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GEOMETRY OF HYPERBOLIC 3-MANDΌLDS WITH

BOUNDARY

BY SADAYOSHI KOJIMA

§1. Hyperbolic Manifolds with Boundary

A hyperbolic manifold will be a complete Riemannian manifold of constant sectional
curvature — 1. We call a simply connected hyperbolic manifold the hyperbolic space in
particular. One standard model of the hyperbolic space is a ball P = {(#ι, , xn) £
Rn I x\ H ----- h XK < 1} equipped with the Poincare metric

4(<fa? + +

A hyperbolic manifold is, in other words, a complete Riemannian manifold locally mod-
elled on the Poincare ball.

Particular interests have been paid to the case in dimension 3 by many mathemati-
cians of various fields since late 70 's, probably because really significant contributions by
Thurston, Gromov, Sullivan and many others justify that their mathematical structures
behind appearance is undoubtedly rich. Thurston 's lecture note [21] has been serving as
a pioneering bible, and many other related articles such as [3,5] have appeared in these
days.

In this note, we focus on more restrictive class, a hyperbolic 3-manifold of finite
volume with non-empty totally geodesic boundary, and would like to report our naive
studies on their geometry. Throughout the sequel, we adopt a notation TV to indicate
such a manifold without referring conditions. N will hence always mean a hyperbolic
3-manifold of finite volume with totally geodesic boundary.

Even with these additional requirements, N is still very attractive and enjoys many
nice properties. At first, they are almost relatives to complete hyperbolic 3-manifolds
and have many properties in common with them. They have also their own features. For
example, they can be rather easily constructed, they have visible sides interplaying in
geometry and topology, they are related to well established Teichmuller theory, and so
on.

To advertise a flavor of naive and pleasant study of N, let us look at the universal
covers. The universal cover N of N is developed in P as a convex subset with geodesic
boundary. If we see N from outside the Poincare ball, each component of the boundary
appears much like a round hole on a golf ball surface. Its edge defines a circle on the
sphere at infinity POO = {#? H- %\ + #3 = 1} by taking closure in the euclidean topology.
dN has infinitely many components and the set of all circles appeared by closure forms
a circle packing CN on PQQ . CN has a completeness property due to finiteness of vol TV,

Received June 21, 1993

530



GEOMETRY OF HYPERBOLIC 3-MANIFOLDS WITH BOUNDARY 531

that every open component in the complement POO — CAT is a disk bounded by a circle
in CN (see [12]).

There is another way to see CN . The developed image of TV over P defines a faithful
holonomy representation p : ττι(TV) —»IsomP of ττι(TV) describing a hyperbolic structure
up to conjugacy. The image />(ττι(TV)) is a discrete group. Then the limit set of ρ(πι(N))
on POO, the set of accumulation points of the orbit of some point in P by /?(τrι(TV)), is
the closure of CN Taking closure does not affect the view of packings at all.

The contact property of the packing CN is related to the location of cusps in TV.
There are two kinds of cusps in TV. One lies away from the boundary, which we call an
int-cusp. An int-cusp is a usual toral cusp. The other is a half of a toral cusp cut by 97V,
which appears as a cusp on the boundary. We call such a cusp a 9-cusp. The fixed point
of a parabolic element generating a d-cusp must be a contact point of two circles in CN
Conversely, a contact point in CN is a fixed point of some parabolic element generating
a d-cusp. In particular, some circles in CN meet each other iff TV has a 9-cusp.

Consider a regular ideal octahedron, past two pairs of non-adjacent triangular faces
appropriately and we obtain a TV. The packing CN in this case is the classical apollonian
packing generated by successive inclusion of inscribed circles on the mutually tangent
four circles on the plane. Consider then two regular truncated tetrahedra of dihedral
angle — τr/6, which we will describe later more precisely, past their hexagonal faces
appropriately and we obtain a compact TV. CN in this case is still a complete packing
but no two circles are tangent any more.

The packing with non-contact property has been studied recently by a group in
Mathematical Physics [4, 2] from a Mόbius geometric viewpoint. However Mόbius geom-
etry is the geometry in dimension 2 and would have a little disadvantage when dealing
with some global properties. Our 3-dimensional hyperbolic view shifts the problem of
packings into the polyhedral geometry. In [10], we showed how our viewpoint is prac-
tically powerful to produce non-contact packings on the plane, and also theoretically
manageable to study those by solving a few questions in [4].

§2. Polyhedral Decomposition

The target TV is a 3-dimensional manifold at first. The dimension 3 is already too
global to visualize. Hence TV would be expected to have a more accessible presentation,
which enables to split the study into local geometry and combinations. The building
block which we believe to be the best is a truncated polyhedron.

To describe truncation device more precise, we consider the Klein ball model K of
the hyperbolic 3-space rather than the Poincare ball. The Klein ball is the restriction
of the 3-dimensional projective geometry to the unit ball. The underlying space is again
the unit ball. The metric is worse described but the transformation group, the isometry
group of K, is simply the restriction of projective transformations to those who leave
the unit ball invariant. One nice relation is that the sphere at infinity KOO of K is the
same as POO

A polyhedron of the hyperbolic 3-space in the Klein ball is the restriction of an
euclidean polyhedron to K. When an euclidean polyhedron is contained entirely in K,
it defines a compact polyhedron. If some of the vertices lie on KOO, then the polyhedron
in fact becomes non-compact, but still has finite volume. We call vertices lying on KOO
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ideal since they are not actual vertices.
In the ultra ideal case, some vertices of an euclidean polyhedron lie outside KQO

Then the polyhedron automatically has infinite volume. To each outside vertex, there
is a unique cone tangent to KOO- The intersection with KOO is a circle and bounds
a geodesic plane in K. This plane intersects each face of the polyhedron meeting the
vertex in question perpendicularly. Truncating a neighborhood of each vertices outside
KOO by the plane appeared in this manner, we obtain a truncated polyhedron of finite
volume. If the original euclidean polyhedron has no ideal vertices, then the truncated
polyhedron is compact. We call by a ridge an edge joining either the faces of truncation,
ideal vertices, or one and the other.

For some truncated polyhedra, we may consider a combinatorial rule for glueing
them along the faces which are on the original surface and not appeared by truncation,
and ask delicate geometric consistencies that come from the isometricity for each pair of
identified faces, the angle condition about each ridge and the completeness for each ends.
If all the requirements are satisfied, then the result of identification is now N where the
boundary consists of the faces of truncation. Various concrete examples are discussed in
[21], and one simple class is classified in [7].

The requirement seems to be severe, but the variety of truncated polyhedra is con-
trary flexible. In fact, this construction will turn out to be always the case. In [6], Epstein
and Penner proved that every cusped hyperbolic manifold admits a canonical decompo-
sition by ideal polyhedra, which is dual to the Ford domain. A variant of their argument
leaded us to prove

THEOREM ([12]). Every N has a canonical decomposition by truncated polyhedra.
If N has no cusps} then it is dual to the cut locus of the boundary.

Likewise the theorem by Epstein and Penner, N is not necessarily of dimension 3.
The assertion is true when the dimension is at least 2. We gave a rather visible proof to
this fact in [13] which works only in dimension 2 and 3.

§3. Dehn Filling

The non-compact complete hyperbolic manifolds of finite volume of dimension ^ 3
are still dominated by Mostow rigidity [18, 20], that is, homotopy equivalent manifolds
are isometric. This can be rephrased in terms of the representation of a fundamental
group, that a discrete faithful representation to the isometry group of the hyperbolic
space is unique up to conjugacy. However, the representation itself has more freedom
to vary if we drop the faithfulness and discreteness conditions. In dimension 3, this
freedom was geometrically interpreted by filling an end with a slightly singular hyperbolic
solid in [21, Lemma 5.8.1], (cf. [3]). These deformations are locally parametrized by a
generalization of Dehn surgery coefficients in the classical knot theory. For each cusp,
it is a pair of coprime integers up to sign in the classical case, and then a pair of real
numbers up to sign in the new theory. We call this geometric surgery a Dehn filling

If N has int-cusps, we can perform a small Dehn filling so that the boundary is being
totally geodesic. To see this, take a double DN and do filling with the same coefficient
on each pair of cusps in DN so that there is an obvious orientation reversing involution τ



GEOMETRY OF HYPERBOLIC 3-MANIFOLDS WITH BOUNDARY 533

switching the sides. Let p be the corresponding representation of πι(TV) to the isometry
group. If/?(ττι(<9TV)) were not conjugate to a discrete group contained in the 2-dimensional
isometry group, then τ would induce a different singular hyperbolic structure from one
by the Dehn filling. This contradicts the uniqueness of a small Dehn filling since both
structures are geometrically near DN and have the same filling coefficients. Thus the
surface homotopically fixed by τ is realized as a totally geodesic surface in the filled
double. Then cut it open along that surface, we obtain a Dehn filled manifold with
boundary.

Let us consider only this type of small Dehn fillings on TV, in particular, we always
require the boundary to be totally geodesic. Such deformations are parametrized by
the Dehn filling coefficients Ί)S(N) near N up to sign. T>S(N) has complex dimension
= # {int-cusp}, and can be identified locally with the subvariety of the character variety
of representations of τrι(TV) to the isometry group of the hyperbolic 3-space.

Do a small Dehn filling on N. Then, assigning a new hyperbolic structure on the
boundary, we get a map

d : VS(N) -» T(ΘN)

near TV, where T(dN) is a Teichmuller space ofdN. The Teichmuller space is a real semi-
algebraic variety and d is analytic. It would be interesting to study several properties of
the map d in connection with the geometry of TV.

There are two extremal examples. As probably the worst degenerate case, Neumann
and Reid found a TV such that d is a constant map in [19]. This TV has a special symmetry
which induces a rigid property on the deformation of the boundary. As the smoothest
case, Fujii worked out a calculation in [8] for a particular TV so that d is an embedding
near TV. In [19], Neumann and Reid also found a computer-aided example of a 2-cusped
orbifold, where small Dehn fillings on one cusp do affect the other but not in the first
order. This suggests nondegenerate but possibly singular behavior of d. The situation
seems to be complicated and more study is needed.

In the pioneering stage of Dehn filling theory, one concrete example is fully dis-
cussed in terms of the deformation of its tetrahedral blocks [21, §4]. There, the set of
dihedral angles of tetrahedra under gluing consistency other than complete conditions
parametrized Dehn fillings near the original structure. It is hence natural to carry out
the same business for some TV based on a polyhedral decomposition.

Hence suppose that TV is decomposed by truncated tetrahedra. The shape of a trun-
cated tetrahedron is determined by 6 dihedral angles at ridges, where each ideal vertex
requires a 1-dimensional constrain. The gluing consistencies for TV in this case come from
not only angle conditions around ridges but also isometricity for the glued faces. It can
be shown (cf. [9]) that any small Dehn filling is performed preserving this polygonal
structure effectively, so that the metric completion gives the resulting singular space.
In particular, the set of dihedral angles at ridges up to gluing consistency other than
completeness conditions parametrizes the space Ί)S(N) near TV.

Each image of d is then described by a geodesic triangulation of the boundary. A
geodesic triangulation contains something more than a hyperbolic structure, a point in
the Teichmuller space. The ambiguity at TV is the freedom to vary the geodesic triangu-
lation on <9TV. When we discuss the derivative of <9, the local description of the freedom
is sufficient. Then it is not hard to show that they are generated by perturbations of
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each vertex. These observations give us a computational frame for concrete examples at
least, though no real executions have come up yet.

§4. Extremal Volumes

The volume is an obvious quantitative invariant of Riemannian manifolds. Since N
admits Mostow rigidity, vol N becomes a homotopy invariant and represents a homo-
topical and in particular topological complexity numerically.

The volumes of complete hyperbolic 3-manifolds form a well ordered set of type ωω

by the theory of J0rgensen and Thurston [21]. Each limit cardinal is represented by a
cusped manifold. The volumes of Dehn filled manifolds accumulate the original cusped
volume from below, {vol TV} has the same property. Because, since the double of N is
a complete manifold, the set of the volumes of TV's is a subset of the half volumes of
complete manifolds, and is well-ordered. Moreover, if N has a cusp, then it admits Dehn
fillings and the volumes accumulate the cusped one from below.

Various interesting questions can be asked, and several studies have been carried out.
Among them, we would like to report our progress on finding extremal values based on
Miyamoto's formulation [17], which seems to be the best approach at the moment. The
idea is to find a sharp linear estimate of the vol TV by areadTV. One negative remark is
that, as was discussed in [16], the area of the face of truncation in a truncated tetrahedron
can stay away from zero while its volume degenerates. Hence the existence of polyhedral
decomposition does not help very much this approach.

Denote by Δ^ a regular truncated tetrahedron of all ridge lengths = t. Δ0 is a
regular truncated tetrahedron with vanishing ridge length, and simultaneously a regular
ideal octahedron. It can be checked by an elementary hyperbolic trigonometry that the
dihedral angle θ at each ridge is determined by the equation,

cosh^
cos θ — — .

2cosh^- 1

θ is monotone increasing in term of i. The face of truncation is then an equilateral
hyperbolic triangle of angle = θ. Conversely, given an angle 0 ^ θ < ττ/3, there is
a unique regular truncated tetrahedra of dihedral angle — θ at each ridge, which is
isometric to Δ^. Hence we may denote Δ^ by Δ# sometimes.

The area of dN is related to the area of the faces of truncation on polyhedra. We
use the notation "area " for a truncated polyhedron to indicate the total area of its faces
of truncation rather than the total surface area. For instance, areaΔ^ is the sum of the
area of 4 triangular faces of truncation.

areaΔ^ is obviously a function in terms of t and hence θ. On the other hand, volΔ^
was well described by the Lobachevski function in [11]. The important ratio will be

_ volΔi
^t — τ~ •

area Δ^

CL is monotone increasing in terms of I.
The constant Cι is related to the geometry of TV. To see this, let us introduce a

return path of TV, a geodesic segment whose end points lie on <9TV such that the segment
is perpendicular to the boundary at both end points. The double of a return path becomes
a closed geodesic in DN which perpendicularly intersects <9TV at two points. It is not
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hard to show that a return path is homotopically non-trivial relative boundary, and that
there are only finitely many return paths with bounded length.

If TV has no d-cusp, every homotopically nontrivial path relative boundary is homo-

topic to a unique return path. Then we let lχ be the shortest length of return paths in
N. If N has no 5-cusps, then there are homotopically non-trivial arbitrary short paths
relative boundary tending to 3-cusp. Hence let's let IN be zero in this case.

CtN could be the ratio of vol N and area dN if TV were simply decomposed by Δ^ ,
though such a decomposition is possible only for a very limited special class of TV's. On

the other hand, by studying packing in the hyperbolic space by equidistant surfaces of
components of dN, Miyamoto realized that this ratio is extremal, and attained only by
such very special TV's.

THEOREM ([17]). For every TV,

volN>dN areadTV,

holds, where the equality holds iffN has a polyhedral decomposition by Δ^N.

This theorem holds for dimensions ^ 3 in general if we replace Δ/^. by a higher di-

mensional truncated simplex with ridge length = IN- In dimension 3 and 4, the estimate
is sharp, established by concrete examples, but no longer best possible in dimension ^ 5.

In dimension 3, the area of δTV is well known by Gauss-Bonnet formula and vari-

ous sharper results can be obtained. For example, the characterization of the smallest
TV7 5, which was previously proved by an ad hoc method, is now a direct corollary since
areacλ/V ^ 4τr.

COROLLARY ([14]). Every TV admits the inequality

vol TV ̂  Co - 4ττ = volΔ0 = 3.66386... ,

where the equality holds iff TV admits a polyhedral decomposition by a regular truncated

tetrahedra of ridge length = 0.

When TV has no 3-cusps, f^ is a non-zero constant. Then by an argument in [15],

we can pack two disks of radius RN in dN where

2 o 2 cosh ̂ v- 1
cosn KN = ^7 — r~fi - IT

2(cosh£/v — 1)

If IN is short, then RN becomes long and more area on the boundary is needed. Hence
with the help of Bόrόczky's bounds for packing density in [1], we can estimate i^ by

areadTV,

2 2π(coshβjv — 1) ^ areaSTV Bόrόczky's bound

π —

which is simplified to

Then, fixing the topology of the boundary, we can refine the theorem by
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COROLLARY. If N has no d-cusp, then

The equality holds iffN admits a decomposition by ^π/3(i-x(dN)/2) 's-

With a little argument, we also rediscover the compact smallest N's.

COROLLARY ([15]). If N is compact, then

volN> 2volΔπ / 6 = 6.45199... ,

where the equality holds iff N admits a decomposition by two Δπ/β 's.

Thus the smallest values became to be fairly accessible, though their number the-
oretic properties are still almost unknown. Another extremal values, such as the first
limit cardinal, seems to be completely unknown either.

REFERENCE

[ 1 ] K. Bόrόczky, Packing of spheres in spaces of constant curvature , Acta Math. Acad, Sci. Hungar.,
32 (1978), 243-261.

[ 2 ] S. Ballet t and G. Montica, Group theory of hyperbolic circle packings , Nonlinear! ty, 5 (1992),
1085-1109.

[ 3 ] R. Benedetti and C. Petronio, Lectures on hyperbolic geometry, Universitext, Springer- Verlag,
1992.

[ 4 ] D. Bessis and S. Demko, Generalized Apollonian packings, Common. Math. Phys., 134 (1990),
293-319.

[ 5 ] R. Canary, D. Epstein and P. Green, Notes on note of Thurston, LMS Lecture Notes Series, 111
(1987), 3-92.

[ 6 ] D. Epstein and R. Penner, Euclidean decompositions of noncompact hyperbolic manifolds, J.
Differential Geom., 27 (1988), 67-80.

[ 7 ] M. Fujii, Hyperbolic 3-manifolds with totally geodesic boundary which are decomposed into
hyperbolic truncated tetrahedra, Tokyo J. Math., 13 (1990), 353-373.

[ 8 ] M. Fujii, On totally geodesic boundaries of hyperbolic 3-manifolds, Kodai Math. J., 15 (1992),
244-257.

[ 9 ] M. Fujii, in preparation.
[10] M. Lshida and S. Kojima, Apollonian packings and hyperbolic geometry, Geom. Dedicata, 43

(1992), 265-283.
[11] R. Kellerhals, On the volume of hyperbolic polyhedra, Math. Ann., 285 (1989), 541-569.
[12] S. Kojima, Polyhedral decomposition of hyperbolic manifolds with boundary, Proc. Workshops

Pure. Math., 10 (1990), 37-57.
[13] S. Kojima, Polyhedral decomposition of hyperbolic 3-manifolds with totally geodesic boundary,

Adv. Studies Pure Math., 20 (1992), 93-112.
[14] S. Kojima, Lectures at Univ. of Tokyo, 1991.
[15] S. Kojima and Y. Miyamoto, The smallest hyperbolic 3- manifolds with totally geodesic bound-

ary, J. Differential Geom., 34 (1991), 175-192.
[16] Y. Miyamoto, On the volume and surface area of hyperbolic polyhedra , Geom. Dedicata, 40

(1991), 223-236.
[17] Y. Miyamoto, Volumes of hyperbolic manifolds with geodesic boundary, to appear in Topology.
[18] G. Mostow, Quasi- conformal mappings in n-space and the rigidity of hyperbolic space forms,

Publ. IHES, 34 (1973), 53-104.



GEOMETRY OF HYPERBOLIC 3-MANIFOLDS WITH BOUNDARY 537

[19] W. Neumann and A. Reid, Rigidity of cusps in deformations of hyperbolic 3-orbifoIds, Math.
Ann., 295 (1993), 223-237.

[20] G. Prasad, Strong rigidity ofQ-rank 1 lattices, Liventiones math., 21 (1973), 255-286.
[21] W. Thurston, The geometry and topology of 3-manifolds, Lecture Notes, Princeton Univ.

(1977/78).

DEPARTMENT OF MATHEMATICAL AND
COMPUTING SCIENCES
TOKYO INSTITUTE OF TECHNOLOGY
OHOKAYAMA, MEGURO
TOKYO 152 JAPAN
e-mail: sadayosi@is.titech.ac.jp




