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STABLE MAPS AND LINKS IN 3-MANIFOLDS

BY OSAMU SAEKI

1. Introduction

Let h : S3 —*• R be the standard Morse function with exactly two critical points. It
is known that, if K is an embedded circle (or a knot) in S3 such that h\K : K —> R
is a Morse function with exactly two critical points, then K is trivial (i.e., it bounds
an embedded 2-disk in S3). The main purpose of this paper is to study links — finite
disjoint union of embedded circles — in 3-manifolds using stable maps into 2-manifolds
(or surfaces) instead of Morse functions. This is a continuation of the study begun in
[Sl,§6].

Let g : M3 —> N2 be a smooth map of a closed 3-manifold into a surface. Then
g can be approximated, in the sense of C°°-topology, by a stable map / : M3 —»• TV2,
which can be regarded as a variant of Morse functions. Thus there are plenty of stable
maps on a 3-manifold. The singularities of a stable map can be written down by normal
forms explicitly, as non-degenerate critical points of a Morse function can be given by
explicit normal forms by the Morse Lemma ([Mi]). In fact, there are exactly three types
of singularities for a stable map: definite fold points, indefinite fold points, and cusp
points. Stable maps have been studied by many authors [LI, L2, BdR, KLP, ML1,
ML2, MLS, ML4, SI, S2, S3, MPS] and a lot of interesting results have been
obtained.

Given a link L in M3, we can always change L by an isotopy so that f\L : L —> N2

is an immersion with normal crossings. In this paper we try to obtain information on L
using / and the immersion f\L. In [SI] we have considered the case where / is a simple
stable map, and have given a characterization of graph links in terms of such maps. In
this paper, we consider a more restricted class of maps, namely full-definite simple stable
maps ([S2]), and show that, if f\L is an embedding whose image contains no critical
value for a full-definite simple stable map / : S3 —> R and a link L in S3, then L is
trivial (i.e., L bounds disjoint embedded 2-disks in 53).

Another important fact about stable maps is that the singular point set S(f) of a
stable map / M3 —» TV2 is a smooth closed 1-dimensional submanifold of M3; i.e., it
is a link in M3. Furthermore, the regular fiber f~l(a) for a regular value α £ N2 is also
a link in M3. Note that for every link L in S3, there exists a stable map /i : S3 —» R2

whose singular set S ( f ι ) coincides with L. There also exists a stable map /2 : S3 —> R2

such that fϊl(ά) — L for a regular value α G R2. In this paper, using the above facts,
we define integer invariants of a link L in 53, which measure a kind of complexity of
such maps as /i and /2 above. Although these invariants are thus defined properly, we
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have very few tools to calculate them explicitly and they are yet to be studied.
The paper is organized as follows. In §2, we recall the definition and some basic

theorems about stable maps. In §3, we recall the notion of the Stein factorization of a
stable map, which is a principal tool in the study of stable maps, and also recall the
definition of branched surfaces and fold maps. §4 is devoted to the study of links in S3

using full-definite simple stable maps. In §5 we define some invariants of a link in S3

using stable maps.
Throughout the paper, all manifolds and maps are of class C°°.

2. Preliminaries

Let M be a closed orientable 3-manifold and N a 2-manifold (ON = 0). We denote by
C°°(M, TV) the set of the smooth maps of M into N with the C°°-topology (for details,
see [GG], for example). For / G C°°(M, TV), S(f) denotes the singular set of /; i.e., S(f)
is the set of the points in M where the rank of the differential df is strictly less than
2. We call / stable if there exists an open neighborhood U of / in C°°(M, N) such that
every g in U is right-left equivalent to /; i.e., there exist diffeomorphisms Φ : M —*• M
and φ : N —> N satisfying g — φo f o Φ"1. Note that the stable maps are open dense in
C°°(M,N) [Ma].

It is known that a smooth map / : M —> N is stable if and only if it satisfies the
following local and global conditions (see [LI, L2], for example): For allp G S ( f ) , there
exist local coordinates (u,x,y) centered at p and (X,Y) centered at f ( p ) such that f has
one of the following forms:

LI) X Q f = u, Y o / = x2 + y2 (p : definite fold point) or

LZ) X o / = u, Y o / = x2 — y2 (p : indefinite fold point) or

LS) X o / = w, Y o / = y2 -{- ux — x3 (p : cusp point)]

and

Gι) Ifp G M is a cusp point, then fl(f(p)) Π S(f) = {p},

Cr2) f \ ( S ( f ) — {cusp points}) is an immersion with normal crossings.

We put So(f) = {definite fold points}, S ι ( f ) — {indefinite fold points} and C ( f ) =
{cusp points}. Note that S(f) is a smooth closed 1-dimensional submanifold of M (i.e.,
a link in M) and that C ( f ) is a finite set. We call a component of 5Ό(/) a definite fold
and a component of S ι ( f ) an indefinite fold. Note that, for a regular value a G TV, f"1^)
is also a link in M.

Next we recall some classes of stable maps. A stable map / M —> N is called
special (or special generic) if S(f) consists only of definite fold points. This class of
stable maps has been first defined by Burlet and de Rham [BdR], who have shown that
a closed orientable 3-manifold M admits a special stable map into R2 if and only if M
is diffeomorphic to the connected sum of S3 and some copies of S1 x S2. On the other
hand, Levine [LI] has shown that, if N is an orientable surface, then every stable map / :
M —»• TV is homotopic to a stable map having no cusp points. In particular, every closed
orientable 3-manifold admits a stable map into R2 without cusp points. An intermediate
class of stable maps can be defined as follows. A stable map / : M —* N is simple i f / has
no cusp points and, for all p G S(f)> the connected component of f~l(f(p)) containing
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p intersects S(f) only at p. Note that, for a stable map /, a connected component of
f ~ 1 ( f ( p ) ) intersects S(f) at most 2 points by the global condition G%). In particular,
if f \ S ( f ) is a smooth embedding, then / is simple. We also note that a special stable
map is always simple. In [SI], we have shown that a closed orientable 3-manifold admits
a simple stable map into a surface if and only if it is a graph manifold. Recall that a
compact orientable 3-manifold M is a graph manifold if there exist disjointedly embedded
tori TI, ,TΓ in IntM such that each component of M — II[_1IntAΓ(Γt) is an 51-bundle
over a surface, where N(T{) is a tubular neighborhood of T% in IntM. Note that graph
manifolds have been extensively studied and have been completely classified using finite
coded graphs [N, JS, Jo]. Nevertheless the class of graph manifolds is rich enough; for
example, it contains Seifert fibered spaces and the link 3-manifolds which arise around
an isolated complex surface singularity.

Next we discuss the study of links in 3-manifolds using stable maps.

DEFINITION 2.1 ([SI]). Let / : M —>• TV be a stable map of a closed 3-manifold
into a surface. A link L in M is said to be f-trivial if f\L is a smooth embedding and
f(L) Π f ( S ( f ) ) = 0, after we move L by an isotopy if necessary.

For some examples, see [SI, §6]. Note that every regular fiber of a stable map / is
/-trivial.

In our previous paper [SI], we have shown that every link in a 3-manifold M is
/-trivial for some stable map / : M —» R2. Because of this fact, the definition of an
/-trivial link seems nonsense. However, if we restrict the class of stable maps, we have
an interesting result: in [SI], we have shown that a link in a 3-manifold M is a graph
link if and only if it is /-trivial for some simple stable map f : M -+ N into a surface N.
Recall that a link in a compact 3-manifold M is a graph link if its exterior M — IntN(L)
is a graph manifold, where N(L) is a tubular neighborhood of L in M.

In §4, we consider a more restricted class of stable maps than that of simple stable
maps, and study /-trivial knots with respect to such stable maps /.

3. Stein factorization and fold maps

First we recall the notion of the Stein factorization of a stable map / : M —» N of a
closed 3-manifold into a surface. For p,p' £ M, we define p ~ p1 if f ( p ) = f(p') and p^p'
are in the same connected component of f~l(/(/>)). Let W/(= M/ ~) be the quotient
space of M under the equivalence relation and we denote by qf : M —>• Wf the quotient
map. We have a unique map / : Wf —» N such that / = / o qj. The space Wf or the
decomposition / = / o qj is called the Stein factorization of / ([BdR, L2, KLP]). In
general, Wf is not a manifold; however, it is homeomorphic to a 2-dimensional finite
CW complex ([KLP, L2]).

Let / : M —* N be a simple stable map. Then every point x £ Wf has a neigh-
borhood as in [SI, Figure 1]. We set Σ0(W» = 0/(Sb(/)),Σι(W>) = fl/(SΊ(/)) and
Σ(W» = Σ0(W»UΣι(W»(= q/(S(f))). Note that, if £(/) φ 0, then Wj -Σ(W» is an
open 2-manifold, which is equipped with a smooth structure such that f\(Wf — Σ(Wf))
is an immersion. Let C be a component of Σ(W/). If C C Σo(W/), then N(C) is home-
omorphic to / x C (I = [0,1]), where N(C) is a regular neighborhood of C in Wf
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and {0} x C is identified with C. If C C Σι(W)), then N(C) is homeomorphic to a

y-bundle over S1, where y = {rexp(Λ/l:ϊ<9) € C ; 0 ^ r ^ l , f l = 0,±2ττ/3} ([L2,
p. 12]). Furthermore, near C, the map / : Wf — > N is locally (7° right-left equivalent to
7Γ x id : y x / — * [-1/2, 1] x /, where π : y — > [-1/2, 1] is the projection to the real
line C — > R restricted to Y. Thus the monodromy homeomorphism α : Y —> Y of the
y-bundle N(C) over C must satisfy π o α = TT, and hence a — id or r, where r : y — > y
is the complex conjugation restricted to y C C. In other words, N(C) is homeomorphic

to y x S1 or y xτ S1 = Y x J/(y, 1) - (r(y), 0).
In [S 2], as a generalization of the quotient map qf : M — > Wf of a simple stable map

/ : M — » TV, we have defined fold maps of 3-manifolds into branched surfaces. A branched
surface is a compact Hausdorff space such that each point has a conic neighborhood as
in [SI, Figure 1]. We can define a smooth structure on a branched surface, and a smooth
map q : M — * W of a closed 3-manifold M into a smooth branched surface W is a fold
map if it is semi-locally right-left equivalent to the standard quotient maps of a simple
stable map corresponding to the regular point, the definite fold point and the indefinite
fold point. For precise definitions see [S2]. Note that the quotient map of a simple stable
map is always a fold map and that a given fold map q : M — »• W arises as the quotient
map of a simple stable map if and only if W can be immersed into a surface and that
not every branched surface can be immersed into a surface.

The principal advantage of this generalization is that one can define surgery oper-

ations of fold maps. In [S2], we have defined 8 types of surgery operation: six of them
consist of removing a tubular neighborhood of a regular fiber or a definite fold and in-
serting a certain standard map, and the other surgery operations are the connected sum
operation and the operation which removes tubular neighborhoods of two definite folds
and sewing the torus boundaries. The main result of [S2] is that every fold map of a
closed orientable 3-manifold into a branched surface is constructed from some standard
maps — the quotient maps of special stable maps 53, S1 x S2 — > R and the S^-fibrations
over S2 — by a finite sequence of the above surgery operations. For details, see [S2].

4. Full- definite simple stable maps and links in S3

In this section, we study links in S'3 using full-definite simple stable maps. In the
following, we use the same notations as in [S2] for fold maps and branched surfaces.
In [SI, S2], we have shown that, for a fold map q . M — >• W of a closed orientable 3-

manifold into a branched surface, we have $Sv(q) — 1 ̂  ttSΊ(g) + bι(M), where J denotes
the number of connected components and b\ denotes the first betti number. In particular,
if / : M — » N is a simple stable map of a closed orientable 3-manifold into a surface,

DEFINITION 4.1. Let q : M ~+ W be a fold map. We say that q is full-definite

if frSo(tf) — 1 = tt SΊ(ί) + b\(M). A simple stable map / . M -+ N is full-definite if its
quotient map qf : M — » Wf is full-definite as a fold map.

Let /o : S*3 — > R2 be the special stable map defined by / = π|S3, where π : R4 —> R2

is the standard projection and S3 is the unit 3-sphere in R Define QQ : S*3 — > D2 to
be the quotient map of /o (note that the quotient space of /o is homeomorphic to the
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2-disk D2). Furthermore let /i : S1 x S2 — »• R2 be the special stable map defined by
/! = ηo(idsι x/*)> where η : S1 xR — > R2 is an embedding and Λ : 52 — » R is the standard
Morse function with exactly two critical points. Define Qι : S1 x 52 — *• 51 x [— 1, 1] to
be the quotient map of f\ (note that the quotient space of f\ is homeomorphic to
S1 x [— 1, 1]). Then we can characterize full-definite fold maps as follows.

THEOREM 4.2 ([S2]). Let q : M — > W be a fold map of a closed onentable 3-
manifold into a smooth branched surface. Then q is full- definite if and only if q is right-
left equivalent to a fold map obtained from QQ and Q\ by applying the operations (I),
(lϊ)l and (H)2 finitely many times.

For the precise definitions of the operations, see [S2, §4]. Full-definite fold maps
behave very much like quotient maps of special stable maps. For example, we have the
following.

PROPOSITION 4.3 ([S2]). Let q : M — » W be a full-definite fold map of a closed
onentable 3-manifold into a smooth branched surface. If bι(M) — 0, then M is diffeo-
morphic to S3 and every component of S(q) is the trivial knot in S3.

Recall that, for a special stable map / : S3 — » R , «?(/) is the trivial knot in S3

([BdR]). Note also that a special stable map of S3 into a surface is always full-definite.
One of the main results of this paper is the following.

THEOREM 4.4. Let f : S3 — >• N be a full-definite simple stable map into a surface.
Then a smooth knot K in S3 is trivial if and only if it is f -trivial in the sense of
Definition 2.1.

LEMMA 4.5. Let f : M — »• TV be a stable map of a closed Z-manifold into a surface
and L a trivial link in M. Then L is f -trivial

Proof. Take a regular value α £ f(M) C N and let Δ C N be a small open
neighborhood of α disjoint from /(5(/)). By the implicit function theorem, we have
a local coordinate (ι/,#,t/) centered at a point b G f~l(a) and defined in an open set
contained in /-1(Δ) and a local coordinate (X, Y) centered at a G N and defined in an
open set contained in Δ such that X of = x and Y of = y. Let LQ be disjoint embedded
circles in the (x, y)-plane with respect to the above coordinate such that JLo = ft-t. Then
we see that L0 is isotopic to L, that /|Lo is an embedding and that /(L0)Π/(5(/)) = 0.
Thus L is /-trivial. D

LEMMA 4.6. Let f : M — + TV be a stable map of a closed 3-manifold into a surface
and L a link in M. If L is f -trivial, then qf\L : L — »• Wf — q / ( S ( f ) ) is a smooth
embedding.

Proof. By our assumption, the composition

f\L = foqf\L : L ̂ —* Wf - <
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is an embedding. Then the result follows immediately. D

Proof of Theorem 4.4. By Lemma 4.5, the necessity is clear. On the other hand,
by Lemma 4.6, the sufficiency follows from the following.

LEMMA 4.7. Let q : S3 —> W be a full-definite fold map and K a knot in S3. If
q(K) Π Σ(W) = 0 and q\K : K -+ W - Σ(V) is an embedding, then K is trivial.

Proof. By Theorem 4.2, q is right-left equivalent to a fold map obtained from QQ
by applying the operations finitely many times. We prove the lemma by the induction
on the number of the operations needed to construct q. Note that, in our case, Q\ is not
necessary, since the source manifold is S3.

CASE 1. The case where q is right-left equivalent to QQ.

We may assume q — QQ. Let A be the closure of the connected component of
D2 — q(K) which contains q(S(q)). Then A is diffeomorphic to the annulus and q~l(A)
is diffeomorphic to the solid torus. Furthermore, q~l(A) is a tubular neighborhood of
S(q). Since q\K is an embedding, K(C d(q~l(A))) intersects the boundary of a meridian
disk of q~l(A) transversely in one point; hence K is isotopic to 5(g), which is the trivial
knot ([BdR]).

CASE 2. The case where q is right-left equivalent to the fold map obtained by
applying the operation (lΐ)ι or (Π)2 to a fold map q\ : S3 —>• W\.

Note that q\ is also full-definite. We may assume that q is the fold map obtained by
applying the operation (II)1 or (II)2 to q\. Then W is homeomorphic to the branched
surface obtained by attaching S1 x Y to W\ along a component C of Σo(Wι). Let
W - Σ(W) = RI U U Rs U Rl U #2 be the components, where RI , - - , R$ correspond
to Wι and R(,R'2 to S1 x Y. Since q(K) Π Σ(W) = 0 and q(K) is connected, q(K) is
contained in some Rz or R!^.

CASE 2-1. q(K)cRΐ.

Let N(C) be a regular neighborhood of C in W\. Then by the definition of the
operation (II), q\ = q on S3 — gj~1(IntA/'(C)). Furthermore, if N(C) is small enough,
K C S3-qϊl(lntN(C)). This implies qι(K)ΠΣ(qι) = 0 and that qι\K is an embedding.
Then by the induction hypothesis, we see that K is trivial.

CASE 2-2. q(K)cR,.

Note that R is diίϊeomorphic to the open annulus 51 xR. Since q(K) is an embedded
circle in Rj, q(K) either bounds a disk in R^ or is isotopic to the core S1 x {0} of the
open annulus.

CASE 2-2-a. The case where q(K) is isotopic to the core of the open annulus.
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By an argument similar to that of Case 1 , we see that K is isotopic to a component
of S(q). Then by Proposition 4.3, we see that K is the trivial knot.

CASE 2-2-b. The case where q(K) bounds a disk Δ in R'r

Take an embedded arc J in ̂  such that {α} = d J Π IntΔ φ 0 φ d J Π Th(W), that
J is transverse to ΣQ(W) and that J intersects <9Δ transversely in one point. Then we
see that q~l(J) is a 2-disk in 53 and that ^~1(Δ) is a solid torus whose core q~1(a)
is the trivial knot. Furthermore, K(C 9(g~1(Δ))) intersects q-1(J) transversely in one
point. Hence K is the trivial knot in 53.

CASE 3. The case where q is right-left equivalent to the fold map obtained by
applying the operation (I) (connected sum operation) to fold maps qι : S3 — >• W% (i =
1,2).

Note that #a are also full-definite. We may assume that q is the fold map obtained
by applying the operation (I) to $. By the definition of the operation (I), there exists a
properly embedded arc J in W — Σι(VF) such that JθΣo(W) = <9J, that J is transverse
to Σo(W), that W — J consists of two connected components, and that W!\Jj-βD — W<>
where W[ (i = 1,2) are the closures of the two components of W — J, D = {(#,?/) G
R2;*2 + y2 £ l,x ^ 0} and B = {(*,y) G £>;*2 + t/2 - 1}.

CASE 3-1. The case where # # Π J = 0.

We see that K' C 9""1(W7) for i — 1 or 2. Since ςfz = ςr on q~l(W'i\ we have
ςfi(X) ΠΣ(Wι) = 0 and ftl-fiΓ is an embedding. Hence, by the induction hypothesis, K is
the trivial knot.

CASE 3-2. The case where q(K) Π J φ 0.

Let R be the closure of the component of W — Σ(PF) which contains J. Using
Theorem 4.2, we can prove that R is planar; i.e., R is a compact orientable surface of
genus 0. Let R be the compact planar surface obtained by attaching 2-disks D\ , , ΰ\
along the boundary components of R not containing dJ. Note that R is homeomorphic to
the 2-disk. Hence q(K) bounds a 2-disk Δ in R. Let Ri (i = 1, 2) be the two components
of R— J. Since D^ are contained in R — J, we may assume that D\ , , D\ C RI and
^M-i' ' ' ' ' A2 C ^2- Then there exists a properly embedded arc J' in R transverse to
Σo(P^) such that it intersects q(K) transversely at two points and that Ό\ , , D\ C R{
and J5|+1, , ΰ\ C Λ^, where J?£ (2 = 1, 2) are the two components of R — J'. By [S2,
Lemma 4.1], using this arc Jx, we can decompose q as the connected sum of fold maps q(
and #2- Then it is not difficult to see that q[ are right-left equivalent to & . Thus we may
assume that J intersects q(K) transversely at two points from the beginning. Thus K
intersects the 2-sphere q~l(J) embedded in S3 transversely at two points. Hence, there
exist knots K, (i = 1,2) in S3 such that K^K2 = K, &•(#<) Π Σ(W<) = 0 and $•(#,•
are embeddings. By the induction hypothesis, Kt are the trivial knot and hence so is K.
This completes the proof of Lemma 4.7 and hence Theorem 4.4. D
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Note that Theorem 4.4 does not hold for links with two or more components. For
example, see [SI, Example 6.2 (1)].

Next we consider the link type of a regular fiber of a full-definite simple stable map.
Recall that a regular fiber of a stable map / is always /-trivial.

THEOREM 4.8. Let f : S3 —> N be a full-defimte simple stable map into a surface.
If a £ N is a regular value of f, then /~1(α) is a trivial link in S3.

Proof. Since /~1(α) = qjl(f~l(a)) and f~l(a) is a finite set, for the proof of
Theorem 4.8, it suffices to prove the following.

LEMMA 4.9. Let q : S3 —> W be a full-definite fold map and αi, , a\ finite points
in W - Σ(W). Then L = q~l(aι) U U q~1(aϊ) is a trivial link in S3.

Proof. We prove the lemma by the induction on the number of the operations
needed to construct q as in Theorem 4.2.

CASE 1. The case where q is right-left equivalent to QQ.

We may assume that q = QQ. There exist disjoint embedded arcs Ji (i = ! ,-••,/) in
D2 such that Ji connects αz and dD2 and that Ji is transverse to dD2. Then q~l(Jt) are
disjoint embedded 2-disks in S3 whose boundary coincides with L. Hence L is trivial.

CASE 2. The case where q is right-left equivalent to the fold map obtained by
applying the operation (lΐ)l or (Π)2 to a fold map q\ : S3 —> W\.

Note that q\ is also full-definite. We may assume that q is the fold map obtained by
applying the operation (II) l or (Π)2 to qι. Let W-Σ(W) = Λ iU U Λ5 U #1U .R'2 be the
components as in Case 2 in the proof of Lemma 4.7. We may assume that αi, , α* G
Ri U U Rs, αfc+i, , αm £ R'ι and αm+ι, , α/ £ R!2. Then there exist a^-disk ΔI in
R( and disjoint embedded arcs Jj (j = fc+1, , m) in ΔI suchjhat ΔI Γ\dR{(C ΣQ(W))
is an arc, that the closure of <9Δι — (AιΠR{) is transverse to dR{, that J3 connects a3 and
Σo(W), and that J3 is transverse to Σ0(W). Then ςΓ^Δi) is a 3-ball embedded in S3

and q~l(J3) are disjoint embedded 2-disks in the 3-ball such that d(q~1(JJ)) = g""1(α<7).
We can also take a 3-ball g~1(Δ2) and disjoint 2-disks q ~ l ( J j ) (j — m + !,-••,/) for
R!2. Thus the link L is the split sum of q~l(aι) U U q~l(a>k) and two trivial links.
Furthermore, q~1(aι) U U q~l(ak) = ίf1(αι) U U ̂ 1(αjb) is a trivial link by the
induction hypothesis. Hence, L is trivial.

CASE 3. The case where q is right-left equivalent to the fold map obtained by
applying the operation (I) to fold maps q^ : S3 —>• W% (i — 1,2).

Note that qi are also full-definite. We may assume that q is the fold map obtained by
applying the operation (I) to q^. Let W[ (i =1,2) and J be as in Case 3 of the proof of
Lemma 4.7. We may assume that αi, , α^ £ W[ and αjk+i, , α/ £ W2. Then q~1(J)
is a 2-sphere in S3 disjoint from £; hence, L is the split sum of q~l(a\) U U q~l(a>k)
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and q~1(ajc+ι) U U q~l(aj). By the induction hypothesis, both of these two links are
trivial, and hence so is L. This completes the proof of Lemma 4.9 and hence Theorem
4.8. D

By Lemma 4.9, we have a stronger result: for a full-definite simple stable map / :
S3 —» N and regular values αi, , α/ G N, /~1(αι) U U /-1(α/) is a trivial link in
53. This fact holds for a larger class of maps. In fact, Lemma 4.9 holds for fold maps
obtained by applying the operations (I), (Π)1,(Π)2 and (Π)3 finitely many times. The
same proof works also for this case.

5. Invariants of links via stable maps

PROPOSITION 5.1. For a link L in a closed orientable 3-manifold M, there exists
a stable map f : M —> R2 and a regular value a G R2 such that L — f~1(a) if and only
if L bounds a compact onentable surface embedded in M.

Proof. First suppose that / : M —» R2 is a stable map and α G R2 is a regular
value. Then there exists an embedded arc J in R such that α G 9J, J is transverse to
/ and (dJ - {α}) Π /(M) = 0. Set F = f"l(J). Then we see that F is an embedded
surface in M whose boundary coincides with /~1(α). Furthermore, since F is 2-sided in
M and M is orient able, F is orient able.

Next let L be a link in M and F a compact orientable surface embedded in M such
that dF = L. We may assume that F is connected. Let F be a tubular neighborhood of
F in M. We may assume that L C dV. Since F is 2-sided in M, S = dV is diffeomorphic
the double of F and L corresponds to the common boundary. Thus there exists a Morse
function h : S -» R such that L = Λ~1(fe) for a regular value b G R. Let N(S) be a tubular
neighborhood of S in M. Then there exists a diffeomorphism φ : N(S) —> S x [— 1,1]
such that φ(p) = (p, 0) for all p G S. Define the smooth map g : N(S) —> R2 by g(r) =
(hoPloφ(r),p2oφ(r)) (r G N(S))9 where pi : Sx[-l,l] -* 5andp2 : Sx[-l,l] -> [-1,1]
are the projections. On the other hand, M — IntTV(S) consists of two components M+
and M_, where M+ Γ\φ~l(S x {!}) ̂  0. Then we can extend the map g to a smooth map
g : M -> R2 so that g(M+) C {(x,y) G R2; y > 1} and g(M.) C {(*,</) G R2;2/ ̂  -1}.
Since the stable maps are dense in C°°(M,R ), there exists a stable map / : M —+ R2

arbitrarily close to g. Furthermore, since g\N(S) = g is already stable, we may assume
that / = g on a neighborhood 17 of 5 and that /(M - 17) Π {(x, 0) G R2} = 0. Then
we see that /-1(α) = L for α = (6, 0), and / is a desired stable map. This completes the
proof. D

Note that the above proposition can be used to prove that every link is /-trivial for
some stable map /.

Remark 5.2. Let M be a closed orientable 3-manifold such that //ι(M Z) = 0.
Then a link in M always bounds a compact orientable surface embedded in M.

DEFINITION 5.3. Let L be a link in 53. Then by Proposition 5.1 and Remark 5.2,
there exists a stable map / : 53 —» R2 such that L = f~l(ά) for a regular value α. Define
F(L) to be the minimum bifurcation number 6(/, /o) over all stable maps / as above,
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where /o : S3 — > R is the standard special stable map as in §4 and &(/, /o) E N U {0} is
the bifurcation number between / and /o defined in [MPS]. Roughly speaking, &(/,/o)
is the minimum number of non-stable maps in generic families of maps connecting / and

It is not difficult to see that F(L) = 0 if and only if L is the trivial knot.
Using the singular set instead of the regular fiber, we obtain the following invariant

of a link in S3.

DEFINITION 5.4. Let L be a link in 53. Then by [S3], there exists a stable map
/ : S3 — > R2 such that S(f) = L. Define S(L) to be the minimum bifurcation number
6(/, /o) over all stable maps / as above.

We see easily that S(L) = 0 if and only if L is the trivial knot.

DEFINITION 5.5. Let L be a link in S3. Then by [SI, Proposition 6.3], there exists
a stable map / : S*3 — » R such that L is /-trivial. Define T(L) to be the minimum
bifurcation number 6(/, /o) over all stable maps / as above.

Note that there exist non-trivial links L such that T(L) = 0 ([SI, §6]).

LEMMA 5.6. Let L be an n-component link in S3. Then we have F(L) ^ n — 1 and

Proof. Let {ft}t£(-ε>ε) (ε > 0) be a π-stable homotopy of stable maps ([ML4,
C]) of S3 into R2 which has the unique bifurcation point at t = 0. Then we see that
\$S(f-ε) — $S(fε)] ^ 1 and that the maximal numbers of components of a regular fiber
of /_ε and fε differ by at most 1. Furthermore, for the special stable map /o : 53 — > R2,
jt5(/o) = 1 and every regular fiber of /o is connected. Hence, by the definitions of the
invariants, the required inequalities follow. Π

For the n-component trivial link Ln , we can construct stable maps /i , /2 : S3 — *• R2

such that 6(/ι,/o),δ(/2,/o) — n ~~ 1> tnat ^(Λ) = Ln and that a regular fiber of /2

coincides with Ln. Combining this observation with Lemma 5.6, we have the following.

PROPOSITION 5.7. For the n-component trivial link Ln in S3, we have F(Ln) =

It is not difficult to list up all stable maps / : 53 — > R2 with b(f, /0) = 1 using
results of Mata-Lorenzo [ML4] and Chincaro [C]. Examining these stable maps gives
the following.

PROPOSITION 5.8. For a link L in S3, the following three are equivalent.
(1) L is the 2-component trivial link.
(2) F(L) = 1.
(3) S(L] =1.
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The proof of the above proposition is left to the reader. It is also not difficult to
prove the following.

PROPOSITION 5.9. Let L be the torus (3,3n)-/m& (n G Z) in S3. Then we have
S(L) = 2.

It would be an interesting problem to study the properties of the invariants defined
above. For example, what property do they have about the connected sum operation?
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