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CONSTRUCTION OF n-END CATENOIDS

WITH PRESCRIBED FLUX

SHIN KATO

1. Introduction

Let X: C—{qlf •••, qn}-*R* be an n-end catenoid, that is, a complete mini-
mal surface of genus 0 having n catenoid ends at qx's, where C:=CW{°°}.
Let G: C—{qu •••, qn}-*S2 be its Gauss map which can be extended naturally
on C, and let w(qx) denote the weight of the end qiy that is, the similitude ratio
of the asymptotic catenoid of the end qt to the standard catenoid (g=—z, η=
—z~2dz). Remark that w{qx) takes negative value if the orientation of the end qt

differs from that of the standard catenoid, and that w(qx) vanishes if the end qx

is a flat end or is removed. The vector w(qx)G(qx) is called the flux vector of
the end qx and, it follows from the flux formula (cf. e. g. [2]) that Σ?=i w(qx)G(qx)
—0. Now, conversely, we consider the following

PROBLEM. Given n unit vectors vu - , vn in R3 and n non-zero real numbers
fli, •*•, dn satisfying Σ£=i axvx—Q, is there an n-end catenoid X: C—{qίf ••• , qn\
-*R3 such that G{qx )—vx and w(qi)—aι

 ?

In this paper, we study the problem in the case when qx coincides with
σ(vt) for each /, where σ: S2-+C is the stereographic projection from the north
pole. Our main result is stated as follows.

T H E O R E M . Let vu •••, vn be unit vectors in R*, and alf ••• , an non-zero real
numbers satisfying S ? = i aivl—0. Set p x \ — o{vx) and

Z Pi

Suppose there are complex numbers bι, •••, bn satisfying

(1.1) biΣijGNιbj=aι *=1, " , n ,

(1.2) Σje^bjFtip^O ί=l, ..., n

and Σΐ=ibxφ0, where Nt:= {j^N\l^j<ny jφi). Then there exists an n-end
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catenoid X: C—{pu •••, pn\->Rz such that G(pt)=vt and w(pt)=at.

In Section 2, we prove this theorem by giving explicit representation for
the solution surface.

Except for the (2-end) catenoid, examples of n-end catenoids were first
introduced by Jorge-Meeks [3], These are the case with pi—ζl and ^ = 1 ,
where ζn is a primitive root of the equation zn=l. (Throughout this paper, we
keep this notation.) Subsequently, Karcher [4] constructed some new 4-end
catenoids, and Lopez [5] classified all of the 3-end catenoids. In each of these
examples, vu •••, vn lies on the same great circle in S2.

Recently, Xu [9], Rossman [7] and Umehara-Yamada [8] constructed poly-
hedrally symmetric n-end catenoids and some less symmetric ones, in each of
which vu •••, vn do not lie on the same great circle in S2. For this purpose,
Xu used directly the Enneper-Weierstrass representation. On the other hand,
Rossman employed the conjugate surface method and constructed also higher
genus examples (see also Berglund-Rossman [1]). Umehara and Yamada con-
structed polyhedrally symmetric ones as limits of those corresponding CMC-c
surfaces in H*(—c2).

Each example of n-end catenoids in Jorge-Meeks [3] and Xu [9] has the
ends of the same weight, and it is easy to observe that they are all described
by the following special case of our theorem.

COROLLARY. Let vlf •••, vn be unit vectors satisfying Σ?=i^ί—0> and plf Ft

and Nt as in Theorem. If

Σ F,(/O=0 ί=l, - , n,
J<ΞNZ

then there exists an n-end catenoid X: C—{pu •••, pn}->Rz such that G(pι)—vι

and w(pt)=l.

Finally, we emphasize that almost all of the known examples can be con-
structed by our theorem. In Section 3, we discuss this and also give far more
new examples of families of n-end catenoids having ends of 2, 3 or 4 different
weights.

The author would like to express sincere gratitude to Professors 0. Koba-
yashi, S. Nayatani, W. Rossman, M. Umehara and K. Yamada for their constant
encouragement and valuable conversations.

2. Proof of Theorem

In this section, we prove our main theorem. First, we recall the following
famous and significant

ENNEPER-WEIERSTRASS REPRESENTATION, (cf. [6]) Let Σ be a Riemann
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surface, g a meromorphic function on Σf and η a holomorphic 1-form on Σ.
Define a map X: Σ-*RZ by

X(z)=Re\j\ί-gt, V:rT(l+52), 2g)η .

If

(2.1) Re ί (ί-g\ V=ϊ(l+£ 2), 2g)η=0
JC

for any closed curve C on Σ, then X is a conformal minimal branched immersion
whose Gauss map is σ'^ ^g. Moreover, the induced metric of Σ is given by

Proof of Theorem. First, we assume pιΦ
(*> for any ι. Set

n h. n

(2.2) / C z ) : = Σ — — , β'—Σibi,
1=1 Z—p% x=i

and

We will show that the surface Z : C— {̂ , •••, ̂ n}->/23 represented by these data
is an n-end catenoid we want to construct.

Let (vιU vi2, vi3) be the orthogonal coordinate of the vector vi% Then, by
using the assumptions (1.1) and (1.2), we have, for any /,

Res2=Pi{— V— ]

I .jfsί ί' -h _ -A
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Hence the condition (2.1) holds, and the surface X is well-defined. Moreover,
since βφO, the induced metric

ds*=(\f\*+\zf-β\*)*\dz\*

is non-degenerate. By simple calculation, we get the following expansions
around p%>

x—pi

Therefore, for any i, the surface X has a catenoid end at pt such that G(pτ)
)t)=Vi and

On the other hand, it is easy to see that, even if pt — ̂  for some t, the
assertion of Theorem and the data (2.2) are valid in the sense that

— — — — υ . q,e. d.

Proof of Corollary. Apply Theorem to the case when a^ — l and frt =

1/y/n—l. q. e. d.

Remark 2.1. By the proof of Theorem, we can observe the flux formula
from another point of view. Namely we see that

i
Σ ^ - ^ = 0 .



90 SHIN KATO

3. Examples

First, we remark that the linear transformation F^z) defined in Section 1
is identified with an isometry of the unit sphere S2=σ~1(C) such that Fi(pt)—oo
and Fi(—l/pt)=0. Therefore, if the subset {vj}^ of S2-{σ-\pι)} is invariant
under the action of some nontrivial subgroup of SO(3) which fixes σ~\pt), then
clearly Σ*=i Ft(σ(vj))=0 (cf. Xu [9, Lemma 4.6]). By this observation, we get
the following example without any more computation.

Example 3.1. (Families of polyhedrally symmetric minimal surfaces) Let P
be a regular polyhedron inscribed to the unit sphere S2 in R3, {̂  })=i the set of
the vertices of P, M}*U the set of the centers of the edges of P, and {v'fijU
the set of the varycenters of the faces of P. It is well-known that

(4, 6, 4) if P is a regular tetrahedron,

(8, 12, 6) if P is a cube,

(k, k', k")= (6, 12, 8) if P is a regular octahedron,

(20, 30, 12) if P is a regular dodecahedron,

(12, 30, 20) if P is a regular icosahedron.

Set pj\— σ{vj), pj\— 0(vj/\v'j\), and p"3\ — <τ(v"/\v"\). For any real n u m b e r s b,
V a n d b " , d e f i n e a s u r f a c e Xib,b',bn: C - { p u •••, p k , p[, •••, p'k>, p " u ••• , / > & } - > β 3

b y t h e d a t a

/(*) := b Σ ~ Λ r + ^ Σ " Λ ^ " Σ - ^ r , j8 := kb+k'b' + k"b" .
j=iZ — pj j=iZ — pj j=i Z — p'j1

Then {Z(6>6'>6ff)} is a 3-parameter family of minimal surfaces which are invari-
ant under the action of the polyhedral group ΓP corresponding to P. For a
generic (b, b', b"), X(b.b',b») has k + k'+k" catenoid ends whose weights take 3
different values. More precisely, by using Lemma A.I in Appendix, we see
that, for any positive numbers a, a' and a", there exists a ΓP-invariant (k + k'+k")-
end catenoid X(b,br,b") such that

(3.1) g(Pj)=Pj, w(Pj)=a j=l,...,k,

(3.2) g(PΪ)=P',, w(P'j)=af j=l,-,k',

(3.3) g(P'})=P'ί, w{p»)=a* j=l, .,k».

When one of b, bf and b" vanishes, since k, kf or k" ends are removed, it
has kr-\-k"', k + k" or k + k' ends. By using Lemma A.2, we see that, for any
non-zero real numbers a and a', there exists a Γp-invariant (k + k')-end catenoid
X(b.v.o)- C—{Pu •" , Pk, PΊ, " . p'k'}^Rz satisfying the conditions (3.1) and (3.2).
Indeed, in the construction above, we may choose purely imaginary numbers b,
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br and b" in place of real numbers, and, by Lemma A.2, we get X(btb>t0) as
above. Of course, the same assertion holds also in the case with b'=0 or 6—0.

Xu [9], Rossman [7] and Umehara-Yamada [8] studied the special cases
of this type when two of b, b' and b" vanish.

The dihedral version of this type is the following

Example 3.2. (Families of ^-invariant minimal surfaces) Let k be an
integer greater than 1. For any real numbers b, b' and b", define a surface
*«.»'.*.>: C - U , ζa Λ, ..., ζtf-1, oo, 0}-fl3 by the data

^z):=zblhι+b'^+ϊ+7' β =k{b+b')+2b".

Then {Xib.b'.b")} *s a 3-parameter family of ./^-invariant minimal surfaces. For
a generic (6, b't b"), X^,b\m n a s 2&+2 catenoid ends whose weights take 3
different values. More precisely, by using Lemma A.I, we see that, for any
positive numbers a, a' and a"', there exists a Dk-invariant (2k-f-2)-end catenoid
X(b,b',b») such that

(3.4) tf(Cί)=Ci, w(ζί)=a / = 0 , . . . , * - l ,

(3.5) g(CS- 1)=CS- 1, w(CS-1)=fl/ ; = i , - , * ,

(3.6) £(oo)=oo, g(0)=0, w(oo)=w(0)=a".

When b;/ (resp. b')=0, it has 2k (resp. k+2) ends and the similar result as
above also holds. It was partially obtained by Karcher [4] (k=2), Xu [9] and
Rossman [7] (&^3). More generally, by Lemma A.2 and the same considera-
tion as in Example 3.1, we see that, for any non-zero real numbers a and a',
there exists a Dk-invariant 2k-end catenoid Xib>b>ί0): C— {1, ζ2k, •••, ζ i f " 1 } - ^ 3

satisfying the conditions (3.4) and (3.5), and that, for any non-zero real numbers
a and a", there exists a Dk-invariant (k-\-2)-end catenoid X^.o.b")'- C—Q, ζk, ••• ,
QΓ\ °°, 0}~^Rz satisfying the conditions (3.4) and (3.6).

When bf—b';—ΰ, we get the examples in Jorge-Meeks [3].

By the consideration in Examples 3.1-2, we can observe that there are
essentially different n-end catenoids with the same data vu •••, vny alf •••, an.
For example, in Example 3.2, applying Lemma A.2 for (k, k')—(k, 2), we see
that, for any non-zero real numbers a and aff such that k2aφ4a"', there exist
two ZVinvariant (£+2)-end catenoids X(b±,o,b'h satisfying the conditions (3.4)
and (3.6). Since the metric of Xu.o.b*) is given by

C1 {kb+b")zk-b» 12+ \z{{kb+b*)-b"zh) 12]2

and \b'l\Φ\b'L\ if k2aφ2a", Xib+,Q,b'+) and X(b_>Otb'i) are not isometric with each
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other for generic a and a"'.

We can deform the surfaces in Example 3.2 to the following

Example 3.3. (Families of CVinvariant minimal surfaces) Let k be an integer
greater than 1. For any non-zero real number p and real numbers b and b'',
define the surface X{V,b>b )\ C—{P, Pζk, •••, pζϊ~\ °°. 0}->/23 by the data

where b" : = (k-l)(p2-l)b/2+pΨ. Then {*(p,6,6'>} is a 3-parameter family of
Cft-invariant minimal surfaces.

Indeed it is clear that the condition (1.2) holds with px—<χ> and 0, and we
have only to check it with pi—pQt (/=0, 1, •••, k—l). By direct computation,

*-K»-W+i , y/>Cf'°°+i i ,,,
fc/STCί+ίίCί Ki +

= 0 .

Hence the surface X(?J,6>6') is well-defined.
For a generic (/>, 6, b')f X(Ptbιb') has ̂ + 2 catenoid ends whose weights take

3 different values. More precisely, by using Lemma A.3, we see that, for any
non-zero real number p and positive numbers a, a' and a" satisfying a τΣik

3Zlσ~\pζ{)
+ α/σ-1(oo)+α''<;-1(0)=() {i.e. flfe(j&8-l)/(ί8+l)+fl/-fl/y=0), there exists a Ck-
invariant (k-\-2)-end catenoid X(Vίb<b>) such that

(3.7) g(Pζi)=ζί, w(pζi)=a ; = 0 ,

(3.8) g(oo)=zoo, w(oo)=a',

(3.9)

Karcher [4] constructed this example with ^ = 2 .
When b'=0, since the end oo is removed, it has k + 1 ends. Xu [9] con-

structed this example with(/>, 6 /)=(V(^+l)/(^—1), 0). However, more generally,
by using Lemma A.2, we see that, for any non-zero real number pφ±l and
non-zero real numbers a and a" satisfying a Σ?=J 0"~ 1(/>C;O+G"0'~ 1(O) = 0 (i.e.
ak(p2—l)/(p2j

rl)—a//=0), there exists a Ck-invariant (k + l)-end catenoid X(p>b>0):
C-iP, Pζk, •••, pQk~\ 0}->/23 satisfying the conditions (3.7) and (3.9).
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See Figure 3.1 for the arrangements of the ends. We point to the positions
of the ends by the symbols O, and Δ . Any two ends of different symbols
may have weights different from each other.

Example 3.1
P is a regular octahedron

Example 3.2

Figure 3.1.

Example 3.3

By the similar computation as in Example 3.3, we get various examples of
families of n-end catenoids, e. g. as follows.

Example 3.4. (Example 3.2 plus 2k ends) Let k be an integer greater than
1. For any non-zero complex number ξ such that ξ2kφl, and any real numbers
b, b'f b" and b'" satisfying

(3.10) 2*{(£*+|£|")«

define a surface X(ξ,b,b'
by the data

- k(b+b'+2b»')+2b»

Since we assume (3.10), the condition (1.2) in Theorem is satisfied and
{X(ξ,b,b',b",bf")} is a family of ZVinvariant minimal surfaces. For a generic
(£, b, b', b\ b'") satisfying the condition (3.10), X^.w,*.**) has 4^+2 catenoid
ends whose weights take 4 different values. However, when some of b, bf and
b" vanish, it has 4£, 3£+2, 3k, 2^+2 or 2k ends.

Here we claim that, for any ξ, there are infinitely many {b, b', b", bw)(=R4

satisfying the condition (3.10).

CASE 1. When ξk^R i.e. ξ=pζJ

2k for some non-zero real number p {Φ±l)
and some integer j , the condition (3.10) is satisfied if and only if the following
condition holds:

=2(p*-iχp2k-l)b"+ {(k-
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Hence the claim above is justified. In this case, X(ξ,b.b'.b».b""> has the symmetry
of a regular ^-angular prism.

CASE 2. If we set p:= \ξ\ and r: = Ref VIII k , then, by using the equality
ζzk=2rpkζk—p2k, we can rewrite the condition (3.10) as follows.

Therefore, when ξkψR, the condition (3.10) is satisfied if and only if both of
the following conditions hold:

(3.11) 2kp2(p2k-2-l)(b+b')

(3.12) * {(2rpk+P2+l)b+(2rpk-p2-l)b'}

= rpk[2{p2-l)b''+{{k-l)p2-{3k-l)}b"i-].

Hence, also in this case, the claim above is justified. Let us observe this case
more concretely.

(1) When £*<=v/=-T/2 i.e. ξ—pζl{~1 for some non-zero real number p and
some integer /, the condition (3.10) is satisfied if and only if both of the fol-
lowing conditions hold:

Akp2(p2k~2-l)b

=2(/>2-l)(/>2* + D&"+ {{k-l)(p2k^-l)-{?>k-l)p2{p2k-2-l)}b"> -y

b=b'.

In this case, X(ξ,b.b'.b".b") has the symmetry of a regular ^-angular antiprism.

(2) When ξik£R i. e. ξk£Rϋ ^/-ΛR, the condition (3.10) is satisfied if and
only if both of the following conditions hold:

=4rpk(p2-l)b"

k + p2k + l)b+(2rpk-p2k-l)b'+2rpkbw=0.

In this case, if |£|=£l and b'"Φθ, then X(ξ,b.b
f,b\bm) has neither the symmetry

of a regular ^-angular prism nor the symmetry of a regular ^-angular antiprism.
(3) When | £ | = 1 , the condition (3.11) is automatically satisfied. Therefore

the condition (3.10) is satisfied if and only if the following condition holds:

(r+l)b+(r-l)b'+rb"=0 .
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In this case, we can choose b" independently.
See Figure 3.2 for the arrangements of the additional ends ξ±ιζi in each

case above.

! T
•Case 1, (B). Case 2(1),©- -Case 2(2),(

Figure 3.2.

1*1=1

•Case 2(3).

Now we will describe a less symmetric

Example 3.5. (All of the 3-end catenoids) For any non-zero real numbers
p and p' such that (p—p')(pp'+l)Φθ, and any non-zero real or purely imaginary
number b, define a surface X{v>v>tb)\ C—{p, p', 0}-^β3 by the data

/(*):=*{- z—p

This representation gives the affirmative answer to our problem in the case
when n=3 and Vi's are different from each other. Conversely, all of the 3-end
catenoids are described by this. Lopez [5] recently proved this result by some-
what different but essentially the same representation.

In the case w^4, our problem is still open.

Appendix

Here we prove three lemmas which were used in the previous section.

L E M M A A.I . Let n be an integer greater than \, and ax, ••• , an positive
numbers. If there are two indices ix and i2 such that alι = al2=mdίXί^t£n aτ, then
there are positive numbers, bly ••• , bn satisfying

(1.1) ι=l, •••, n .

In particular, if ai—a3 for some i and j , then we can choose bt and b3 as the
same value.
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Proof. We may assume iγ—1 and ι2—2 without loss of generality. Set

φ(f):=(n-2)t-Σl Vt2-4at.

It is clear that φ(f) is a continuous function on [2Vά7, +°°) and lim£.>+Oo φ(t)<Q.
On the other hand, by the assumption, we have

=2 Σ (VflT— Va1-at)
ί3

Hence, by the intermediate value theorem, there is a positive number
such that φ(τ)—0. Set

Then, for any 2, ̂ < is positive and

__ τ- Λ/τ2-4gt (n-l)τ
2 X

namely, bu •••, 6n satisfy the condition (1.1). q.e. d.

LEMMA A.2. Let k be an integer greater than 1, k' a positive integer, and
a and a' non-zero real numbers. Then there is at least one (b, b') which belongs
to either R2 or (V—IR)2 and satisfies

( b{(k-l)b+k'b'}=af
(A.I)

[ b'{kb+(k'-l)b'}=a'

and kb+k'b'φO, if k'>l, or if k'=l and a'Φka, k2a.

Proof. When k'>l, solving the system of quadric equations (A.I), we get
a solution (b, b')—(b±, b±), where

h •= lk2a2-k'2a/2-D±2k'a'VD' g-(fe-l)^
±m V 4 { k l ) { k + k ' l ) a ' ' ± βV { ) { ) k'b±

and

D:= k2a2+2(kk'-2k-2k'+2)aa'+k'2a'2.
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By the assumption and direct computation, we have D>0 and k2a2—k/2a'2—D

±2k'a'VΊ)Φθ. Therefore, we can easily see that (b±, b'±) belongs to either R2

or (V1^!/?)2. Moreover, since

we have kb+ + k'b'+φ0 or kb. + k'bLφO. Indeed, if k2aφk'2a' (resp. k2a = k'2a'),
then each (resp. one) of (b±, b±) satisfies kb± + k'b±Φϋ.

On the other hand, when k'—\ and a'Φka, k2a, solving the system of
quadric equations (A.I), we get a solution

We can easily see that (b, b') belongs to either R2 or (V— IR)2. Moreover, we
have

k(R—l)b q. e. d.

LEMMA A.3. Let k be an integer greater than 1, and af a' and a" positive
numbers. If max{α, a"\ ̂ La'<ka + a" or max{α, a') ̂ a"<ka + a', then there
are positive numbers b, b' and b" satisfying

(A.2)

b{(k-l)b+b'+b"}=a,

b'(kb+b")=a',

b"(kb+b')=a» .

Proof. Solving the system of quadric equations (A.2), we get a solution
(b, b', b"), where

2k(k+l)b

»-a'-VD

and

D:= k*a2+an+a"2-2k\a'+a")a+2{2k2-Y)a'a" .

By the assumption and direct computation, we have D>0 and

0<k(a'-\-a"-a)<VD'<mm{k2a+(2k+l)a'-a", k2a+(2k + l)a"-a'}.

Therefore, we can easily see that b, bf and b" are positive numbers, q. e. d.
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