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ON SOME 4-DIMENSIONAL ALMOST
KAHLER MANIFOLDS

TEDI C. DRAGHICI

1. Introduction

The following conjecture of Goldberg 1s still open: The almost complex
structure of a compact, almost Kidhler Einstein manifold is integrable (and there-
fore the manifold is Kéihler).

Progress has been made by K. Sekigawa who proved that if the scalar cur-
vature is nonnegative then the conjecture is true ([8, 97).

In 1986, studying variations in the set of metrics associated to a given
symplectic form on a compact, symplectic manifold, Blair and lanus showed
that the commutativity of the Ricci operator with the almost complex structure
is the critical point condition for a certain class of Riemannian functionals ([1]).
They asked a question stronger than Goldberg: For a compact almost Kadhler
manifold whose Ricci operator commutes with the almost complex structure, is
it true that the almost complex structure must be itegrable? In [2] Davidov
and Muskarov gave an example showing that the answer to the latter question
is negative. However, it is still interesting to see under what additional as-
sumptions we have a positive answer to the question of Blair and lanus. Also,
the example given by Davidov and Muskarov is 6-dimensional and it might be
possible that in dimension 4 the situation is different.

It is well known that on any almost Hermitian manifold we can define the
*Ricci tensor, which 1s an analogue of the Ricci tensor but involving also the
almost complex structure. On a Kihler manifold the Ricci and the *-Ricci
tensors coincide. For this reason the problem of a star version of Goldberg
conjecture has been raised, replacing the Einstein condition with one on the
*.Ricci tensor.

The purpose of this note is to study some aspects of these questions in
dimension 4.

[ am deeply grateful to Professor David E. Blair, who constantly guided
and encouraged me while working on this paper.

Receitved November 8, 1993.
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2. Preliminaries

Let M=(M, J, g) be a 4-dimensional, compact, almost Hermitian manifold.
We assume that M is oriented by the volume form o=(1/2)Q? where £ is the
Kihler form defined by Q(X, Y)=g(X, JY) for any X, Y vector fields on M.
By the well known process of raising and lowering indices, the metric g induces
a scalar product in each fiber of 77 *M, the fiber bundle of tensors of type
(r,s) on M. We will denote this scalar product by (,) and the corresponding
norm by ||. Integrating over the manifold we obtain a global scalar product

o=\ (.
Jao

On /2M, the fiber bundle of 2-forms on M, the induced scalar product in each
fiber is defined by:

1
(CY, ,8):_2‘ Zazjﬁz] »
17

where a, B A3M, for some point peM; a,,=ale, ¢,), {e,, e, e;, e;} being an
orthonormal basis of the tangent space at p, T ,M.

It is well known that on a 4-dimensional Riemannian manifold the Hodge
operator acting on 2-forms has the property x?=id and hence induces the de-
composition :

APM=A:MBAM ,

where A2M and A*M denote the sub-bundles of self-dual 2-forms and anti self-
dual 2-forms respectively. This decomposition is orthogonal in respect to the
scalar product (,). Also, it is easily checked that (a, flo=aAxp.

On a 4-dimensional almost Hermitian manifold another decomposition of

A2M holds (see for example [8]):
AM=RQID A VPMDLM ,

where A"V M denotes the vector bundle of real, J-invariant two-forms with
vanishinng trace (for the trace of a 2-form we adopt the convention : tr(a)=
1/2(a, 2)), and LM the vector bundle of real J-anti-invariant 2-forms on M.
This decomposition is also orthogonal in respect to (,) and, moreover, we have

(1) AEM=RQPLM , AEM=A"PM .
If ¢ is any two-form on M we can therefore write:

</J:tr ¢Q+¢51'1)+¢antz ,

where tr¢Q+¢°™"* is the self dual part and ¢§"" 1s the anti-self dual part of
the form. Using this we get
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PAP=GALHEr PQ+G )40 I=(g, tr Q+¢" "' —f D)o .

Therefore, on a 4-dimensional almost Hermitian manifold, for any 2-form
¢ we have

(2) (/)2:(2 tr2¢_1¢({)1,1)12+|¢a72tl|2)0.’
This formula was used by Gauduchon for Hermitian 4-dimensional manifolds
(see [4]).

We recall that an almost Hermitian manifold whose Kihler form £ is
closed, is called an almost Kdhler manifold. A consequence of d2=0 is the
following equality :

3) Vox NJY ==Y,
or equivalently
4) VixJY, 2)== VY, Z)

for any tangent vectors X, Y, Z. An almost Hermitian manifold satisfying just
(3) (or (4)) is called quasi-Kdhler and there are known examples of quasi-Kéhler
manifolds which are not almost Kdhler. In dimension 4 however, every quasi-
Kidhler manifold is almost Ké&hler. After all, the condition that the Kihler
form is closed is equivalent to

®) (VxQ, 2)+(VeONZ, X)+(V2)(X, Y)=0,

for X, Y, Zex(M). Since the left hand-side is tensorial in X,Y, Z, it is
enough to check the equality only for a preferred basis of tangent vectors.
For any p&M, we can choose in a neighborhood of p a J-basis of tangent
vector fields, that is, an orthonormal basis of the form {e;, Je,, ¢, Je,}. The
quasi-Kdhler condition (4) and the fact the skew-symmetry is preserved by
taking covariant derivatives imply that (5) holds if X, Y, Ze{e,, Je,, e, Je,}
and, therefore, (5) holds for any X, Y, Z.

Another formula which holds on any quasi-Kdhler manifold and we will
often use is

©) S (Ver)e=0.

This is an easy consequence of (3) and is just the local expression of the fact
that 2 is co-closed. Therefore on any almost Kidhler manifold the Kéhler form
£ is harmonic, being closed and co-closed.

If (M, g, J) is an almost Hermitian manifold and D a (2, 0) tensor on M,
we say that D is J-invariant (or J-Hermitian) if it satisfies

D(JX, JY)=DX,Y)

for any tangent vectors X, Y.
We say that D is J-anti invariant (or J-ant: Hermitian) if it satisfies
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for any tangent vectors X, Y.

Let us recall now a definition due to Gray ([6]). For every point p=M,
he defines 9, := (X {T ,M|Vx/=0} and calls 9@ the Kdhler nullity distribution
of the almost Hermitian manifold M. Note that 9 need not be a distribution
in the usual sence the dimension might vary with the point.

From now on, let (M, g, J, ) be a 4-dimensional almost Kéhler manifold.

It follows from relation (4) that Vy{ belongs to the sub-fibration LM of
A®M, for any vector X. Also, Vy2=0 if and only if V,x2=0. Therefore we
conclude that dim @, is an even number.

Now, since M is 4-dimensional, the fibers of LM have dimension 2. There-
fore, locally we can write

VQ=a@0+RJD .

where {@, J@} is any (local) orthonormal frame of LM, and «, B are (local)

1-forms (see [8]). Hence, 9, contains the intersection of ker a, and ker §,.

This proves that the Kihler nullity distribution 9, has dimension either 2 or 4.
Let us consider now the following (2, 0) tensor field:

D(X, Y):Z(V‘Y.Q, Vyg) 5

where (,) is the local scalar product introduced above. D is obviously sym-
metric, and, from the quasi-Kédhler condition (4), we obtain that it is also J-
invariant. Thus, at every point, D has two double eigenvalues 4,, 4, or D=0.
Since we have shown that 9, has dimension at least 2, one of the eigenvalues,
say 45, is 0. As tr D=1V ]J|? it follows that ,=(1/2)|VJ|% We will need this
in the next section.

To complete this section we introduce some additional notation which we
will need later. (M, g, J, 2) will be an almost Kédhler manifold, compact and
4-dimensional. We denote by V, R, p, ¢ the Levi-Civita connection, the Rie-
mannian curvature tensor, the Ricci tensor and the scalar curvature of M
respectively. Our conventions for the definitions of the curvature and the Ricci
tensor are the following :

R(X, Y):[VX, VY]“VEX,YJ,
oX, Y)=tr (Z —> R(Z, X)Y).

We also denote by p* and z* the star-Ricci tensor and the star-scalar curvature
of M respectively (cf. [1], [8], [9]).

It is well known that the Ricci tensor is symmetric, whereas, in general,
the star-Ricci tensor is neither symmetric nor skew-symmetric. We may remark
though, that the star-Ricci tensor satisfies the following identity :

p*(JX, JY)=p*(V, X),
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for any tangent vectors X, Y. This implies that the symmetric part of the
star-Ricci tensor, denoted by p**'™, is a J-invariant tensor, i.e. it satisfies

p* ' (JX, JY)=p*'™X,Y),

while the skew-symmetric part, denoted by p***¢*, is a J-anti-invariant tensor,
i.e.
p*skeu'<]X, JY)=—p**e(X V).

In general, the Ricci tensor does not have any special behavior in respect to /,
and we will often use the decomposition

p:pznv+pant1 N

where p'*” in the J-invariant part of the Ricci tensor defined by
0 X, ¥) =4 (X, V)kp(JX, Y,

and p*"** is the J-anti invariant part given by
0", V)= (oX, V) p(JX, JVY).

For any 4-dimensional, almost Hermitian manifold, Tricceri and Vanhecke
([12]) showed that

% P = %(r—%*)g

and also
® RUX,JY,JZ, W)=RX,Y, Z, W) &= (p=p'", p*=p**¥").

If the Ricci tensor is at every point a multiple of the metric we say that
the manifold is FEinstesn. Note that in this case it follows that the scalar cur-
vature is a constant, so the Ricci tensor is a constant multiple of the metric.
Such a result is not true for the *-Ricci tensor and this leads to two different
versions of the *-Einstein condition. The term weakly *-Einstein manifold is
now commonly used when the *-Ricci tensor is at every point a multiple of the
metric, keeping the name *-Eimnste:n manifold for the case when the *-Ricci
tensor is a constant multiple of the metric (see [10], [11]). We will make this
distinction throughout the paper.

We will also use the following known formula of the first Chern form,
valid for any almost Hermitian manifold :

©® 877, =—40%5+ (Vo S i) (Vo  kn) -

If not otherwise specified, our local computations and formulas are written
in a local J-basis, 1.e. an orthonormal basis of the form {e,, e,, Je;, Je.}. Thus
0%; means p*(e,, Je;). The indices ¢, ; will run from 1 to 4, with the conven-
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tion that es, e, are respectively fe,, fe,. We adopt the summation convention
of Einstein, but, as we work with orthonormal bases, there is no need to raise
and lower the indices.

3. Some Results

As we mentioned before, Sekigawa proved that a compact Einstein, almost
Kihler manifold with nonnegative scalar curvature is Kdhler. The key of the
proof is to establish first an inequality which holds on any compact, almost
Kihler manifold.

PROPOSITION 1 (Sekigawa). Let (M, ], g, 2) be a 2n-dimensional (n=2) com-
pact almost Kdahler manifold. Then

(10) 0= '“ZSM[Z (Vipbj_vjpbzvajzk)]jk+2 pij(vbjik)(vb]jk)]g-

]
_’QESM'V]'4"'

For the proof we refer to [9]. It can be easily obtained from Lemmas 2.2,
2.5, 2.7 and Proposition 3.2 of that paper. Now if M is Einstein, Vp=0 and

2 0uVal )(Tof ) = |V 1%,

so the right-hand side of (10) is nonpositive. Therefore, all the terms in (10)
must vanish, in particular, VJ=0.

This is the sketch for the proof Sekigawa gave to his result.

Starting with this inequality, not assuming the Einstein condition, but only
that the Ricci tensor is J-invariant, we have to work a little bit more to get
some conclusions.

First we use integration by parts and equation (6) to get

S}I[Z (Vipbj—vjpbz)(vbjlk)fjk]‘7

=| [ 0TV )]s 2 0¥ (VoS ) )]
Here let us remark that since J*’=—1Id, we have
VoS i) se=—J (Vo] jx) ,
which implies, by virtue of (6) that
Vil(VoJ i) Js)=—TuxVi(Vo ] 12) -

Therefore we get
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[ L0000 0T 1s 2 T 1410 =2) S 00T a5

On any quasi-Kdhler manifold we have the following identity which can be
easily obtained after a straightforward computation making use of (3):

vaﬁjik =—ViVoJir— (V;fbs)(vsfi 0= (Vs ]s k)(Vins) .

Since p is J-invariant, using the formula above and, repeatedly, the quasi-Kéhler
condition (3) we obtain:

1 1
pbi(vjvb]ik)jjkz Eﬂbi(vk.}bsxvsjtk)— —2‘ pbi(vb]ks)(kais) .
Multiplying by 2 and using several times equation (5) we get

zpbi(vjvb]ik)]jk =pbt(vs]bk)(vs]ik) - pbi(vb.]s B (VoS se).

After these computations inequality (10) becomes :
1
AD  0==2) [200(Ve o)Vl ) puiTa i) ViS o) lo— 5| 197140
The following result was proved in [37.

THEOREM 1. Let M be a 2n-dimensional compact almost Kdihler manifold,
whose Ricci tensor is J-Hermitian and suppose there exists A=0 such that ig(X, X)
SpX, X)=22g(X, X) for any XTM. Then the almost complex structure is
integrable, that is, M is a Kdhler manifold.

If 0=4,< - <2, are the eigenvalues of p (each of them is a double eigen-
value since p is J-invariant), the “pinching” condition on the Ricci tensor insures
that we have the inequality 24,=4,, so our metric is not “too far” from an
Einstein one. In dimension 4 the result is even better. We don’t have to
assume anything about the eigenvalues of p, but only to be nonnegative. Hence
the result of Sekigawa concerning Goldberg conjecture fully extends in dimen-
sion 4 to the problem of Blair and Ianus.

THEOREM 2. A 4-dimensional, compact, almost Kdihler manifold, with Her-
mitian and nonnegative definite Ricci tensor is Kdihler.

Proof. Let us denote by B the symmetric, J-invariant tensor given by
B.,,;=(VsJu)(Vs]:;). We can see that B=(1/4)|VJ|%g as follows.

For any almost Kidhler manifold we have the following formula due to
Koto ([7]):

(12) p*sym:pmv_;_%B .
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This formula implies the well known relation between the scalar curvatures:
(13) r*:r+%lV]]2.

But in dimension 4, we have the relation (7) between the Ricci tensors. There-
fore, by (12), (13) and (7), B=(1/4)|V]|*g.
Using this, one of the terms in (11) has a simpler expression :

zpbxvxfbk)(vsf,-k):% vJjle.

Now we choose a basis {e,, Je,, ¢, Je,} which diagonalizes the tensor D
considered in the previous section. In local coordinates Dy;=(V5/Js1)(V,Jsx). As
we remarked in Section 2, this tensor is symmetric, J-invariant, has a double
eigenvalue 0 and another double eigenvalue A=(1/2)|VJ|% Suppose ¢, [e, are
eigenvectors corresponding to the eigenvalue 0 and e,, Je, are eigenvectors cor-
responding to the eigenvalue A. In this basis

Pbi(vbka)(vz.]sk>:p22 vz,
and, since t=2(0,1+ 02),
Zpbj(vx]bk)(vs]ik)—pbi(vb]sk)(vz]sk):pu | V/| z,

By hypothesis, the Ricci tensor is nonnegative definite, so p,,=p(e,, ¢,)=0, hence
Zpbi(vs]bk)(vs.]ik)g pbi(vbjsk)(vz]sk) .

Now, inequality (11) implies |V J|=0, hence J is parallel, so the manifold is
Kéhler. O

If Goldberg conjecture is true (or its star version), one way to prove it
might be the following : first show that on any compact symplectic manifold
with the first Chern class a multiple of [£27], an associated Einstein metric (if
exists) must be Kihler, and then, the second step, show that on all other com-
pact symplectic manifolds there are no Einstein associated metrics. Let us
remark that the condition that the first Chern class is a multiple of [2] has
been studied in two different contexts. In symplectic topology, symplectic
manifolds satisfying this condition are called monotone, whereas in Kihler
geometry, a Kihler manifold with ¢,(M)=A[£2] is known as a cohomology
Einstein Kidhler manifold.

Here we prove the following proposition :

PROPOSITION 2. Let M be a compact, symplectic, 4-dimensional manifold
with ¢,(M)=(1/87)A[ 2], for AcR. Suppose there exist a weakly *-Einstein
assoctiated metric with the property that there exist three real numbers a, b, ¢
(a=0, b=0, but a®+b*+0) such that
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artt+brr=c.
Then this must be a Kdhler metric.

Proof. Without loss of generality we can assume that the total volume of

M is 1.
If y is the first Chern form, then, from our assumptions, there exist a 1-

form a such that
8ny=1Q2+da .

As @ is harmonic <2, da>=0, so by (9) and the previous relation we get
z-_——lg (t+e%)0 .
2J)m

Also, taking wedge product,
Bry)=A2*+da’ .
Therefore we get
1

On the other hand, using the decomposition (1) and the formula (2) for ¢=
8wy we get

1 1
L.%(M)zi_ﬁ_ﬁzg”[(rt)e_zlp*sym'2+2,p*skew|2_Z(T*+T)|V]|2+(p’ D)]O’,

where all the norms on the right hand-side are thought of as norms of tensors,
so the 1/2 coefficient from the local scalar product of forms does not appear
here. The above formula is the almost Kédhler case of the general expression
of ¢}(M) obtained by Sekigawa in [8] for any 4-dimensional almost Hermitian

manifold.
Comparing the two expressions for c¢}(M) we have

1
Fo=] [ar—zigmom2)proteee L0 914G, D)o

Working with the right-hand side, using (7) and (13), the previous equation
becomes :

(14 500,550 =] et =21 01421 0245 240, Do

The weak *-Einstein condition means that p***¢*=0 and p**V™=(1/4)r*g.
From (7) we deduce also that p*"*=(1/4)rg. With these relations, (14) becomes

(15) (SM‘['—*;EG)Z:SMTT*U,

which we rewrite as
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(07570 Lo (1))

Suppose that ar-+br*=c¢, with a, b, ¢ constants, a, b=0, but not simultaneously
0. Without loss of generality we can assume b+0. Then

Lo =)= (hee) =Ll

By Cauchy-Schwarz inequality we see that this last expression is nonpositive.
Hence the right hand-side of (16) is nonpositive, whereas the left hand-side is
nonnegative. This implies that t*=7 and, by (13), the metric is K&dhler.

Without any effort, we have the following corollaries :

COROLLARY 1. Let M be a compact, symplectic, 4-dimensional manifold with
o(M)=1/8m)ALR2], for AcR. Any x-Einstein associated metric s a Kdhler
metric.

COROLLARY 2. Let M be a compact, symplectic, 4-dimensional manifold with
ao(M)=Q1/8m)ALR], for AeR. Any Einstemn, weakly x-Einstein associated metric
is a Kdhler metric.

Since, 1n general, on an almost Kdhler manifold the Ricci tensor 1s not J-
invariant we cannot speak of a Ricci form as in the Kéhler case. We can try
to define a Ricci form on any almost Kédhler manifold by

alX,Y)=p""(X, JY).
The following Proposition was proved in [3]:

PROPOSITION 3. Let (M, g, ], ) be a compact almost Kdhler manifold such
that the Ricci form a« belongs to the cohomology class 2mc, (M), where c(M) s
the first Chern class of the manifold. Then the manifold is Kihler.

It seems that we are assuming too much, asking at the same time that the
Ricci form « be closed and in the cohomology class 2z¢,(M). In dimension 4
the situation is better.

PROPOSITION 4. On a compact, 4-dimensional almost Kdahler manifold with
J-invariant Ricci tensor, the Ricct form 1s closed.

Let us remark first that since p=p**’, the Ricci form we introduced, a, is
now exactly what it should be in the Kihler case.
For the proof of the Proposition we need the following Lemma :

LEMMA. On a quasi-Kdhier manifold (M, g, J) let B be a symmetric, J-
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invariant tensor field of type (2, 0), satisfying 6B=0. Then the 2-form B(X,Y)
=B(X, JY) is co-closed (. e. d8=0).

Proof of Lemma. We work in a local J-basis f{es, -+, en, Jei, -, Jea}.
Locally, §8 is given by 8,,=B;/J,s. Since V;B;=0, we have

Viﬁszwvzjyx .

Using the J-invariance of B and the quasi-Kidhler condition (3) we see that

Buvzjjx:Biévi]jézBisVi]j.i: _Bisvt./Js .
Hence
ViBw:stszlszo- D

Proof of Proposition 4. We apply the previous Lemma to the tensor field
B=p—(1/2)rg. 1t is symmetric, J-invariant from the hypothesis and by the
second Bianchi identity, 6B=0. The corresponding 2-form, B=a—(1/2)zQ is
therefore co-closed. Since the co-differential operator on forms is given by §=
—*dx*, xf is closed. Using the decomposition (1),

1 1 1 1
*.8:*<a"—4“1'g-z’l'g)=—a+Zz‘g—zrg:—a .

Thus a is closed. [J
Finally, we have the following result:

THEOREM 3. Let (M, 2) be a compact, 4-dimensional symplectic manifold
with HM ; R)=R. If there exists an associated almost Kdhler structure (M, g,
J, 8) such that its Ricci temsor is J-invariant and its star Ricci tensor is sym-
metric, then this must be a Kdhler structure.

Proof. Without loss of generality we assume again that the volume of M
is 1.

Since H*M ; R)=R, there exist real numbers 4, g such that ¢,(M)=
(1/8m)A[ 2] and [a]=p[£2]. Hence 8xy—AQ and a— {2 are exact, so orthogonal
to @ with respect to <,». From this we get

2:——;—5}[(1—%2'*)0, Iu:%SMw.

We are under the assumptions of Proposition 4, so the 2-form f=a—(1/2)z2
is co-closed, and hence orthogonal to 8zy—AQ2 and a—pf2. Expressing this, we
get
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a7 [ -t1o12e (0, DIo=1(] 2o)({ e*+20);
Loto=2] o o)

Relations (17) and (18) combined give

(19 J o, Do=(] =0 )], "5 ")

Using now (18) and (19) in (14), which holds under our assumption, we obtain
@0 Jereero=(], 7,0y =((, T o)

By assumption the star Ricci tensor is symmetric, so (20) gives V/=0 complet-
ing the proof. O

It is interesting to compare Theorem 3 and the Corollaries of the Proposi-
tion 2 with the following result from [10]:

THEOREM (Sekigawa, Vanhecke). Let M=(M, g, ]) be a 4-dimenstonal com-
pact, almost Kdhler manifold which s Einstein and *-Einstein. Then M s a
Kdahler manifold.
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