REMARKS ON FUNDAMENTAL GROUPS OF COMPLEMENTS OF DIVISORS ON ALGEBRAIC VARIETIES

By Ichiro Shimada

Introduction

We work over the complex number field C, and consider the topological fundamental group of the complement of a divisor on a nonsingular projective variety.

Let V be a nonsingular connected projective variety of dimension ≥ 2 and let $D \subset V$ be a reduced divisor. We denote by $p: L \rightarrow V$ the line bundle corresponding to the invertible sheaf $\mathcal{O}_V(D)$, and we put

 $L^{\times} := L \setminus \{ \text{the zero section} \}.$

We fix base points $b \in V \setminus D$ and $b' \in L^{\times}$ such that p(b') = b. There exists a unique section $s: V \to L$ which defines D and passes through b'. By restricting s to $V \setminus D$, we get a morphism $V \setminus D \to L^{\times}$, which we denote by the same letter s. We consider the homomorphism

$$s_*: \pi_1(V \setminus D, b) \longrightarrow \pi_1(L^{\times}, b').$$

In various "good" situations (for example, when D is very ample and nonsingular), this homomorphism is an isomorphism. The following is a special case of Nori's result [3, Corollary 2.10], which is one of the corollaries of his Weak Lefschetz Theorem.

PROPOSITION (NORI). Suppose that D is irreducible and not composed of a pencil. If the singular locus of D is of codimension ≥ 3 in V, then $\pi_1(V \setminus D)$ is isomorphic to $\pi_1(L^{\times})$.

In this paper, we give another condition under which s_* is an isomorphism, using some ideas originated in [4]. As an application, we compute the fundamental groups of complements of certain singular plane curves.

Let V be as above and let δ be a linear system on V. We put

Bs
$$\mathfrak{d} := \{x \in V ; x \in D \text{ for all } D \in \mathfrak{d}\}.$$

We also put $V^{\circ} := V \setminus Bs \mathfrak{d}$. Then there is a morphism $\Phi: V^{\circ} \to \mathfrak{d}^{*}$ induced by \mathfrak{d}

Received September 13, 1993; revised April 19, 1994.

where \mathfrak{d}^* is the dual projective space of \mathfrak{d} . As above, we denote by $p: L \to V$ the line bundle corresponding to $\mathcal{O}_V(D)$ where D is an arbitrary member of \mathfrak{d} , and by L^{\times} the complement of the zero section of L. We also put

$$\mathfrak{b}_{nr} := \{ D \in \mathfrak{d} ; D \text{ is not reduced} \}.$$

The main result is as follows:

PROPOSITION 1. Suppose that \mathfrak{d} has no fixed components and the image of Φ is of dimension ≥ 2 . Suppose also one of the following holds; (i) $\mathfrak{d}_{nr} \subset \mathfrak{d}$ is of codimension ≥ 2 , or (ii) every fiber of Φ is of codimension ≥ 2 in $V^{\mathfrak{d}}$. Then, for a general member $D \in \mathfrak{d}$, \mathfrak{s}_* is an isomorphism.

Note that if s_* is an isomorphism, we have a commutative diagram

(0.1)
$$\begin{aligned} \pi_1(V \setminus D) &\cong & \pi_1(L^{\times}) \\ i_* \searrow & \swarrow p_* \\ & \pi_1(V), \end{aligned}$$

where $i: V \setminus D \subseteq V$ is the inclusion. By this commutative diagram, we have an exact sequence

(0.2)
$$\longrightarrow \pi_2(V) \xrightarrow{d} Z \longrightarrow \pi_1(V \setminus D) \longrightarrow \pi_1(V) \longrightarrow 1$$
,

derived from the homotopy exact sequence of $L^{\times} \rightarrow V$. It is easy to see that the image of $\mathbb{Z} \rightarrow \pi_1(V \setminus D)$ is contained in the center of $\pi_1(V \setminus D)$. Thus $\pi_1(V \setminus D)$ is a central extension of $\pi_1(V)$ by a cyclic group.

We shall study the boundary homomorphism ∂ in the sequence (0.2). The homology class $[D] \in H_{2n-2}(V, \mathbb{Z})$ of the divisor D, where $n = \dim V$, defines a linear form

 $\delta: H_2(V, \mathbf{Z}) \longrightarrow \mathbf{Z}$

by the intersection paring $H_2(V, \mathbb{Z}) \times H_{2n-2}(V, \mathbb{Z}) \rightarrow \mathbb{Z}$.

PROPOSITION 2. Suppose that s_* is an isomorphism. Then the boundary map ∂ in (0.2) is given by

$$\pi_2(V) \xrightarrow{\eta} H_2(V, \mathbb{Z}) \xrightarrow{\delta} \mathbb{Z},$$

where η is the Hurewicz map and δ is the linear form defined above.

Let $Z_{\geq 0}$ be the set of non-negative integers. We put

$$S_d := \{(i, j, k) \in (\mathbb{Z}_{\geq 0})^3; i+j+k=d\}.$$

For a subset $S \subset S_d$ of S_d , we denote by $\mathfrak{d}(S)$ the linear system of all curves on P^2 whose defining equations are of the form

$$\sum_{a,j,k,j\in S} a_{ijk} X_0^i X_1^j X_2^k = 0$$

(

where $(X_0: X_1: X_2)$ are homogeneous coordinates of P^2 . As a corollary of Propositions 1 and 2, we have the following:

PROPOSITION 3. Suppose that $\operatorname{Card}(S \cap \{i=0\}) \ge 2$, $\operatorname{Card}(S \cap \{j=0\}) \ge 2$, and $\operatorname{Card}(S \cap \{k=0\}) \ge 2$. Let D be a general member of $\mathfrak{d}(S)$. Then the fundamental group $\pi_1(\mathbf{P}^2 \setminus D)$ is isomorphic to the cyclic group of order d.

Example 1. We fix three points $P_1=(1:0:0)$, $P_2=(0:1:0)$ and $P_3=(0:0:1)$ on P^2 . Let m_1 , m_2 , m_3 and d be non-negative integers. Let b be the linear system of all curves of degree d in P^2 which have singularity of multiplicity m_i at each point P_i for i=1, 2, 3. Suppose that $m_1+m_2 < d$, $m_2+m_3 < d$, and $m_3+m_1 < d$. Then the fundamental group of the complement of a general member of b is isomorphic to $\mathbf{Z}/(d)$.

Example 2 (cf. [1, Chapter 4 (3.11)]). We fix affine coordinates (x, y) on P^2 . Let $d_1 > d_2 > \cdots > d_{\mu}$ be a decreasing sequence of positive integers with $\mu \ge 2$. Consider the projective plane curve C defined by an inhomogeneous equation

$$f_{d_{u}}(x, y) + \cdots + f_{d_{2}}(x, y) + f_{d_{1}}(x, y) = 0$$

where $f_{d_i}(x, y)(i=1, \dots, \mu)$ are general homogeneous polynomials of degree d_i . Then $\pi_1(\mathbf{P}^2 \setminus C)$ is isomorphic to the cyclic group of order d_1 .

In the last section, we give some other elementary examples.

1. Proof of Proposition 1

First, we shall show, by contradiction, that the assumption (ii) implies the assumption (i). Suppose that there exists an irreducible component b' of \mathfrak{d}_{nr} of dimension dim $\mathfrak{d}-1$. Let $\Lambda(\mathfrak{d}) \subset H^{\mathfrak{o}}(V, L)$ be the linear subspace corresponding to \mathfrak{d} , and let $C(\mathfrak{d}') \subset \Lambda(\mathfrak{d})$ be the cone over \mathfrak{d}' . Let $s_0 \in C(\mathfrak{d}')$ be a general point. We may assume that $C(\mathfrak{d}')$ is nonsingular at s_0 . Then the tangent space $T_{s_0, C(\mathfrak{d}')}$ to $C(\mathfrak{d}')$ at s_0 is canonically isomorphic to a linear subspace Λ' of codimension 1 in $\Lambda(\mathfrak{d})$. Let M be a small coordinate neighborhood of s_0 in $C(\mathfrak{d}')$, and let

$$\psi: \Delta:=\{z \in C^{\dim C(\mathfrak{d}')}; |z| < 1\} \longrightarrow M$$

be the coordinates. We denote by s_z the global section of L corresponding to $\psi(z) \in C(\mathfrak{d}')$, and by D_z the divisor defined by $s_z=0$. Since $s_0 \in C(\mathfrak{d}')$ is general and M is small, there exist analytic families of divisors $\{E_z\}_{z\in\Delta}$ and $\{F_z\}_{z\in\Delta}$ over Δ such that

$$D_{\mathbf{z}} = l \cdot E_{\mathbf{z}} + F_{\mathbf{z}} \qquad (l \ge 2),$$

and E_z are reduced irreducible divisors for all z. Let $U \subset V$ be a classically open neighborhood of V around a general point of E_0 , over which there exists a trivialization

 $L|_{U} \cong C \times U$

of the line bundle L. Then there exist families of defining functions $\{t_z\}$ and $\{u_z\}$ of E_z and F_z , respectively, on U such that

$$(1.0) s_z = t_z^l \cdot u_z$$

holds on U, where we consider $s_z|_U$ as a function on U by the above trivialization. Let $s' \in T_{s_0, C(b')}$ be an arbitrary tangent vector to the cone C(b') at s_0 . Then we can deform (1.0) to the direction s' in the first order. Let ε be a dual number; $\varepsilon^2 = 0$. We write the first two terms of expansions of s_z , t_z and u_z of this deformation as follows;

$$s_{\varepsilon} = s_0 + \varepsilon s', \quad t_{\varepsilon} = t_0 + \varepsilon t', \text{ and } u_{\varepsilon} = u_0 + \varepsilon u'.$$

Then, considering s' as an element of $\Lambda(\mathfrak{d})$ by the canonical isomorphism $T_{s_0, C(\mathfrak{d}')} \cong \Lambda' \subset \Lambda(\mathfrak{d})$ and regarding $s'|_U$ as a function as above, we see that

$$s' = t_0^{l-1}(lt'u_0 + t_0u')$$

holds on U. Thus, locally on U, the divisor $\{s'=0\}$ contains E_0 with multiplicity $\geq l-1>0$. Since E_0 is irreducible, this implies that the divisor $\{s'=0\}$ contains E_0 globally. Since $T_{s_0, C(b')} \cong \Lambda' \subset \Lambda(b)$ is a linear subspace of codimension 1 and $s' \in T_{s_0, C(b')}$ is arbitrary, this means that $E_0 \cap V^0$ is mapped to a point by the morphism Φ . (Note that since b has no fixed components by the assumption, Bs b is of codimension ≥ 2 in V. Thus $E_0 \cap V^0$ is non-empty.) This contradicts the assumption (ii). Therefore we may and will assume the assumption (i) from the outset.

Let q_0 be a general point of \mathfrak{d}^* . Since dim $\Phi(V^0) \ge 2$, the inverse image $\Phi^{-1}(q_0) \subset V^0$ is either empty or of codimension ≥ 2 . We put $V^1 := V^0 \setminus \Phi^{-1}(q_0)$. Let A be the space of all hyperplanes H in the projective space \mathfrak{d}^* such that $H \not\supseteq q_0$. Then A is isomorphic to an affine space. We put

$$W := \{ (y, H) \in V^1 \times A ; \boldsymbol{\Phi}(y) \in H \}$$

and $\mathcal{U} := (V^1 \times A) \setminus W$. Then W is a Zariski closed subset of codimension 1 in $V^1 \times A$. We give W the reduced structure. For $H \in A$, we denote by W_H the scheme theoretic intersection $W \cap (V^1 \times \{H\})$, which is regarded as a divisor of V^1 . Then we have $W_H = D_H \cap V^1$, where D_H is the divisor of V corresponding to $H \in (\mathfrak{d}^{\vee})^{\vee} = \mathfrak{d}$. Since Bs \mathfrak{d} is of codimension ≥ 2 in V, V^1 admits a non-singular projective compactification V such that $V \setminus V^1 = \Phi^{-1}(q_0) \cup Bs \mathfrak{d}$ is of codimension ≥ 2 . Combining this with the assumption (i), we can use [4, Theorem 1] and get isomorphisms

314

(1.1)
$$\pi_1(\mathcal{U}) \cong \pi_1(V^1 \backslash W_H) \cong \pi_1(V \backslash D_H)$$

for a general $H \in A$. These isomorphisms are induced by the inclusions $V^1 \setminus W_H \subseteq \mathcal{U}$ and $V^1 \setminus W_H \subseteq \mathcal{V} \setminus D_H$.

For $y \in V^1$, let l_y be the line in \mathfrak{d} connecting $\Phi(y)$ and q_0 . Note that since $\Phi(y) \neq q_0$, the line l_y is uniquely determined. Since $\Phi^* \mathcal{O}_{\mathfrak{d}^*}(1) = \mathcal{O}_{V^0}(D_H \cap V^0)$, we have isomorphisms which fit into the commutative diagram;

and are compatible with the projections to V^1 . Under these isomorphisms, the section $s(D_H)$ of $L \rightarrow V$ defining D_H is given by

$$y \longmapsto (y, H \cap l_y)$$

over V_1 . (Note that the above isomorphisms are unique up to the automorphisms of the fiber bundles $p: L \to V$ and $p: L^{\times} \to V$ by the group C^{\times} acting on fibers by the scalar multiplication. For the section $y \mapsto (y, H \cap l_y)$ to pass through a given point $b' \in L^{\times}$ as in Introduction, we have to choose the isomorphisms in a suitable way.) If $(y, H) \in \mathcal{U}$, then H intersects the line l_y at a point on $l_y \setminus \{\Phi(y), q_0\}$, because $y \notin D_H$. Therefore, using the above isomorphisms, we have a morphism

$$\begin{array}{l} \mathcal{U} \longrightarrow L^{\times}|_{V^{1}} \\ (y, H) \longmapsto (y, H \cap l_{y}) \qquad (= \mathfrak{s}(D_{H})(y)). \end{array}$$

This makes \mathcal{U} a locally trivial fiber space over $L^{\times}|_{V^1}$, whose fiber is the space of all hyperplanes of \mathfrak{d}^{\times} passing through a given point $(\neq q_0)$ and not containing q_0 , which is isomorphic to an affine space. Hence we get isomorphisms

$$\pi_1(\mathcal{U}) \cong \pi_1(L^{\times}|_{V^1}) \cong \pi_1(L^{\times}).$$

(Note that $L^{\times} \setminus (L^{\times}|_{V^1})$ is of codimension ≥ 2 .) Combining this with (1.1), we have

$$\pi_1(V \setminus D_H) \cong \pi_1(L^{\times})$$

for a general $H \in A$. By the constructions, this isomorphism is induced by the section $s(D_H): V \setminus D_H \to L^{\times}$. \Box

2. Proof of Proposition 2

We fix base points b of $V \setminus D$, and * of an oriented 2-sphere S². Let

$$g: (S^2, *) \longrightarrow (V, b)$$

be a continuous map. We shall consider the image of the homotopy equivalence class $[g] \in \pi_2(V, b_0)$ via the boundary map ∂ in (0.2). Deforming g homotopically relative to *, we may assume that the image of g intersects the divisor D at its nonsingular points transversely, and $g^{-1}(g(S^2) \cap D)$ is a finite set of points. We put

$$g^{-1}(g(S^2) \cap D) = \{P_1, \dots, P_k\}.$$

Let $S \to V$ be the oriented S¹-bundle associated with $L^{\times} \to V$, where the orientation is induced by the complex structure of the fibers of $L^{\times} \to V$. The section $s=s(D): V \setminus D \to L^{\times}$ induces a section r(D) of $S|_{V \setminus D} \to V \setminus D$. By pulling back, we get a section of $g^*S \to S^2$ over $S^2 \setminus \{P_1, \dots, P_k\}$, which we shall denote by r'(D).

For simplicity, we fix some notation. Let P be a point of S^2 , and let $\Delta \subset S^2$ be a subset which contains P in its interior and is homeomorphic to the closed disk $\{z \in C; |z| \leq 1\}$. We denote by S_P^1 the fiber of $g^* \mathcal{S} \rightarrow S^2$ over P, which is oriented. There exists a trivialization

$$g^*\mathcal{S}|_{\Delta}\cong S^1_P\times\Delta,$$

which is the identity on S_P^1 . Now suppose that there is a section $\sigma: \partial \Delta \rightarrow g^* S$ of $g^* S \rightarrow S^2$ over $\partial \Delta$. We define an integer $m(\sigma, \Delta, P)$ to be the mapping degree of the composition

$$\partial \Delta \xrightarrow{\sigma} g^* \mathcal{S}|_{\Delta} \cong S_P^1 \times \Delta \xrightarrow{\operatorname{pr}_1} S_P^1,$$

where the orientation of $\partial \Delta$ is induced from that of S^2 . It is easy to see that this number $m(\sigma, \Delta, P)$ is independent of the choice of the trivialization of $g^*S|_{\Delta}$. If the section σ extends over the whole Δ , then $m(\sigma, \Delta, P)=0$. By the definition of the boundary map ∂ , if Δ contains the base point * in its interior and the section σ is defined over the complement $S^2 \setminus (\text{the interior of } \Delta)$, then

(2.1)
$$m(\sigma, \Delta, *) = \partial([g]).$$

We fix a small closed disk Δ_i on S^2 with the center P_i . By the definition of the section r'(D), we have

(2.2) $m(r'(D), \Delta_i, P_i)$ =the local intersection number of $g(S^2)$ and D at P_i .

(Since $g(S^2)$ and D intersect transversely, these numbers are $\pm 1.$)

Let $\omega_i: I \to S^2$ be a path from * to a point $e_i \in \partial \Delta_i$ such that each ω_i is injective, $\omega_i(I) \cap \Delta_i = \{e_i\}$, and if $i \neq j$, then $\omega_i(I) \cap \Delta_j = \emptyset$ and $\omega_i(I) \cap \omega_j(I) = \{*\}$. We put

and
$$T_i := \Delta_i \cup \omega_i(I),$$
$$T := \bigcup_{i=1}^k T_i.$$

Let d be a standard distance on S^2 . For a small positive real number $\varepsilon > 0$, we put

$$T_{\iota, \varepsilon} := \{ P \in S^2 ; \min_{Q \in T_{\iota}} d(P, Q) \leq \varepsilon \},\$$

$$T_{\varepsilon} := \{ P \in S^2 ; \min_{Q \in T} d(P, Q) \leq \varepsilon \}.$$

Then both of T_{ε} and $T_{i,\varepsilon}$ contain * in their interiors and, if ε is small enough, they are homeomorphic to the closed disk. Moreover, since the section r'(D) is defined over $S^2 \setminus (\text{the interior of } T_{\varepsilon})$, we have, from (2.1), that

(2.3)
$$m(r'(D), T_{\varepsilon}, *) = \partial([g]).$$

On the other hand, it is obvious that $m(r'(D), \Delta_i, P_i) = m(r'(D), T_{i,\epsilon}, *)$. Considering the limit $\epsilon \to 0$ and taking (2.2) into account, we have

$$m(r'(D), T_{\varepsilon}, *) = \sum_{i=1}^{k} m(r'(D), T_{i, \varepsilon}, *) = \sum_{i=1}^{k} m(r'(D), \Delta_{i}, P_{i}) = \eta([g]) \cdot [D].$$

Combining this with (2.3), we complete the proof. \Box

3. Proof of Proposition 3

We put

$$T := \{X_0 X_1 X_2 = 0\} \subset \boldsymbol{P}^2$$

Then the group $(G_m)^3/(\text{diagonal})$ acts on $P^2 \setminus T$ and on $\mathfrak{d}(S)$ compatibly by

$$\mathbf{P}^{2} \setminus T \ni (a:b:c) \longmapsto (\lambda a:\mu b:\nu c) \quad \text{for} \quad (\lambda, \mu, \nu) \in (\mathbf{G}_{m})^{3}.$$

This action on $P^2 \setminus T$ is transitive. Therefore we have $B_S(\mathfrak{b}(S)) \subset T$. In particular, the fixed components of $\mathfrak{b}(S)$ must be contained in T. On the other hand, the assumption implies that no lines in T can be a fixed component of $\mathfrak{b}(S)$. Hence $\mathfrak{b}(S)$ does not have any fixed component.

We consider the restriction

$$\Phi': \mathbf{P}^{2} \backslash T \longrightarrow \mathfrak{d}(S) \cong \mathbf{P}^{s} \qquad (s+1 = \operatorname{Card} S)$$

of the morphism $\Phi: P^2 \setminus Bs(\mathfrak{b}(S)) \to \mathfrak{b}(S)^*$ to $P^2 \setminus T$. Let $(U_0: U_1: \cdots: U_s)$ be the homogeneous coordinates of $\mathfrak{b}(S)^*$ dual to the basis $\{X_0^i X_1^j X_2^k\}_{(i,j,k) \in S}$ of $\mathfrak{b}(S)$. We denote by $X_0^i X_1^{j\nu} X_2^{k\nu}$ the monomial corresponding to U_{ν} . Then the image of Φ' is contained in

$$\mathbf{P}^{s} \setminus \{U_{0}U_{1} \cdots U_{s} = 0\}.$$

By changing the numbering if necessary, we may assume that the three vectors (i_0, j_0, k_0) , (i_1, j_1, k_1) , and (i_2, j_2, k_2) are linearly independent over Q because of the assumption. There exist a positive integer N and integers a_{μ} , b_{μ} , $c_{\mu}(\mu = 0, 1, 2)$ such that

$$\sum_{\mu=0}^{2} a_{\mu}(i_{\mu}, j_{\mu}, k_{\mu}) = (N, 0, 0),$$

$$\sum_{\mu=0}^{2} b_{\mu}(i_{\mu}, j_{\mu}, k_{\mu}) = (0, N, 0),$$
$$\sum_{\mu=0}^{2} c_{\mu}(i_{\mu}, j_{\mu}, k_{\mu}) = (0, 0, N).$$

Let Ψ be the composition of the morphisms

$$\begin{split} \Psi: \mathbf{P}^{s} \setminus \{U_{0} \cdots U_{s} = 0\} &\longrightarrow \mathbf{P}^{2} \setminus \{U_{0}U_{1}U_{2} = 0\} &\longrightarrow \mathbf{P}^{2} \setminus \{V_{0}V_{1}V_{2} = 0\} \\ (U_{0}: \cdots: U_{s}) \longmapsto (U_{0}: U_{1}: U_{2}) &\longmapsto \left(\prod_{\mu=0}^{2} U_{\mu}^{a}\mu: \prod_{\mu=0}^{2} U_{\mu}^{b}\mu: \prod_{\mu=0}^{2} U_{\mu}^{c}\mu\right). \end{split}$$

The composition of Φ' and Ψ is given by

$$P^{2} \setminus \{X_{0}X_{1}X_{2}=0\} \longrightarrow P^{2} \setminus \{V_{0}V_{1}V_{2}=0\}$$
$$(X_{0}: X_{1}: X_{2}) \longmapsto (X_{0}^{N}: X_{1}^{N}: X_{2}^{N}).$$

Therefore it is finite and étale. Hence the image of Φ' is of dimension 2 and no curves in $P^2 \setminus T$ are mapped to a point by Φ' . On the other hand, the assumption implies that no lines in T are mapped to a point by Φ . Thus the assumption (ii) in Proposition 1 holds. Using Propositions 1 and 2, we complete the proof. \Box

4. Other examples

Example 3. Let $V \subset \mathbf{P}^N$ be a nonsingular projective variety of dimension ≥ 2 . Suppose that V is simply connected. Let $S \subset \mathbf{P}^N$ be a general hypersurface of degree d. Since $\pi_2(V) \cong H_2(V, \mathbb{Z}) \neq 0$, and the linear map $H_2(V, \mathbb{Z}) \to \mathbb{Z}$ induced from the intersection with $[V \cap S] \in H_{2n-2}(V, \mathbb{Z})$ is non-trivial, Proposition 2 implies that $\pi_1(V \setminus S)$ is a finite cyclic group, and its order is in proportion to d.

Example 4. Let V and S be as in Example 3. If V is a complete intersection, then $\pi_1(V \setminus S) \cong \mathbb{Z}/(d)$. Indeed, by the generalized Lefschetz-Zariski Theorem due to Goresky-MacPherson ([2]), we have $\pi_1(H \cap (V \setminus S)) \cong \pi_1(V \setminus S)$ for a general hyperplane $H \subset \mathbb{P}^N$ if dim $V \ge 3$. Therefore, we may assume that dim V is large enough compared with its multi-degree. Then V contains a line and its class generates $H_2(V, \mathbb{Z}) \cong \mathbb{Z}$. Since S is general, this line intersects S at distinct d points transversely. Hence the cokernel of the boundary map $\pi_2(V) \cong H_2(V, \mathbb{Z}) \to \mathbb{Z}$ is $\mathbb{Z}/(d)$.

References

- A. DIMCA, Singularities and Topology of Hypersurfaces, Springer-Verlag, Berlin, 1992.
- [2] M. GORESKY AND R. MACPHERSON, Stratified Morse Theory, Springer-Verlag, Berlin, 1988.

318

- [3] M. NORI, Zariski's conjecture and related problems, Ann. Sci. École Norm. Sup. (4), 16 (1983), 305-344.
- [4] I. SHIMADA, Fundamental groups of open algebraic varieties, to appear in Topology.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE HOKKAIDO UNIVERSITY SAPPORO, 060 JAPAN e-mail: shimada@math.hokudai.ac.jp