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DYNKΪN GRAPHS AND TRIANGLE SINGULARITIES

BY TOHSUKE URABE

In Arnold's classification list of singularities (Arnold [1].) we find interesting singu-
larities to be studied. Though we find singularities of any dimension in Arnold's list,
we consider singularities of dimension two in particular. Among them there is a class
called exceptional singularities or triangle singularities. This class consists of fourteen
singularities. It is known that they are closely related to K3 surfaces with the structure
of elliptic surfaces. (Looijenga [4].) Here we would like to consider the following nine
singularities of these fourteen ones:

, Qιo>

, Qi i ,

, Ql2

(The remaining five triangle singularities are Wu, H^ia, Sn, £12 and /7i2 ) We assume
that the ground field is the complex field C.

Recall here that a connected Dynkin graph of type A, DOT E corresponds to a surface
singularity called a rational double point. Let Ξ be a class of surface singularities. By
PC(Ξ) we denote the set of Dynkin graphs Γ with several components such that there
exists a small deformation fiber Y of a singularity belonging to Ξ satisfying the following
conditions:

1. Y has only rational double points as singularities.
2. The combination of rational double points on Y corresponds exactly to Γ. (The

type of each component of Γ corresponds to the type of the singularity on Y and
the number of components of each type corresponds to the number of singularities
of each type on Y .)

Note that by definition every graph in PC(Ξ) has only components of type A, D or

E. We would like to study PC(Ξ) for Ξ'= #12, ZUί ..., Qι2

THEOREM. LetΞ be one of the above nine classes of singularities. The following

two conditions are equivalent.
(A) Γ G PC(Ξ).
(B) The Dynkin graph Γ has only components of type A, D or E, and can be made from

the essential basic graph depending on Ξ by a combination of two of elementary
transformations and tie transformations.
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The respective essential basic graph

corresponding to the above nine singularities

, E7 + BCi,

In the above list of essential basic graphs the plus sign 4- denotes the disjoint union
of graphs. In the above condition (B) an elementary transformation and a tie transfor-
mation are operations by which we can make a new Dynkin graph from a given Dynkin
graph. We give the definition of them below. In the condition (B) four kinds of com-
binations - "elementary" twice, "tie" twice, "elementary" after "tie", and "tie" after
"elementary" - are all permitted.

DEFINITION. (An elementary transformation) The following procedure is called
an elementary transformation of a Dynkin graph.

(1) Replace each connected component by the corresponding extended Dynkin graph.
(2) Choose in arbitrary manner at least one vertex from each component (of the ex-

tended Dynkin graph) and then remove these vertices together with edges issuing
from them.

We can find the definition of the extended Dynkin graph in any book on Lie algebras.
(Bourbaki [2].) They can be made by adding one vertex and one or two edges to each
connected component of the Dynkin graph. The position of the added vertex and edges
depends on the type of the component . Also we can find the definition of the coefficients
of the maximal root in any book on Lie algebras.

DEFINITION. (A tie transformation) Assume that applying the following procedure
to a Dynkin graph Γ, we have obtained the Dynkin graph Γ. Then we call the following
procedure a tie transformation of a Dynkin graph.

(1) Add one vertex and a few edges to each component of Γ and make it into the
extended Dynkin graph of the corresponding type. Moreover attach the corre-
sponding coefficient of the maximal root to each vertex.

(2) Choose in an arbitrary manner subsets A> B of the set of the vertices of the
extended graph Γ satisfying the following conditions:

(α) A Π J 3 = 0.
(6) Let V be the set of vertices of an arbitrarily chosen component Γ' of Γ. Let t be

the number of elements in V Π A and H I , n2, ..., n^ be the numbers attached
to V Π A. Furthermore let N be the sum of numbers attached to V Π B. (If
VΓ\ B — 0, then N = 0 .) Then the greatest common divisor of the ί+1 numbers
TV, m, n 2 , ..., nt is 1.

(3) Erase all attached integers and remove vertices belonging to A together with edges
issuing from them.

(4) Draw another new vertex Q corresponding to a root α with α2 = 2. Connect this
new vertex Q and each vertex in B by an edge.
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Remark. Often the resulting graph Γ after the above procedure (1) - (4) is not a
Dynkin graph. We consider only the cases where the resulting graph Γ is a Dynkin graph
and then we call the above procedure a tie transformation. Under this restriction the
number #(B) of elements in the set B satisfies 0 < #(B) < 3. t = #(F Π A) > I .

Here we give some explanation on Dynkin graphs and root systems of type BC. A
root system R is a finite subset of a Euclidean space satisfying axioms on symmetry.
Usually we assume moreover the following axiom (*) of the reduced condition:

If a G Λ, then 2α £ R (*)

Under these axioms we obtain irreducible root systems of type A, £, (7, D, E, F and G
as in any book on Lie algebras. However, under the absence of the axiom (*) we have
further a series of irreducible root systems, which are called of type BCk (k = 1, 2, 3, ...).
(Bourbaki [2].) It is easy to generalize the concept of Dynkin graphs to root systems of
type BC. (Urabe [6].) The Dynkin graph of type BCi is the following: (g)

We explain the meaning of this BC\ graph. Recall first the meaning of Dynkin
graphs. Let R be an irreducible root system and Δ C R be the root basis. We can
assume that the longest root a. G R satisfies α2 = 2 after normalizing the inner product
of the ambient Euclidean space. The Dynkin graph Γ of R is the graph drawn by the
following rules: (1) The vertices of Γ have one-to-one correspondence with the set Δ (the
root basis). (2) Two vertices in Γ corresponding to two elements α, β £ Δ are connected
by an edge in Γ if and only if the inner product (α, β) φ 0.

If R is of type A> D or £", then R consists of only roots α with α2 = 2, and every
α E Δ satisfies α2 = 2. Therefore in these cases every vertex in the Dynkin graph can

be denoted by a small white circle Q
If R is of type BC\, then Δ consists of a unique root δ with δ2 = 1/2 and R =

{ —2<5, — <$, <$, 2δ}. The vertex in the Dynkin graph corresponding to a root δ with δ2 =
1/2 is denoted by (g). The BC\ graph is the graph consisting of a unique vertex of this
kind. In this case the maximal root η is equal to 2(5, and thus the extended Dynkin graph,

i.e., the graph corresponding to Δ"1" = Δ U {—η] is the following: 1 Q '̂  ' 11''® 2
(The edge is bold. The numbers are the coefficients of the maximal root.)

If R is of type £2, then δ consists of two elements α with a2 — 2 and 7 with j2 = 2/3.
We denote the vertex corresponding to a root 7 with j2 = 2/3 by (o). Our Dynkin graph
of type GΪ is the following; Q @ and our extended Dynkin graph of type G%
is the following (The numbers are the coefficients of the maximal root.):

O O ©

1 2 3

Note that as a result of an elementary or a tie transformation, a graph consisting
of a unique vertex corresponding to 7 with j2 — 2/3 can appear. We call the graph ©
the Dynkin graph of type G\. This corresponds to the root system R = {—7, 7} with
72 = 2/3. The extended Dynkin graph of type G\ is the following: 1 ©B iβ © 1.
(The edge is bold. The numbers are the coefficients of the maximal root.)

We can explain why we do not use the standard expression Q ===)θ °f

the GΪ graph. (Bourbaki [2].) If we use the standard expression, we cannot define the

concept of the Gi graph.
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Now, for an irreducible root system R of the remaining types, i.e., of type #&, Cfc,
F4 or BC\ with / ̂  2, the root basis Δ contains a root β G Δ with β2 = 1. However,
in the case of our nine triangle singularities such a root β with /?2 = 1 never appears.
Therefore in our case the type of a connected Dynkin graph is either Ak with k ̂  1, D\
with / > 4, E6, E7, Es, G2, GI or J5Cι.

Note that since we have assumed that the Dynkin graph Γ in our Theorem has only
components of type A, D or E, any Dynkin graph with a component of type GI , G\ or

made by two transformations has no meaning, and is to be thrown out.

Example. We show A7 + A4 G PC(Z13) and Ds + A^ G PC(Zι3).
For Zis the corresponding essential basic graph is Eγ + G2. We can start from

Eγ + G2. As an example, we apply a tie transformation to this graph. After the first
step of the transformation the following graph is obtained and we can choose the subsets
A and B as follows.

Obviously the condition (α) A Π B = 0 is satisfied. For the component Eγ, i =
#(V Π A) = 1 and m = 1, N = 1. Thus G.C.D.(m, N) = 1. For the component G2,
t - 1, ni = 1, N = 0 and G.C.D.(nι, N) = 1. The condition (6) is also satisfied. In
the next step all vertices in A are erased, and drawing a new vertex O> we connect it
and the vertex in B by an edge. One knows that the resulting graph is E& + G2

We can apply a transformation once more starting from E$ + G2 First we apply a
tie transformation.

asThe above choice of A and B satisfies the conditions and we get the graph A? -f
the result. By our Theorem A 7 + A4 G PC(Zί3).

If we apply an elementary transformation to E$ -f G2, and if we erase two vertices
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as follows, we obtain the graph D$ -f A^.

By our Theorem one can conclude D$ -f AI E PC(Z\-$).

Below we sketch the verification of our Theorem briefly.
First we apply the results in Looijenga [4]. In [4] Looijenga shows that our singularity

is closely related K3 surfaces and that by the theory of periods for K3 surfaces we can
reduce our problem into a problem on the lattice theory. Let AN be the even unimodular
lattice with signature (16 + N, N). It is unique up to isomorphisms if N ^ 1. A certain
lattice P is defined corresponding to each Ξ of the nine triangle singularities. We can
consider the quotient module Aχ/P when a primitive embedding P C AN is given. A
bilinear form on Aχ/P with values in rational numbers can be defined. By Looijenga one
knows that for a Dynkin graph Γ with only components of type A, D or E, Γ E PC(Ξ) if
and only if the associated root lattice Q(Γ) has a lattice embedding into As/P satisfying
certain conditions. (Note that the suffix of Λ is TV = 3 here.)

Second we translate Looijenga's conditions on the lattice theory into a simpler con-
dition. We say that an embedding Q(Γ) C A p j / P is full if the root system of Q(Γ) and
the root system of ϊ\&jprιmitιvt hull of Q(T) in A^/P coincide. (For a submodule M of
a module L, the set M = { x £ L \ For some non-zero integer m, mx £ M} is called the
primitive hull of M in L. Obviously it is a submodule containing M.) We consider here
root systems including roots 6 with 62 = 1/2 and roots 7 with γ2 = 2/3. One knows
that a lattice embedding Q(Γ) C A$/P satisfies Looijenga's conditions if and only if it
is full.

Let PC(Ξ) denote the set of Dynkin graphs satisfying the condition (B) in our
Theorem.

The inclusion relation PC(Ξ) C PC(Ξ) is an immediate consequence of our general
theory of elementary transformation and tie transformations. Indeed, let Γ' be a Dynkin
graph obtained from a Dynkin graph Γ by an elementary transformation or a tie trans-
formation. We can show that if there exists a full embedding Q(T) C Aχ/P, then there
exists a full embedding <2(Γ") C A^+i/P- Note here that the suffix of Λ increases by
one. Besides, for some primitive embedding P C A I the corresponding essential basic
graph Γ0 has a full embedding Q(Γ0) C A1/P. Thus we can conclude ~PC(Ξ) C PC(Ξ).

Let μ be the Milnor number of one of the nine triangle singularities under consider-
ation. This number is equal to the suffix of the corresponding symbol of the singularity.
(For £"12, Ziϊ and Qi2 μ = 12.) Let Γ be a Dynkin graph with r vertices. We can show
that if Γ E PC(Ξ), then r < μ - 2. Besides, if r < μ - 5, then conditions Γ E PC(Ξ)
and Γ 6 PC(Ξ) are equivalent. The last assertion follows from Meyer's theorem "Any
indefinite rational quadratic form represents zero, if the number of variables is greater
than or equal to five."
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In order to show the opposite inclusion relation PC(E) D PC(Ξ) it suffices to show
(Sμ Π ~PC(Ξ))\J(Sμ - PC(Ξ)) = Sμ, where Sμ denotes the set of Dynkin graphs Γ with
only components of type A, D or E whose number r of vertices satisfies μ — 4 < r < μ — 2.
To tell the truth, we could not succeed in finding any effective method to show this
equality except case-by-case checking. This is a weak point of our theory. I regret this
fact and hope that somebody can improve it. The theory of monodromy groups of elliptic
surfaces may be effective for the improvement. Anyway, by the elementary lattice theory,
the surface theory in the algebraic geometry, and the p-adic lattice theory due to Nikulin
(Nikulin [5]), we can accomplish the checking.

Details of the verification will appear elsewhere.
Before concluding this article we would like to refer to the remaining five hypersur-

face triangle singularities 1/F12, Wia, Sn, £12 and U^. Recall here in particular that the
number of transformations in the condition (B) in our Theorem for the nine singular-
ities is two. For the remaining five singularities W^.2, W^ia, 5Ίι, £12 and £7i2, if we try
to formulate the corresponding theorem including a description in which the number of
transformations is two, the formulation becomes very complicated and it is not worth
mentioning. This is because the property of the Milnor lattice for WM, WIQ, Sn, Si 2
and Ui2 is very different from that of the nine singularities in this article.

We consider one of fourteen hypersurface triangle singularities and let F be the
corresponding Milnor fiber. The pair (L, — ( , )) of the second homology group L =
H2(F, Z) of F and (—1) times the intersection form ( , ) is called the Milnor lattice.
Let H = Zu + Zv denote the hyperbolic plane, i.e., a lattice of rank 2 with u2 = v2 — 0
and (u, v) — 1.

For any of fourteen cases L has the following decomposition

L Ξ M 0 # Θ # (**)

where M is a positive definite lattice, and the symbol φ denotes the orthogonal direct
sum. For the nine singularities considered in this article for every decomposition (**)
the co-root system R^ of M, i.e., the set

RV = { x e M \ x2 — 2, 4 or 6. For every y G M 2(z, y)/x2 is an integer.}

spans M over Q. However, for P^i2} W^is, Sn, 612 and Ό\ι for every decomposition (**)
the co-root system never spans M.

Instead of a theorem with the number of transformations two, we can formulate a
theorem in which the number of transformations is one. In this case the basic graph
used at the start of transformations is not Dynkin but a so-called Gabrielov graph.
(Gabrielov [3].) For VFi2, W^ia, Sn, Si 2 and Uu under this formulation we can get
theorems worth mentioning. Besides, even for the nine singularities considered in this
article also theorems under the formulation with the number of transformations one are
worth mentioning.

These results will appear elsewhere.
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