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PICARD CONSTANTS OF FOUR-SHEETED

ALGEBROID SURFACES, I

MlTSURU OZAWA AND KAZUNARI SAWADA

§ 1. Introduction

The notion of Picard constant of a Riemann surface R was introduced in
[2]. Let <3i(R) be the class of non-constant meromorphic functions on R. Let
P(f) be the number of values which are not taken by / in M(R). Now we
put

This P(R) is evidently a conformal invariant of R and is called the Picard
constant of R. If R is open, then P(R)^2. If R is an n-sheeted algebroid
surface, which is the proper existence domain of an n-valued algebroid function,
then P(R)<^2n by Selberg's theory of algebroid functions [6]. In general it is
very difficult to decide P(R) of a given open Riemann surface R.

In our previous paper [4] we discussed the following problem: Is there any
method to prove P(R)=5 for a three-sheeted algebroid surface R, which is
defined by

with P(y)=ί? Its discriminant is denoted by Δ. Then Δ has the following
form: either

or

with non-zero constants AOf Az. Then we have the following result: If either
ζ2Φθ or ζiΦO, then P(R)=5 under an additional condition that H is a poly-
nomial.

In this paper we consider a similar problem for a four-sheeted algebroid
surface R, which is defined by

with P(y)=7. Is there any method to prove P(R)=7 then? Again the discri-
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100 MITSURU OZAWA AND KAZUNARI SAWADA

minant Δ of R plays a role firstly. We need quite hard computation in order
to determine the form of Δ. In a subsequent paper II with the same title we
shall consider a similar problem for four-sheeted algebroid surfaces R with

P(y)=6.

§2. Surfaces with P(Λ)=8

Let us consider

F{z, y)Ξ=y*-Si

which defines a four-sheeted algebroid surface R. Consider

'F(z, 0)

F(z, α.)

F(z, α2)

F(z, α.)

F(z, a,)

F(z, β.)

F(z, at),

(i)

=

Cί ~

c2

c3

βιe"ι

βte"*

β,eH'

β<eH<,

(ϋ)

=

Ci

Cι

c%

β2e
H*

j8,«*

where cJt β3 are non-zero constants and H3 are non-constant entire functions
satisfying //χθ)=O.

CASE (i). Then SA—cλ and

fli4—a1*S1+a1

2S2—

α2

4 — α 2

3 S i + α 2

2 5 2 —

From the first three equations we have

+(a1+a3)xB-\-a1a2+ fl1α
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where

Xodz{aι — az){a2— az)——βu

ι — a2)(aι— a3)—c2, x3a2{aι — a2)(a2— a3)—c3.

Substituting these into the remaining three equations and making use of BoreΓs
unicity theorem [1], [3] we have

Hλ=H2=Hz=H4 (-//), β2=-ai(ai-a1)(a4-a2)x0.

Hence we have finally

βι βz _ βz

a3) ai(aι—ai)(a2—a4) ah{aι~a^){a2—ab

α 6 ( G i — a,s)(a2— α β )

and

X\ X'ί . X ί, -,

1 — — — 1 ,
α α f l α α

ab—a2

X\ X2 ,

α α ΰ
6 6 i a6—a2

Then we have

x 2 —

__ (a4~ a2)(ab-a2)(aG- a2)
X3— / \ '"

( O

Further xί—x2+x3=a4

Jrab-\-a6—aι — a2. Therefore

5 2 = ( f l i + a 2 ) x 0 e H + α 3 β4+ a3a5+ α 3 α 6 + a4a&+ a4a6+ a5a6,

S3

:=:aίa2xoe
H-{-a3a4a5-]ra3aiaG-{-a3aδa6-j-a4aδa6f

We denote this surface by Xlm

CASE (ii). Then S^β^i and
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a1

A-aι*S1+a1*Si-a1Sz+βιe
Hι=c1,

4 - a5

zS1+aδ

2S2-

By the first three equations we have

S1=z χoe

Hi—Xl+χ2— χz+ 0,

S2=(ai-\- az+ az)xoe
Hl—

1a3+a2a3,

with

{dι— d2){d2— a3)'

- fls) '

Substituting these into the remaining three equations and making use of BoreΓs
unicity theorem we have

j88=—(flu—αi)(fl4— a2)(d4-a3)x0,

βz^-(ab- fliXflδ- a2)(a6- az)x0,

and Hx=Ht=Hz=HA {=E),

1^0, ;=4,5,6.
dj—di dj—d2

Then

x2(a2-a1χa3-a2)=-(d4-d2Xd5-d2Xde-d2),

x<i(d3-a1Xds-d2)=:-(di

Further
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-\r axa2-\- CLiCLzΛ- CL2CLZ—

— a2azxx-\- axazx2—axa2xz-{- aλa2az—

Hence we have

S2=(a1+a2+az)xQeH+a4aB+aiaB+aBaΛ,

S2—(aιa2-{- axaz-\r a2az)xQeH -{• aι%aba%,

We denote this surface by X2. If eH is commonly used, then Xx and X2 are
conformally equivalent by a suitable linear transformation Y—ay+β. See the
end of § 4.

§3. Discriminant of Xx

Let y4—Sιy
3jrS2y

2—Szy-{ Sίί=0 define the surface Xt. Now we abbreviate
Sj in the following manner: S1—XJrXι, Si—ia
S±~Xι with X=xoe

H, Xι = az-\-a4+aδ+a6, X2—az

a5a6f xz= aza4a5+ α 3 α 4 α 6 + aza5a6-\-a4aδa6, x^~aza,aha^ Let us put

M = - ~ V + ™ S 1 S 2 - S 3 ,

Q 1 1
AT — Z_ C4 I _ C 2 C i . C C _ι_C

•*" — o _-vJi -f 1 ^ O I O2 ^ 01^3 1^4

ΔΌΌ ID 4
Then the discriminant D of AΊ is

In this case we have

M= -(j
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with

a =:lx -a __α a=-x2-x
1 — ^ 1 1 2, 2 g 1 2,

7Γ
Δ

X\ 7Γ XιX2-{~ X$
Δ

In this case we have 2βί=16γ1=aι and ^2=4^2—16^2. Then D looks like a
polynomial of X of twelve degree at a glance but it reduces really to a poly-
nomial of six degree. In order to prove this we need somewhat hard computa-
tion. It is comparatively easy to prove that coefficients of X12, X11, X10 are
equal to zero. And the coefficient of X9 is equal to the following expression:

ri J

[81
g2r1(^-4 r

27
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All the coefficients of β3, γs, γλβ2y γxγ2 and γx

3 reduce to zero. Hence the co-
efficient of X9 is equal to zero. Next the coefficient of X8 has the following
expression:

64-

[
97

Then all the coefficients of γiy γφz, γιγz, β2

2, β^ζi, γ2

2, γ^β*, γι2γ2 and γS vanish.
Hence the coefficient of X8 reduces to zero. Next we consider the coefficient
of X\ which has the following expression:
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[ 97 97

(^4)2+32563(^2-4 r2) + ~

Then all the coefficients of γφ, β2βz, γ2β3, β2γz, γφ, γ^β,, γx

2γZy γφ2

2, γφφ,
ϊιΪ22y γi*82} γi3γ2 and γ^ vanish and hence the coefficient of X1 reduces to zero.
We did not use any speciality of γ4, β3, γz, β2, γ2, a2 and au βu yγ excepting
2βι—aι—\^yι, a2=iβ2~ 16γ2 in order to prove that the degree of D is six.
Anyway we have

with non-zero coefficients Ao and AG. Why A ^ O , A6φ0?
Suppose Λ = 0 . Then firstly 4T(r, y)=(X+o(l))T(r, eH) for Xx. Now by

Ullrich-Selberg's ramification theorem or exactly speaking, by an analogue of
the proof of Ullrich-Selberg's ramification theorem [6], [7] we have

AN(r, Xi)£N(r, 0, D)^5(l+o(l))T(r, eH).

Hence

N(r, XJ^Sa + odWir, y),
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Therefore Selberg's deficiency relation [6] gives

where δ(wv) is Nevanlinna-Selberg's deficiency at wv of y. We have just 8
lacunary values of y for Xu Thus we have Σδ(w v )=8. This is a contradic-
tion. Similarly A0—0 gives the same contradiction. By the way we give an
explicit form of the coefficients of X6 and X5:

The coefficient of X6 is just the following form:

έ ^

+ ( | - α I « 2

2 + 4 α 1

3 α 2 ) r i

which is equal to
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+4(/32-8 r 2)
3+α1

2(/32-8j-2)
2.

The coefficients of γt vanish in this case.
Next we consider the cofficient of X5. The following form of the coeffici-

ent of Xs is used in II (not in I).

This is equal to the following expression:

( 3 4 ) 9 2 ( S 8 ) 4

ι +^αi«2

3 .
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These expressions shall play an important role later.

§4. Surfaces with P(y)=7

Let us consider

F(z, y)=y^S1y
9 + S2y

i"Si

and the following equations

'F(z,0)

F(z, h)

F(z, b>)

F(z, bs)

F(z, bt)

* F(z, bt),

(i)

• βte**,

(ϋ)

c2

βιe^

β*eH*

βse»*

, β*eHi /

C2

βte"*

(iv)

Cι

β.e»*

βse11*

• βte
B*,

where c3 and β3 are non-zero constants and H} are non-constant entire functions
satisfying Hj(0)=0.

CASE (i). We have S4=Ci and

Then by the first three equations

with
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Substituting these into two remaining equations we have by BoreΓs unicity
theorem

t-hXbs- b2),

£ 6 ^ ^ ^

and

/? bb bb

Now we impose the following condition: 3/ does not have any other lacunary
value, that is, excepting b3, bAi b5 there is no lacunary value of the second
kind. Hence

F(z, a)=(a-bs){a'-(bl-i-

—a(a—bιXa—b2)x0e
H

should be one of the following three forms:

(1) (a-bsna-hXa-bJ-aia-hXa-

(2) (a-bsXa-bJXa-bJ-aia-hXa-b

(3) (a-bsXa-b,Xa-b6)
2-a(a-b1Xa-b

CASE (1). Then

Hence

Therefore

bxb2 ' y
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Then

Thus we have

S1=xoe
H+2bi+b4+bδ,

We denote the surface y4

by ^ * .

CASE (2). Then

Hence

2—S3y+SA=0 with the above Slf S2, S8,

Then

and

Thus we have

(bl-bi)\b1-b6)

b2(b1—b2)

We denote the surface ^ 4 -S i3 ; 3 +S 2 3; 2 -S 3 3;+S 4 =0 with the above Si, S2, S8, S4

by i?2*.
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CASE (3). Then

a*-{bι+b2+x + y+z)a2+(bιb2+(bι+b2)x+b2y+bιz)a--bιb2x

Similarly we have

S2=ψι+b2)xQeH+2b3bδ+b3b4+2b4b5+bδ

2

We denote the surface y'—S1y*+Siy*—Sι
by i?3*.

CASE (ii). Then S4=d and

A=Q with the above Su S2, S8, S4

From the second, third and fourth equations we have

with βi^Xιb2(b2-bz)(b4-b2)} β2=x2bs(b2-b2)(bz-b4)f βz^x3b4{b3-b

Cl = xb2bΆb4. Substituting these into remaining two equations we have
~b2) and

X\ X2

bι~b4

=0,

c2
Cx

b2bφ4

=blt

X\ , Xi
- + - :=0

and
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Hence x—bh) which implies Ci=/?2WA and c2—{bι—b2)φι—bi){bι—b4){bι—bb). Now
we impose the following condition: y does not have any other lacunary value,
that is, excepting 0, blf there is no lacunary value of the first kind. Hence

F(z9 a)=(a-b2Xa

—a(a — bx) i — bB—b4)xx

satisfies one of the following conditions:

(a) { }=k (const.)Φ0,

(b) { }=ka (kΦO),

(c) { }=k(a-b1).

CASE (a). Then x 1 -fx 2 +x 3 =0. Therefore

bι—b2

~~b(b Jp^e+b

The surface defined by ;y4-S!;y3+S2;y2- S3;y-f S4:=0 with the above Slf S2, S3

and 5 4 is denoted by 7?4*.

CASE (b). Then

that is,

(bs+b4):
By

b\—b2 b\—

Hence
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Eliminating xz we have

Hence

Now we have

b2bz

.

- 7 Λ i Ί τ~
0 2 b3

b2(bι-b2)(bz-b4)

Further

Therefore

The surface defined by y—5i3; 3 +S 2 ^ 2 —S 3 ^+S 4 =0 with the above Si, S2, S3

and S4 is denoted by i?6*.

CASE (C). Then k — χx and

By

we have
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Hence

Further

and

Hence

Therefore

):=z£bΛ — r~χι~\~ T z~χ2)
V 6?i — 6?2 Oi — Oz /

r - Λ2 — r Γ .
01--03 01 — 02

X\~ΊΓ Xix X§ — λ

b4—b2

Hence we have

The surface defined by y - S ^ + S ^ -
and S4 is denoted by /?β*.

CASE (iii). In this case S4—βγe
Hι and

^ O with the above Si, S2, S3
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We have Hi=Ht=H3 ( = # ) and

and

with

• + τ J V = -l

bx bb—b2

We now impose a condition that F(z,
reduce to the form

)=α 4 —Si« 3 +S 2 α: 2 —S 3 α+S 4 does not

with the exception of α=0, bt and ύ5, that is, there is no lacunary value of the
second kind excepting α = 0 , b, and b5. Now we have

F(z, a)=

where

-\-b2b3x—bib3y-\-bib2z—bxb2b^.

Hence we have three cases:

(a) P(a)=a(a-b4)(a-bδ),

(b) P{a)={a-b4)\a-bs),

(c) P(a)=(a-b4)(a-b6y.
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CASE (a). Then we have

x-~y+z—bx—b2—b3— —bk—bδ,

Hence

Si=β1e
H.

This surface is denoted by /?7*.

CASE (b). Then we have

Hence

{ S i = ΪΓfΠΓeH

We denote this surface by /?8*.

CASE (C). Then we have

Hence

6Ab

117
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ΊΓΓu
O1O2U3

e -f-o4u6 ,

I S.=β1e
H .

This surface is denoted by ϋ?9*.

CASE (iv). We have S^—β^111 and

Then from the first three equations we have

b2bzx
Jrbιbzy

Jrbίb2bz,

with xb1(bί—b2)(bί—bz)=c1 and yb2(b1—b2)(b2—b2)=c2. Substituting these into
remaining two equations and using BoreΓs unicity theorem we have

- = o ,

- = o ,
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-+1=0

119

and

-+1=0.
bf—bi b&—b2

Let us consider F{z, a)~aA--S1a
zΛ-S2ά

ί-SiaΛ-S^ Then

F(z, a)^eH{Aa-\-B){a-bι)(a-b2)Λ-a{a-bz)P{a),

where A, B are constants:

and P(a) is equal to

oί2—(&1+&2 — x-\-y)a^rb1b2 — bzx+bιy .

P(a) satisfies Pφt)=P(b6)=0. Hence P(α)=(α-W(α-W. Therefore

and

We impose a condition that y4α+5 does not vanish excepting a—bx and a~b2.
Here B does not vanish. If J3=0, then

F(zf 0)=ί

Hence F(z, 0)=0, which is absurd. Therefore we have three possible cases:

(a) A=0, (b) Aa+B=A(a-b1), (c) Aa+B=A(a-b2).

CASE (a). Then

j$2 β\

Hence we have

bz{bι—bz){bz—bz) bιb

1e
Hr+btbA+bibfi+b4b6,

We denote this surface by /?_<>*.
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CASE (b). Then A=—βι/bι2bt. Hence

Further we have

and

••βι-

biΦi—baXbi—b,) bι2bt'

(bι+bz)β2 _ lbx-\-b%

βi

Therefore we have

, ==fe1»+2ftΛ g

^ 1 2 ^ 2

I S 4 = i 8 1 β i r .

We denote this surface by Rn*.

CASE (C). Then we have similarly

0102

2bxb2-{-b2

We denote this surface by i?12*.

We now have listed up twelve surfaces Rj* (y=l, 2, •••, 12), which satisfy
P(y)=7. However we prove that there are only three different surfaces among
Rj* ( ;=1, 2, •••, 12), when the same eu is used.

Let us put F(z, y)^y'-S1y
i+S2y

2Siy+S4, and G(z, F ) ^ r 4 - T 1 r 3 + T 2 F 2

—T3F+T4. If there is a suitable linear transformation j;=:α:Γ-|-/3, for which
F(z, aY+β)=aAG(z, Y), then two surfaces defined by F(z, y)=0 and G(z, 7 ) = 0
are called the same surface or conformally equivalent with each other and this
fact is denoted by ~ . Evidently
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-

T =-
a3

and

Now we put

aBι~\-β=Q , β=zb3

aB3—b2—b3,

It is easy to prove that /?!*~/?7*, /?2*~/?8* and R3*^R9*. Next we put

aB3—b3—b2,

aB5=bδ—b2.

Again it is easy to prove that i?4*~^io*, R6*~Rn* and # 6 *~#i2*. Next we
put

aB2=b2—b1,

aBi=bδ—bί,

Then we have i?i*~/?3*. Similarly we can prove that /?2*~^i*. Next we put
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Then we can prove that iv>n*~it?i2*.
Therefore we may pick up i?4*, RΊ*, 7?6* as three representatives of these

twelve surfaces. Other representative may be selected several times.

§ 5. Discriminants of R^y JR6* and R,*

Firstly we consider the case i?4*. The surface Z?4* is defined by

with

Here

Discriminant Δ is given by

-27M4H-144LM2,/V-128L2N2+256N3-4L3M2+16LW/

where

L=-|-S ι +S ί,

For simplicity's sake we put yoe
H=X. Then

M=β»X+β1,
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where

3 1 1 1
(Xi=y2--^yι\ βo=-jyi-b

u
 /3i=:--g-3>i

3
+y yιyz—y*>

1
 2 1 u 3

 4
 , 1

 2
 1

Then

with a non-zero constant Ao. Why is ^o^O? Suppose Ao=0. Firstly we have
4T(r, ^)=(l+<?(l))T(r, eH) for 7?4*. Now by an analogue of the proof of Ullrich-
Selberg's ramification theorem [6], [7].

r, R**)ύN(r, 0, Δ)

Hence

iV(r, i?4*)^4(l+0(l))T(r, 30.
Thus

g l i m
r->oo T(r, y)

Therefore by [6]

But 7^Σιδ(wv). This is a contradiction. The surface i?6* is defined by

with

j Si=2b1X+y2,

Here

Now
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Q 1 1
/V — — Q 4 i - L c 2 c ς ς _ i _ ς

where

3 bx _ 9 2 1 1 1

3 3 1 1 1 1

Then we have 2βi=au l^γι—ax and a2—4jS2 — 16^2. Hence Δ is of at most six
degree of X. Now the coefficient of X* is just

See § 3. In the present case we have

and

Hence the coefficient of X6 of Δ is equal to
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= 0 .

Therefore

with Ao AiΦQ.

We shall now consider the case RΊ*. The surface RΊ* is defined by

Sly
z-\-S2y

2-Szy+S,=0 with

where yi—bi+bs, y2=b4b5, Xi=bι+b2+b3, x2

:=bιb2+bib3-\-b2b<i and xι—

Then

256 16 4

with

- ~x B ~ - 2 - 1 λ

0 Z o

1 , 1



126 MITSURU OZAWA AND KAZUNARI SAWADA

3 1 9 2 1 1 , 1

3

 3 1 2
7 3 ^ β i 3 ' 1 ϊ β X i : V l

_ 3 4 1 2
r 4 ~ 2 5 6 3 ; i ~ ϊ β 3 ; i 3 ; 2

Evidently we have 2βx=au 16fi=a:i and a2—^β2 —lβ^2 Hence the discriminant
Δ is at most six degree with respect to yoe

H. Let us consider the constant
term of Δ, which is equal to

Hence we have

Then this is equal to the following expression:

1/3 . w 3 . V 1
( ) )

1/3 . w 3 . V 1 ,/3 . V

T( s"̂ 1 yt) W* yt) -ΊfiyAϊ6yi yt)
1/3 2 \γl 2

which is identically equal to 0. Hence the discriminant Δ of 7?7* has the form:

with non-zero constants Au AG.

§ 6. A lemma

It is necessary to give an explicit proof of the following

LEMMA. Let R be the Riemann surface i?4* defined by
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yA-Sιy

2+S2y
2-

with

where Xi-=b2+bz-\-bA+bsy X2=b2bz+b2b4+b2b5+b3b4+bzb5+b4b5, xΆ=b2b3b4-\-b2b3bb

-\-b2b4b6-\-b3b4b5> x4=b2b3b4bδf Let F be a regular function on i?4*. Then F is

representable as

where fίt f2y / 3 and f4 are meromorphic functions in | z | < o o , all of which are

regular at any points z satisfying H'(z)Φθ.

Proof. Let zQ be a point satisfying H'(z)Φθ. Let us put t—z—z0. We

should consider several cases.

1). There are two points of i?4* on z0 and both points are branch points.

Then there are two different branches of y. And

y1=Aύ+A1t
p'2+A2t

ip+1)/2+ ..-,

2). There are two points of 7?4* on z0 and only one is a branch point.
Then

and

y2=B0+B1t«+B2t
q+1+ . - .

3). There are three points of i?4* on z0. Then

y1 = AQ + A1t
p'*+A2t

ip+1>'2+ -

4). There is only one point of i?4* on z0. Then

5). There are four points of 7?4* on z0. Then

yί = A0+A1t
p+ . - ,
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Since H'(zo)φQ, we have

CASE 1). Suppose that />;>3. Then

and
yι*=A

Hence by ^ i 4 - X i ^ i 3 + ( ^ o ^ + ̂ 2)3 ;i2-(^i3 ;o^ + ̂ 3)3;i + ^i=O we have

yQeH^dίAo

2-bίyQeH^dιAo=O.
Therefore

that is, either A>=0 or Λ>=δi. On the other hand

If Λo^O, then x 4 =0. But x^b2bzb4b5φQ. This is absurd. If Λ0=6i, then

= 0 .

This contradicts that /?i is a lacunary value of y. Hence l ^ ί ^ 2 . Similarly
l^ί<7^2. Similarly we can prove the following facts: In case 2) we have lfg
ί ^ 3 , ^—1 and in case 3) l^p<2, q—l, r—\ and in case 4) 1^^^4 and in
case 5) / > = ^ = r = s = l .

CASE 1), Suppose that y1=Ά0+A2t-\ \-As*ts/2+ ••• with the smallest odd
s such that As*φ0 and s^3 . Then

and
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Hence by As*Φθ we have

Therefore

which is absurd. Hence we have

y1 = A0 + Aι

and

In case 2) we can prove that either

or

y1=A0+A2t
i's+Ait+A4t"*+ ..

with

In case 3) we have

and in case 4) we have either

or

or

Firstly we consider case 4). Suppose that

Let us put

Ai

Then

is pole-free. Hence

βnΛ2-i-γn(2A0A2-{-A1

2)-\-δn(3A0

2A2-\-3A0Aι

2)=0
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and

AXΦO implies βn+γn2Ao-{-δn3Ao2=O and hence

(r»+3»3i4oMi2=O.

Therefore γn+δn3Ao=Q. This gives δnA^O, that is, δn=0. Hence
an~0, which is absurd. Hence we may put Aι=0. Then

yί=A0+Att
ι'*+A4t+ ••• +AtΓ'4+ •

with the smallest odd s > l for which Asφ0. By

we have

and

{4Λo3-Λ'13

+ {6.40

2

Since A2φ0 and .4 s^0,

and hence

(/ϋ40(Λ-fti)=0,

which is again a contradiction. Hence we may put A2 =0. Then

In this case we have

and

By AzΦθf the coefficient of Λ =0. Hence A0(A0—bι)=Q, which is a contradic-
tion. Hence case 4) does not occur.

Now we consider case 5). Then FJ=f1^-f2yJ-\-f^yJ

2-{-f4yJ

5 are pole-free
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for y = l , 2, 3, 4. Hence

f an+βnA0+γnA0

2+δnA0*=0,

an+βnB0-\-γnB0

2+δnB0*=0,
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Then A>=£ 0 or βn+γniAo+B^+δniA^+AoBo+B,2)^ and A>=C0 or βn+
γn(AQ+Co)+δn(A0

2+AQC0+Co2)=0 and AQ=DO or βn+MAo+Do)+δn(Ao

2+AoDo
+/V)=0. If Λ^^o, Λ^Co, A0ΦD0, then

and
O ^ C O or rn+δn(Ao+Bo+Co)=0

0=D0 or

If further BoφCo, BoφD0, then δn(C0—£>0)=0. Hence either C0=D0 or ^n=0.
If δn^O, then ^n^iSn^^n^O, which is absurd. Hence CQ—D0. Therefore we
may assume that AQ—B0. By the definition of i?4* we have

If 4A0

s-xί3A0

2+(y0e
H(*<» + x2)2A0-(b1y0e

H(zo) + x2)=:0, then Ao(Ao-bi)=0, which
is absurd. Hence 4Ao*-x13AQ*+(yoe

Hi**) + x2)2Ao-(bιyoeHi'*)+x8)Φθ. Thus we
have

••, then

, i4n_i. Hence we have An — Bn.

which gives Aι = Bι. Similarly, if put ^ ι = i

where
Therefore

An.x) is a polynomial of AQ,
, which is absurd.

C A S E 2). If y1=A0+A1t
1's+A2t

2/s+Ast+ ••• and y^B,+Bιt+B2t
2+ •••, then

by the pole-freeness of FJ=f1-\-f2yJ+fsyJ

2-{-fiy/ we have

and
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Hence AxφQ implies that βn+γn2A0+δn3A0

2=0 and γn+δn3A0=0. Further we
have

Hence

(βn+γn(Ao+Bo)+δn(Ao

2+AoBo+Bo

2)XAo--Bo)=Q.

If AQΦBO, then

By βn+γn2Ao+δn3Ao2=O we have

(B0-A0){rn+δn(2Ao+B0)}=0,

that is,

By γn+δn2>A0=Q we have δn(BQ—A0)=0, that is, δn—0. Then successively ^ n =
βn—an—ΰ, which is absurd. Hence A0=B0.

Substituting yι=A0+Aιt
1/*+A2t

tl*+ ••• into the defining equation of i?4* we
have

and

Hence

6 Λ 2 - ^ i 3 Λ + ^ o ^ ( ί o ) + χ 2 = 0 .

On the other hand by y2—B0+Bίt
JrB2t

2+ ••• we have

Since A0=B0, the coefficients of 5 2 and B±2 are equal to zero. Therefore
A0(A0—bι)~0, which is absurd.

If yι==Ao+A2t
i/*+Azt+ ••-, then by the defining equation of 7?4* we have

and
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Since A2Φ0, we have (Ao—bι)Ao—0, which is absurd.

CASE 3). In this case we have
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F,=fi+f*yj+f*y*+fιy,* is pole-free for 7=1, 2, 3. Hence

and

Therefore

and
or

o=Co or

If AoΦBo, then 7'n+3n(2i40+J50)=0. If ^ 0 ^ C 0 , then γn+δn(2A0+C0)=0. Hence
(5 0 —C 0 )ίn=0. If BOΦCO, then ^ n = 0 and r n ^ i 5 n r = α n = 0 , which is absurd.
Hence BQ—CQ. If this is the case, then we can conclude ^ Ξ ^ as in Case 5).
Hence we may suppose that A0~B0. By making use of the equation of surface
#4*, we have

and

By Ao—Bo we have

which is absurd.

CASE 1). In this case we may put

Since Fk—f^-\-f2yk + f*yk + f*ykZ (k — l, 2) are pole-free, we have
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an+βnA0+γnA0

2+δnAQ*=0,

βn+rn2A0+δn3A0*=0

and

βn+γn2Bo+δn3Bo

2=O .

Hence we have

βn+rn(Ao+Bo)+δn(Ao*+AoBo+Bo*)=0,

if A0ΦB0. Hence γn+δn(2A0+B0)=0. Similarly we have γn+δn(A0+2B0)=0 if
A0ΦBQ. Hence dn^O and successively p n =0, βn=0 and α π = 0 , which is absurd.
Therefore A0=B0.

Anyway we have

and

Substituting these into the defining equation of i?4* we have

Hence we have

Since ^40(^1—^0)^0, we have

Therefore

that is, either Aι—Bι or A1=—B1. Further

Hence
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Thus we have

that is, A2=B2. Similarly we have

Thus

=(xι-4A0)3Aι

2A2~-A1

i-}-y0e
H^ {(bι-2A0)d1A2-\-(b1-A0)d2A0}

For y2 we have a similar relation. Hence

Therefore Az—Bz if Aι—B1 and AZ—~BZ if Ax — — Bx. Quite similarly we have

=(xl-4A0X3A1*A3+3AlA2

2)-4A1*A2

+yoeH(z°){bιdίAs+b1d2A1-dί(2AoAz+2AιA2)~d22AoA1}

and a similar relation for Bo—Ao, Bu B2=A2 and B3 with jB1J58=i41.4s. Then
we have

Λι

that is, A4=Bt. This method of proof goes through by induction and finally
we arrive at

A2n~=-B2n } AιΛ2n-i:=:BιB2n-ι .

If AJ—BJ for all /, then yι = y2, which is absurd. If A3—B3 for all even j and
A3— — Bj for all odd j , then
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Hence yu j>2 are the same branch with a different representation. Therefore
there are only two sheets over | ί | < ί o This is a contradiction.

We can prove quite similarly that corresponding lemmas for the surfaces
Xlf i?6* and i?7* do hold. Since X2~Xι, /?i*~/e2*~^3*~^7*~i^8*~^9*, # 4 * ~
#io*> iv>5*~/?6*~^ii*~^i2*, when the same eH is commonly used, it is sufficient
to prove lemmas for representatives /?4*, X\, R** and i?7*, respectively.

§ 7. Transformation formula of discriminants

The following method of proof of transformation formula of discriminants
is suggested by Referee of our previous paper [4]. We now make use of his
suggestion with thanks. Starting from a surface R

we have the representation of discriminant Δ as

{(3>i—y*)(yι—y*)(yι—yJiyz— vsXj^

Let F be a regular function on R. Then F can be written as

as in lemma in § 6. F satisfies

Fi-U1

The discriminant D of this surface is given by

Here F^^+f^j+f^y^+f^y/ for /=1, 2, 3, 4. Then

Fj-Fk^{yj

Hence

where

Now G is a homogeneous polynomial of sixth degree of /2, /3, / 4 with suitable
symmetric polynomial coefficients of yu y2, jy3, y*. Therefore every coefficient
is a polynomial of Si, S2, S3 and S4. Here S ^ yi-h ya-l- ys+ y^ S2=yiyl

Jryxyz

-3;23;33;4 and S^jΊ^s.Vd.
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Hence G may have poles at z0 at which H'{zQ)—^.
Now we introduce a new assumption that H(z) is a polynomial. From now

on we consider the problem under this finiteness assumption.
Let R be the surface R4*: yi-S1y

z+S2y
2-S3y+S4=0 with S^yu S2=y0e

H

+y2, S3—bιyoe
H-\-y3 and S4=3/4, where yι=b2+b3+b4+b6, y2—b2b3+b2b4+b2bδ+

W 4 -fW5+Ms, y3—b2b3bi+b2b3b5-{-b2b4b5+bzb4bδ and y4=b2b3b4. Then P(y)=7.
Suppose that P(/?4*)=8. Then there is a non-constant regular function F on
#4* such that P(F)=S and

where / l t / 2, /8, /« are meromorphic in | z |<oo and regular excepting at most
at points satisfying //'=(). We may assume that F defines the surface Xx.
Hence

FA-Uι

with

and

where x1 = α 3+α4+α 5+fl6, %2=
:a3

α3α4α6+fl3α5α6+α4α5α6 and x,ι=a3aia5aG. Discriminants of /?4* and ΛΊ are de-
noted by Δ and D, respectively. Then we have

D=A G2.

Evidently the number of poles of G is finite. Let us put

and

CASE 1). The counting function of simple zeros of Δ satisfies

N2(r, 0, Δ) - 5T(r, eH),

that is, δiΦδj for iφj. Then

N2(r, 0, Δ)=Λ^2(r, 0, D)^m-T{r, eL)

with m = l , 2, 3, 4, 6. Then L should be a polynomial, whose degree coincides
with the one of H. In this case we return back y from F. Then we have

A=DΊ2.
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The number of poles of / is finite again. This shows that the zeros of G is
finite in number. Hence

with a rational function β and with an entire function M, M(0)=0. In this
case γxΦγj for iΦj.

Case 2). N2(r, 0, Δ)~3T(r, eH), that is, δ^ δ2, δs, δ, are different and δ4=δ5.

Then

N2{r, 0, Δ)=N8(r, 0, D)^m-T(r, eL)

with m = l , 2, 3, 4, 6. Then L should be a polynomial, whose degree coincides
with the one of H. Again we can return back y from F. Then A—D-P,
where / has only finitely many poles. Hence G has only finitely many zeros.
Cases m—1 and 3 donot occur. Suppose that m—2 or m—i. Then the count-
ing function of multiple zeros of Δ satisfies

ΛΓ0(r, 0, Δ)=JV0(r, 0, D),

where N0(r, 0, A)=N(r, 0, Δ)-N 2(r, 0, Δ). However

N0(r, 0, Δ)

and

However

3m(r, eH)^N2(r,

and

These give a contradiction.

CASE 3). N2(r, 0, Δ)~2T(r, eH), that is, δu δ2, δ3 are different and δz^d^δ5.
N2(r, 0, D)^m T(r, eL) with m = l , 2, 3, 4, 6. Then L should be a polynomial.
We can return back y from F. Then A=D P, where / has only finitely many
poles. In any case m = l or m—2 or ra=3 or ra=4 or m=6 gives a contradic-
tion.

CASE 4). N2(r, 0, A)~T(rf eH), that is, δiΦδi and δ2^δ3~δ4=δ5 or δx, δ2, δ3

are different and <52=<54, δ 3 =δ 5 . N"8(r, 0, D)^m T(r, eL) with m = l , 2, 3, 4, 6.
Then L should be a polynomial. We can return back y from F. Then A=
D'P, where / has only finitely many poles. In any case m—\ or m—2 or m=3
or m=4 or ra=6 gives a contradiction.

CASE 5). Δ does not have any simple zero. Then we arrive at a contra-
diction easily.

0, D)^.

0, D)^

0, Δ)=.

lm(r, e

lm{r, e

N2(r, 0

)

L)

if n

if n

~2»G

<^-Άm('

τ^2 ,

. = 4 .

r, g L ) if

if

m=2

m=4
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Therefore we have

D=A-β2-e2M

with a rational function β and D, A must have only simple factors.
We have proved the above relation for the surface R4*. For i?6* and Rη*

we can prove the same fact.

§ 8. Theorems

We shall prove the following

THEOREM 1. Let R4* be the Riemann surface. Assume that its discriminant
ΔΛ4* satisfies

where at least one of A3 (/=1, 2, 3, 4) does not vanish. Then P(Ri*)=7t if H
is a polynomial.

Proof. Suppose that P(RA*)=8. Then on # 4 * there is a regular function
F for which P(F)=8. Suppose that F defines the surface Xx. (We may assume
so, since X2^Xι.) Then

which is just the following identity:

Now we shall make use of BoreΓs unicity theorem. In this case we have

6T(r, eL)^N2(rf 0, D)=N2(r, 0, ΔΛ4 )~5T(r, eH).
Hence

This relation makes our discussion simpler. Firstly assume that M~0. Then
there remains only one possibility: 6L=5H, B0=β2A0> BGxo

6=—4:bι

2β2yoδ and
B5=Bi=Bz—B2 = Bl=A4=A3—A2=^A1=0, which contradicts our assumption: at
least one of A3, / = 1 , 2, 3, 4 does not vanish. Hence we have the desired result.

Assume that MΞ£0. 5H+2M=0 and 6L = -5H, B0=-4:bι

2β2y0

δ, B6x0'=
β2A0, Bh=BA—B^ =B2 — Bι—AA=Az—A2—Aι—^} which contradicts our assump-
tion: at least one of A3, j—l, 2, 3, 4 does not vanish. Hence we have the
desired result.

THEOREM 2. Let i?6* be the Riemann surface, whose discriminant AR * is
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with non-zero constants Ao and A5. Suppose that at least one of A3 0 = 1, 2, 3, 4)
does not vanish. Then P(R6*)=7, if H is a polynomial.

Proof is similar as in Theorem 1. So we shall omit it.

THEOREM 3. Let i?7* be the Riemann surface, whose discriminant ΔΛ?* is

with non-zero constants Ax and A%. Suppose that at least one of Aj 0—2, 3, 4, 5)
does not vanish. Then P(RΊ*)=7, if H is a polynomial.

Proof of Theorem 3. Suppose that P(/?7*)=8. Then on i?7* there is a
regular function F for which P(F)—S. Suppose that F defines the surface Xlm

Then similarly

This is just the following identity:

In this case we have

6T(r, eL)^N2(r, 0, D)=Nz(rt 0, ARl*)^5T(r, eH).

Hence

There are only two possible cases: 2M+H=^0 or 2M+6H=Q. If 2M=-H, then
B0=Arf*y0, x0

6B^Asy0

6β2 and B5=BA=Bz=Bi=B1=A5=Ai=Ai=A2=Q and
6L=5H. If 2M=-6H, then £ 0 = Λ V / 3 2 , Bβx0

6=Aiyoβ
2, 6L = -5H and 5 5 = £ 4

^Bz—B2—Bl—A$—At—As—A2—0. In any cases we have a contradiction: Aj=0
for y=2, 3, 4, 5. Thus we have the desired result.

In the above we list up three theorems which correspond three representa-
tives #4*, #β* and R7*. Theorems are almost similar for other surfaces. We
shall omit their formulations. (We can make use of similar transformation Y —
ay+β. Then the discriminant is transformed into constant times of a discri-
minant. Hence the non-vanishing property of coefficients of discriminant is
preserved.)
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