1—1/p2)
1—pox ’

Since || Lfllznin-0<F(p1, b2, 1/0)|fll;, we may show

inf | F(py, po, <302 for x=1/3,1/4,1/5, .

1sp 1< pe<i/z

Since F(1.7, 2.2, 1/3)=10.3946 --- <8+/6 /+/7 , we consider F(,5/2, x) for all
0<x<1/4. We easily see that

F(1,5/2,1/4)=7.59103 --- ,

<%)z/(1—1)§1 for 0<x<1’
1<5<1_gx)(_i_>5z/(2~5z)§5 for O<x§%<.§—1og%,
() =t for 0<x<1/2.

Therefore we have
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8V 6

F{,5/2, x)<-77-?— for x=1/5,1/6, ---,
and
[9lnscn-n < BLE @ H g, for all p=C3(@).
]

To prove Theorems 1 and 2, we prepare some comparison theorems for the
heat kernel of the Laplacian. We notice here that the heat kernel p(t, x. y) of
Laplacian on a symmetric space depends only on t>0 and the distance d(x, y)
of x and y. So we can write p(¢, x, y) on a symmetric space as p(t, d(x, y)).

THEOREM 4 (S-Y. Cheng-P. Li-S.T. Yau [3]). Let M™ be an n dimensional
minimal submanifold of M™*'(b) (I>0, b<0) and Q compact domain in M and any
pefR. Let p(t, x, y) be the heat kernel of the Laplacian on M under Dirichlet
boundary condition. We define the extrinsic outer radius at p by

a=supd(p, z).
2ef)

Then
pt, b, y)SPat, d(p, ¥))

for all yeQ and t(0, ). Here d(p,z) is the distance function on M and
pa(t, d(p, ¥)) stands for the heat kernel under Dz'ricﬁlet boundary condition on
the ball centered at some fix point with radius a in M™(b).

THEOREM 5 (P. Li-G. Tian [8]). Let M™ be an n dimensional embedded
algebraic submanifold of CP™'. Let p(t, x, y) be the heat kernel of M with
respect to the induced metric. When M has boundary, p(t, x, y) is taken to be
the heat kernel under Dirichlet boundary condition. Then for all x, yeM and
te(0, ), we have

p@, x, »)=p, d(x, ¥)).
Here B(t, d(x, ) is the heat kernel of CP™ and d(x, v) is the distance function
of M.

Proof of Theorem 1. Let pgo(t, x, y) be the heat kernel of the Laplacian
of a bounded domain £ in M under Dirichlet boundary condition. By Theorem
4, we have

—(4—7rlt)T/2 for all x, ye2 and t>0.

So by Theorem 3, we have

palt, x, )=
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T <4jﬁ IVfl,  for all feC3M),

]

Proof of Theorem 2. Let 2 be a bounded domain M\Y and let p(t, d(%, )
be the heat kernel of the Laplacian on CP™ with the Fubini-Study metric. The
kernel function H(¢, x, y) of e *¥ for H=(—A+1) on £ under Dirichlet boundary
condition is e~ 'po(t, x, y). By Theorem 5, we have

palt, x, )P, 0) for all x, ye and >0.

On the other hand, a heat kernel p(t, %, 9) on an m dimensional compact con-
nected Riemannian manifold (M™, §) with nonnegative Ricci curvature satisfies

5, % 0= s, 7, 9(5) exp (LEI)

for all ¢, s>0 and % yeM (see P. Li and S.T. Yau [107). Let D be the dia-
meter of M. Integratmg the both sides in yeM and substituting s=D?, we
have

De\mi
et flt, %, J?)ge-(ﬂ) SRV
t vol(M, g)

~. oM \™m/2 1
<(e'*™ max {D? — —_—— 2
{ 2 }> vol(M, )
Therefore we have

H(, x, y)<e 'p(t, 0)
<( 1/4nmax{fj, })nvol(({‘Pﬁrn

=(ormax{p ) gt

Applying Theorem 3 to H, we have for all feC3(M\2y),

1 Wmrcn S (3L EY et max (2, nhasm918+171)-

3. Applications

A compact minimal submanifold £ with boundary is a critical point of
volume functional for variations fixing boundary. Define the index of &,
index(2), by the number of negative eigenvalues of the elliptic differential
operator J called a Jacobi operator arising from the second variation of the
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volume functional. For a noncompact minimal submanifold M, define the index
of M, index(M), by lim,..{index(2,): {Q;} is an exhaustion of M}. And M
(resp. 2) is said to be stable when ndex(M)=0 (resp. index(2)=0).

As geometric applications of Theorem 1, we give an estimate of the index
of a minimal submanifold M® in M™*(b) (b<0) and give some conditions for
M™ in R**! to be an n dimensional plane.

For index(M), J. Tysk [15] showed the following theorem using Sobolev
inequality of type (2) derived from Sobolev inequality of type (1).

We denote the second fundamental form of M in M by B.

THEOREM 6 (J. Tysk [16]). Let M™ be an n dimensional oriented complete
minimal hypersurface in R*** (n>2). Then we have

index(M)< 5%(@522_2"1)71&0{] B|™.

So we can prove the following theorem in the same way as in [13]. Since
we only replace the Sobolev inequality of type (2) in [13] by the inequality in
Theorem 1, we omit the proof. Set f,=max(f, 0).

THEOREM 7. Let M™ be an n dimensional oriented noncompact complete
minimal hypersurface (n>2) in M™*'(b) (b<0). Then we have

z'ndex(M)ge"”(l—ll/’r—g) §M<[B|2+nb):z/2.
We next study the stability of a minimal submanifold in R"*'.
THEOREM 8 (P.H. Bérard [1]). Let M™ be an n dimensional noncompact

complete minimal submanifold (n>2) in RY. Set

Z — 1
WIN—m—2 B N=eg

a(n, N)= Nen
Cim)=2""w(n4+1)**D/"w;"""/(n—1),

Cum=2C:m 21,

. n+a(n, N)—1
Cult, N)=2 s oin, N

If |Bl|2<Cy(n, N), then M is an n dimensional plane.

In [1], P.H. Bérard used an inequality of J. Simons [13] and a Sobolev
inequality of type (2) in section 1. Replacing an inequality of J. Simons by T.
Okayasu [12] and a Sobolev inequality of type (2) by Theorem 1, we can im-
prove the above condition.
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THEOREM 9. Let M™ be an n dimensional noncompact complete minimal sub-
manifold (n>2) in RY. If

IBI2 <4n+(2/n)~1/ T )2

n*B(n, N) \4+/6
then M is an n dimensional plane.

Under a weaker condition, we show that M is stable as follows (see ].
Spruck [14]).

THEOREM 10. Let M™ be an n dimensional noncompact complete minimal
submanifold (n>2) in M**Y(b) (b<0). If

NE— n
z <
I+/(1B] +nb>+”n=4\/6 ,
then M is stable.
In particular, if M™ is a minimal hypersurface in R™*' satisfying ||B|,<
n/4+/6 and |B|,<co, then M is an n dimensional hyperplane.

Proof. Let £ be a bounded domain in M. By Theorem 1, for a variation
vector field X on £ in M fixing boundary, u=|X| satisfies that u,;0=0 and

vro={ /X, X)
=, IVul'=( Bl nb) e

=(1vs )Z(Sguwn-z))m—wn

(G )

((RZT;)— Iv(IBI*4nb).,)| %)(Sguz’”("-2>>(n_2”"
0.

v

v

Therefore, every bounded domain in M is stable. And a complete stable minimal
hypersurface in R™*' with ||B|,<oo, it is a hyperplane (see M. do Carmo and
C.K. Peng [5]). O
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