REMARKS ON FUNDAMENTAL GROUPS OF COMPLEMENTS OF DIVISORS ON ALGEBRAIC VARIETIES

BY ICHIRO SHIMADA

Introduction

We work over the complex number field *C,* and consider the topological fundamental group of the complement of a divisor on a nonsingular projective variety.

Let V be a nonsingular connected projective variety of dimension ≥ 2 and let $D\subset V$ be a reduced divisor. We denote by $p: L\to V$ the line bundle corresponding to the invertible sheaf $\mathcal{O}_V(D)$, and we put

 $L^* := L \setminus \{$ the zero section $\}.$

We fix base points $b \in V \backslash D$ and $b' \in L^{\times}$ such that $p(b') = b$. There exists a unique section $s: V \rightarrow L$ which defines D and passes through b'. By restricting s to $V\setminus D$, we get a morphism $V\setminus D\rightarrow L^{\times}$, which we denote by the same letter s. We consider the homomorphism

$$
s_*\colon \pi_1(V\backslash D, b)\longrightarrow \pi_1(L^*, b').
$$

In various "good" situations (for example, when *D* is very ample and non singular), this homomorphism is an isomorphism. The following is a special case of Nori's result [3, Corollary 2.10], which is one of the corollaries of his Weak Lefschetz Theorem.

PROPOSITION (NORI). *Suppose that D is irreducible and not composed of a pencil. If the singular locus of D is of codimension* \geq 3 *in V, then* $\pi_1(V \setminus D)$ *is isomorphic to* $\pi_1(L^{\times})$.

In this paper, we give another condition under which s_{\ast} is an isomorphism, using some ideas originated in $[4]$. As an application, we compute the fundamental groups of complements of certain singular plane curves.

Let V be as above and let δ be a linear system on V . We put

$$
Bs \, \mathfrak{d} := \{ x \in V \; ; \; x \in D \text{ for all } D \in \mathfrak{d} \}.
$$

We also put $V^{\circ}:=V\backslash \text{Bs}$ follows there is a morphism $\Phi: V^{\circ} \to S^{\circ}$ induced by b

Received September 13, 1993; revised April 19, 1994.

where δ^* is the dual projective space of δ . As above, we denote by $p: L \rightarrow V$ the line bundle corresponding to $\mathcal{O}_V(D)$ where D is an arbitrary member of \mathfrak{d} , and by L^{\times} the complement of the zero section of L . We also put

$$
\mathfrak{d}_{nr} := \{ D \in \mathfrak{d} ; D \text{ is not reduced} \}.
$$

The main result is as follows:

PROPOSITION 1. *Suppose that* b *has no fixed components and the image of Φ is of dimension* \geq 2. Suppose also one of the following holds; (i) b_n r \subset b is of *codimension* \geq 2, or (ii) every fiber of Φ is of codimension \geq 2 in V°. Then, for *a general member* $D \in \mathfrak{d}$ *,* s_{*} *is an isomorphism.*

Note that if s_* is an isomorphism, we have a commutative diagram

(0.1)
$$
\begin{array}{rcl}\n\pi_1(V \backslash D) & \cong & \pi_1(L^{\times}) \\
& & i_{\ast} \searrow & \swarrow p_{\ast} \\
& & & \pi_1(V),\n\end{array}
$$

where $i: V\backslash D\subset V$ is the inclusion. By this commutative diagram, we have an exact sequence

$$
(0.2) \qquad \longrightarrow \pi_2(V) \stackrel{\partial}{\longrightarrow} Z \longrightarrow \pi_1(V \backslash D) \longrightarrow \pi_1(V) \longrightarrow 1,
$$

derived from the homotopy exact sequence of $L^{\times} \rightarrow V$. It is easy to see that the image of $\mathbb{Z} \rightarrow \pi_1(V \setminus D)$ is contained in the center of $\pi_1(V \setminus D)$. Thus $\pi_1(V \setminus D)$ is a central extension of $\pi_1(V)$ by a cyclic group.

We shall study the boundary homomorphism ∂ in the sequence (0.2). The homology class $[D] \in H_{2n-2}(V, Z)$ of the divisor D, where $n = \dim V$, defines a linear form

 $\delta: H_2(V, Z) \longrightarrow Z$

by the intersection paring $H_2(V, Z) \times H_{2n-2}(V, Z) \rightarrow Z$.

PROPOSITION 2. Suppose that s_* is an isomorphism. Then the boundary *map d in* (0.2) *is given by*

$$
\pi_2(V) \xrightarrow{\eta} H_2(V, Z) \xrightarrow{\delta} Z,
$$

where η is the Hurewicz map and δ is the linear form defined above.

Let $Z_{\geq 0}$ be the set of non-negative integers. We put

$$
S_d := \{(i, j, k) \in (\mathbf{Z}_{\geq 0})^3 \; ; \; i+j+k=d\} \, .
$$

For a subset $S \subset S_d$ of S_d , we denote by $b(S)$ the linear system of all curves on *P²* whose defining equations are of the form

$$
\sum_{(i,j,k)\in S} a_{ijk} X_0^i X_1^j X_2^k = 0
$$

where $(X_0: X_1: X_2)$ are homogeneous coordinates of P^2 . As a corollary of Propositions 1 and 2, we have the following:

PROPOSITION 3. Suppose that $\text{Card}(S \cap \{i=0\}) \geq 2$, $\text{Card}(S \cap \{j=0\}) \geq 2$, and $Card(S\cap{k=0})\geq2$ *. Let D be a general member of* $b(S)$ *. Then the fundamental group* $\pi_1(P^2 \setminus D)$ is isomorphic to the cyclic group of order d.

Example 1. We fix three points $P_1 = (1 : 0 : 0)$, $P_2 = (0 : 1 : 0)$ and $P_3 = (0 : 0 : 1)$ on P^2 . Let m_1 , m_2 , m_3 and d be non-negative integers. Let b be the linear system of all curves of degree d in P^2 which have singularity of multiplicity *m_i* at each point P_i for $i=1, 2, 3$. Suppose that $m_1+m_2 < d$, $m_2+m_3 < d$, and $m_3+m_1 < d$. Then the fundamental group of the complement of a general member of δ is isomorphic to $\mathbf{Z}/(d)$.

Example 2 (cf. $[1,$ Chapter 4 (3.11)]). We fix affine coordinates (x, y) on *P*². Let $d_1 > d_2 > \cdots > d_\mu$ be a decreasing sequence of positive integers with $\mu \geq 2$. Consider the projective plane curve *C* defined by an inhomogeneous equation

$$
f_{d_n}(x, y) + \cdots + f_{d_n}(x, y) + f_{d_n}(x, y) = 0
$$
,

where $f_{d_i}(x, y)(i=1, \dots, \mu)$ are general homogeneous polynomials of degree d_i . Then $\pi_1(P^2 \setminus C)$ is isomorphic to the cyclic group of order d_1 .

In the last section, we give some other elementary examples.

1. Proof of Proposition 1

First, we shall show, by contradiction, that the assumption (ii) implies the assumption (i). Suppose that there exists an irreducible component δ' of δ_{nr} of dimension dim $b-1$. Let $\Lambda(b) \subset H^0(V, L)$ be the linear subspace corresponding to b, and let $C(\mathfrak{d}') \subset \Lambda(\mathfrak{d})$ be the cone over \mathfrak{d}' . Let $s_0 \in C(\mathfrak{d}')$ be a general point. We may assume that $C(b')$ is nonsingular at s_0 . Then the tangent space $T_{s_0, c(s')}$ to $C(b')$ at s_0 is canonically isomorphic to a linear subspace A' of codimension 1 in Λ (b). Let M be a small coordinate neighborhood of s_0 in $C(b')$, and let

$$
\phi\colon \Delta\!:=\!\{z\!\in\! \mathcal{C}^{\dim C(\mathfrak{d}^*)}\,;\ |z|\!<\!1\}\longrightarrow M
$$

be the coordinates. We denote by *s^z* the global section of *L* corresponding to $\psi(z) \in C(\mathfrak{d}')$, and by D_z the divisor defined by $s_z=0$. Since $s_0 \in C(\mathfrak{d}')$ is general and *M* is small, there exist analytic families of divisors ${E_z}_{z \in \Delta}$ and ${F_z}_{z \in \Delta}$ over Δ such that

$$
D_{\mathbf{z}} = l \cdot E_{\mathbf{z}} + F_{\mathbf{z}} \qquad (l \geq 2),
$$

and E_z are reduced irreducible divisors for all z. Let $U\subset V$ be a classically open neighborhood of *V* around a general point of *E^o ,* over which there exists a trivialization

 $L|_{U} \cong C \times U$

of the line bundle L. Then there exist families of defining functions $\{t_{z}\}$ and $\{u_{\mathbf{z}}\}$ of $E_{\mathbf{z}}$ and $F_{\mathbf{z}}$, respectively, on U such that

$$
(1.0) \t\t s_z = t_z^l \tcdot u_z
$$

holds on U , where we consider $s_z \vert_U$ as a function on U by the above trivializa tion. Let $s' \in T_{s_0, C(b')}$ be an arbitrary tangent vector to the cone $C(b')$ at s_0 . Then we can deform (1.0) to the direction *s'* in the first order. Let ε be a dual number; $\varepsilon^2 = 0$. We write the first two terms of expansions of s_z , t_z and *uz* of this deformation as follows

$$
s_{\varepsilon}=s_0+\varepsilon s',
$$
 $t_{\varepsilon}=t_0+\varepsilon t',$ and $u_{\varepsilon}=u_0+\varepsilon u'.$

Then, considering s' as an element of *Λ(b)* by the canonical isomorphism $T_{s_0, C(b')} \cong A' \subset A(b)$ and regarding $s'|_U$ as a function as above, we see that

$$
s' = t_0^{l-1} (lt' u_0 + t_0 u')
$$

holds on U. Thus, locally on U, the divisor $\{s' = 0\}$ contains E_0 with mul tiplicity $\ge l-1>0$. Since E_o is irreducible, this implies that the divisor ${s'=0}$ contains E_0 globally. Since $T_{s_0, C(b')} \cong A' \subset A(b)$ is a linear subspace of codimen sion 1 and $s' \in T_{s_0, C(b')}$ is arbitrary, this means that $E_0 \cap V^0$ is mapped to a point by the morphism *Φ.* (Note that since b has no fixed components by the assumption, Bs b is of codimension ≥ 2 in *V*. Thus $E_0 \cap V^{\circ}$ is non-empty.) This contradicts the assumption (ii). Therefore we may and will assume the assump tion (i) from the outset.

Let q_0 be a general point of δ^{\times} . Since dim $\Phi(V^0) \geq 2$, the inverse image $\Phi^{-1}(q_0) \subset V^0$ is either empty or of codimension ≥ 2 . We put $V^1 := V^0 \setminus \Phi^{-1}(q_0)$. Let *A* be the space of all hyperplanes *H* in the projective space δ^* such that $H \neq q_0$. Then *A* is isomorphic to an affine space. We put

$$
W := \{(y, H) \in V^1 \times A; \ \Phi(y) \in H\}
$$

and $\mathcal{U}:=(V^1 \times A)\backslash W$. Then *W* is a Zariski closed subset of codimension 1 in $V^1 \times A$. We give *W* the reduced structure. For $H \in A$, we denote by W_H the scheme theoretic intersection $W \cap (V^1 \times \{H\})$, which is regarded as a divisor of V^1 . Then we have $W_H = D_H \cap V^1$, where D_H is the divisor of V corresponding to $H \in (b^{\times})^{\times} = b$. Since Bsb is of codimension ≥ 2 in *V*, *V*¹ admits a non-singular projective compactification *V* such that $V\setminus V^1 = \varPhi^{-1}(q_o) \cup \text{Bs} \mathfrak{d}$ is of codimension \geq 2. Combining this with the assumption (i), we can use [4, Theorem 1] and get isomorphisms

$$
(1.1) \qquad \qquad \pi_1(\mathcal{U}) \cong \pi_1(V^1 \backslash W_H) \cong \pi_1(V \backslash D_H)
$$

for a general $H \in A$. These isomorphisms are induced by the inclusions $V^1 \backslash W_H$ and $V^1 \backslash W_H \subseteq V \backslash D_H$.

For $y \in V^1$, let l_y be the line in δ^* connecting $\Phi(y)$ and q_0 . Note that since \neq *q*₀, the line *l*_y is uniquely determined. Since $\Phi^* \mathcal{O}_{\mathfrak{d}^{\times}}(1) = \mathcal{O}_{V^0}(D_H \cap V^0)$, we have isomorphisms which fit into the commutative diagram;

$$
L|_{v1} \cong \{(y, q) \in V^1 \times \delta^{\times}; q \in l_y, q \neq q_0\},\
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
L^{\times} |_{v1} \cong \{(y, q) \in V^1 \times \delta^{\times}; q \in l_y, q \neq q_0, q \neq \Phi(y)\},
$$

and are compatible with the projections to V^1 . Under these isomorphisms, the section $s(D_H)$ of $L \rightarrow V$ defining D_H is given by

$$
y \mapsto (y, H \cap l_y)
$$

over V_1 . (Note that the above isomorphisms are unique up to the automorphisms of the fiber bundles $p: L \rightarrow V$ and $p: L^{\times} \rightarrow V$ by the group C^{\times} acting on fibers by the scalar multiplication. For the section $y \mapsto (y, H \cap l_y)$ to pass through a given point $b' \in L^{\times}$ as in Introduction, we have to choose the isomorphisms in a suitable way.) If $(y, H) \in \mathcal{U}$, then H intersects the line l_y at a point on $l_y\backslash{\phi(y), q_0}$, because $y \notin D_H$. Therefore, using the above isomorphisms, we have a morphism

$$
U \longrightarrow L^{\times}|_{V1}
$$

$$
(y, H) \longrightarrow (y, H \cap l_{y}) \qquad (=s(D_{H})(y)).
$$

This makes U a locally trivial fiber space over $L^{\times}|\nu_{1}$, whose fiber is the space of all hyperplanes of δ^{\times} passing through a given point $(\neq q_0)$ and not containing *q0 ,* which is isomorphic to an affine space. Hence we get isomorphisms

$$
\pi_1(U) \cong \pi_1(L^\times|_{V^1}) \cong \pi_1(L^\times).
$$

(Note that $L^{\times} \setminus (L^{\times} |_{V_1})$ is of codimension ≥ 2 .) Combining this with (1.1), we have

$$
\pi_1(V \backslash D_H) \cong \pi_1(L^{\times})
$$

for a general $H \in A$. By the constructions, this isomorphism is induced by the section $s(D_H)$: $V \ D_H \rightarrow L$ \Box

2. Proof of Proposition 2

We fix base points *b* of $V\backslash D$, and $*$ of an oriented 2-sphere S^2 . Let

$$
g: (S^2, *) \longrightarrow (V, b)
$$

be a continuous map. We shall consider the image of the homotopy equivalence class $[g] \in \pi_2(V, b_0)$ via the boundary map ∂ in (0.2). Deforming g homotopically relative to *, we may assume that the image of *g* intersects the divisor *D* at its nonsingular points transversely, and $g^{-1}(g(S^2)\cap D)$ is a finite set of points. We put

$$
g^{-1}(g(S^2)\cap D)=\{P_1, \cdots, P_k\}.
$$

Let $S \rightarrow V$ be the oriented S¹-bundle associated with $L^{\times} \rightarrow V$, where the orienta tion is induced by the complex structure of the fibers of $L^{\times} \rightarrow V$. The section $s = s(D)$: $V \ D \rightarrow L^{\times}$ induces a section $r(D)$ of $S|_{V \ D} \rightarrow V \ D$. By pulling back, we get a section of $g^*S \rightarrow S^2$ over $S^2 \setminus \{P_1, \dots, P_k\}$, which we shall denote by $r'(D)$.

For simplicity, we fix some notation. Let P be a point of S^2 , and let $\Delta \subset$ $S²$ be a subset which contains P in its interior and is homeomorphic to the closed disk $\{z \in \mathbb{C}$; $|z| \leq 1\}$. We denote by S_P^1 the fiber of $g^*S \rightarrow S^2$ over *P*, which is oriented. There exists a trivialization

$$
g^*S|_{\Delta} \cong S_P^1 \times \Delta,
$$

which is the identity on S_P^1 . Now suppose that there is a section $\sigma: \partial \Delta \rightarrow g^* S$ of $g^*S \rightarrow S^2$ over $\partial \Delta$. We define an integer $m(σ, Δ, P)$ to be the mapping degree of the composition

$$
\partial \Delta \stackrel{\sigma}{\longrightarrow} g^* \mathcal{S} |_{\Delta} \cong S_P^1 \times \Delta \stackrel{\text{pr}_1}{\longrightarrow} S_P^1,
$$

where the orientation of $\partial \Delta$ is induced from that of S^2 . It is easy to see that this number $m(\sigma, \Delta, P)$ is independent of the choice of the trivialization of $g^*S|_{\Delta}$. If the section σ extends over the whole Δ , then $m(\sigma, \Delta, P)=0$. By the definition of the boundary map ∂ , if Δ contains the base point $*$ in its interior and the section σ is defined over the complement $S^2 \setminus \text{the interior of } \Delta$), then

$$
(2.1) \t\t\t m(\sigma, \Delta, *) = \partial([g]).
$$

We fix a small closed disk Δ_i on S^2 with the center P_i . By the definition of the section $r'(D)$, we have

(2.2) $m(r'(D), \Delta_i, P_i)$ =the local intersection number of $g(S^2)$ and D at P_i .

(Since $g(S^2)$ and *D* intersect transversely, these numbers are ± 1 .)

Let ω_i : $I \rightarrow S^2$ be a path from $*$ to a point $e_i \in \partial \Delta_i$ such that each ω_i is injective, $\omega_i(I) \cap \Delta_i = \{e_i\}$, and if $i \neq j$, then $\omega_i(I) \cap \Delta_j = \emptyset$ and $\omega_i(I) \cap \omega_j(I) = \{*\}.$ We put

and
$$
T_i := \Delta_i \cup \omega_i(I),
$$

$$
T := \bigcup_{i=1}^k T_i.
$$

Let *d* be a standard distance on S^2 . For a small positive real number $\varepsilon > 0$, we put

$$
T_{i,s} := \{ P \in S^2 \; ; \; \min_{Q \in T_i} d(P, Q) \le \varepsilon \},
$$

$$
T_{\varepsilon} := \{ P \in S^2 \; ; \; \min_{Q \in T} d(P, Q) \le \varepsilon \}.
$$

Then both of T_s and $T_{i,s}$ contain $*$ in their interiors and, if ϵ is small enough, they are homeomorphic to the closed disk. Moreover, since the section $r'(D)$ is defined over $S^2 \setminus \text{the interior of } T_s$, we have, from (2.1), that

$$
(2.3) \t\t\t m(r'(D), T\varepsilon, *) = \partial([g]).
$$

On the other hand, it is obvious that $m(r'(D), \Delta_i, P_i) = m(r'(D), T_{i,s}, *)$. Con sidering the limit $\varepsilon \rightarrow 0$ and taking (2.2) into account, we have

$$
m(r'(D), T_s, *) = \sum_{i=1}^k m(r'(D), T_{i,s}, *) = \sum_{i=1}^k m(r'(D), \Delta_i, P_i) = \eta([g]) \cdot [D].
$$

Combining this with (2.3) , we complete the proof. \Box

3. **Proof of Proposition** 3

We put

$$
T:=\{X_0X_1X_2=0\}\subset P^2.
$$

Then the group $(G_m)^3$ /(diagonal) acts on $P^2 \setminus T$ and on $b(S)$ compatibly by

$$
P^2 \setminus T \ni (a : b : c) \longmapsto (\lambda a : \mu b : \nu c) \quad \text{for} \quad (\lambda, \mu, \nu) \in (G_m)^3.
$$

This action on $P^2 \setminus T$ is transitive. Therefore we have $Bs(\delta(S)) \subset T$. In partion cular, the fixed components of $\delta(S)$ must be contained in T. On the other hand, the assumption implies that no lines in *T* can be a fixed component of $\mathfrak{b}(S)$. Hence $\mathfrak{b}(S)$ does not have any fixed component.

We consider the restriction

$$
\Phi': \mathbf{P}^2 \setminus T \longrightarrow \mathfrak{d}(S)^{\check{}} \cong \mathbf{P}^s \qquad (s+1=\operatorname{Card} S)
$$

of the morphism $\Phi: P^2\backslash \text{Bs}(b(S)) \to b(S)^{\times}$ to $P^2\backslash T$. Let $(U_0: U_1: \cdots: U_s)$ be the homogeneous coordinates of $b(S)^{\sim}$ dual to the basis $\{X_0^i X_1^j X_2^k\}_{(i,j,k)\in S}$ of $b(S)$. We denote by $X_0^i X_1^j X_2^k$ the monomial corresponding to U_ν . Then the image of Φ' is contained in

$$
\boldsymbol{P}^s \backslash \{U_0 U_1 \cdots U_s = 0\}.
$$

By changing the numbering if necessary, we may assume that the three vectors (i_0, j_0, k_0) , (i_1, j_1, k_1) , and (i_2, j_2, k_2) are linearly independent over *Q* because of the assumption. There exist a positive integer N and integers a_{μ} , b_{μ} , c_{μ} (μ = 0, 1, 2) such that

$$
\sum_{\mu=0}^{2} a_{\mu} (i_{\mu}, j_{\mu}, k_{\mu}) = (N, 0, 0),
$$

$$
\sum_{\mu=0}^{2} b_{\mu} (i_{\mu}, j_{\mu}, k_{\mu}) = (0, N, 0),
$$

$$
\sum_{\mu=0}^{2} c_{\mu} (i_{\mu}, j_{\mu}, k_{\mu}) = (0, 0, N).
$$

Let *Ψ* be the composition of the morphisms

$$
\Psi: \mathbf{P}^s \setminus \{U_0 \cdots U_s = 0\} \longrightarrow \mathbf{P}^s \setminus \{U_0 U_1 U_2 = 0\} \longrightarrow \mathbf{P}^s \setminus \{V_0 V_1 V_2 = 0\}
$$
\n
$$
(U_0: \cdots: U_s) \longmapsto (U_0: U_1: U_2) \longrightarrow \left(\prod_{\mu=0}^s U_{\mu}^a \mu: \prod_{\mu=0}^s U_{\mu}^b \mu: \prod_{\mu=0}^s U_{\mu}^c \mu\right).
$$

The composition of Φ' and Ψ is given by

$$
P^2 \setminus \{X_0 X_1 X_2 = 0\} \longrightarrow P^2 \setminus \{V_0 V_1 V_2 = 0\}
$$

$$
(X_0: X_1: X_2) \longrightarrow (X_0^N: X_1^N: X_2^N).
$$

Therefore it is finite and étale. Hence the image of Φ' is of dimension 2 and no curves in $P^2 \setminus T$ are mapped to a point by Φ' . On the other hand, the assumption implies that no lines in *T* are mapped to a point by *Φ.* Thus the assumption (ii) in Proposition 1 holds. Using Propositions 1 and 2, we complete the proof. \Box

4. Other examples

Example 3. Let $V \subset P^N$ be a nonsingular projective variety of dimension \geq 2. Suppose that *V* is simply connected. Let $S\subset P^N$ be a general hypersurface of degree d. Since $\pi_2(V) \cong H_2(V, Z) \neq 0$, and the linear map $H_2(V, Z) \to Z$ in duced from the intersection with $[V \cap S] \in H_{2n-2}(V, Z)$ is non-trivial, Proposition 2 implies that $\pi_1(V \setminus S)$ is a finite cyclic group, and its order is in proportion to d.

Example 4. Let *V* and S be as in Example 3. If *V* is a complete intersec tion, then $\pi_1(V\setminus S)\cong\mathbb{Z}/(d)$. Indeed, by the generalized Lefschetz-Zariski Theorem due to Goresky-MacPherson ([2]), we have $\pi_1(H \cap (V \setminus S)) \cong \pi_1(V \setminus S)$ for a general hyperplane $H\subset \mathbf{P}^N$ if dim $V\geq 3$. Therefore, we may assume that dim *V* is large enough compared with its multi-degree. Then *V* contains a line and its class generates $H_2(V, Z) \cong Z$. Since S is general, this line intersects S at distinct *d* points transversely. Hence the cokernel of the boundary map $\pi_2(V)$ $\cong H_2(V, Z) \rightarrow Z$ is $Z/(d)$.

REFERENCES

- [1] A. DIMCA, Singularities and Topology of Hypersurfaces, Springer-Verlag, Berlin, 1992.
- [2] M. GORESKY AND R. MACPHERSON, Stratified Morse Theory, Springer-Verlag, Berlin, 1988.

- [3] M. Nori, Zariski's conjecture and related problems, Ann. Sci. École Norm. Sup. (4), 16 (1983), 305-344.
- [4] I. SHIMADA, Fundamental groups of open algebraic varieties, to appear in Topology.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE HOKKAIDO UNIVERSITY SAPPORO, 060 JAPAN e-mail: shimada@math.hokudai.ac.jp