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THE COMPLEX OSCILLATION THEORY OF f"+Af'+Bf=F,

WHERE A,B,F*0 ARE TRANSCENDENTAL

MEROMORPHIC FUNCTIONS

BY XIAN-YU LI

Abstract

In this paper, we investigate the complex oscillation of the differential
equation

f*+Af'+Bf=F
where A, B, F ^ O are finite order transcendental meromorphic functions. In
some cases we obtain estimates of the order of growth and the exponent of
convergence of the zero-sequence of solutions for above equation. Theorem
3 and Theorem 4 are the main results among the Theorems in this paper.

§ 1. Introduction and results

In this paper, we will use the standard notations of the Nevanlinna theory
(e.g. see [9]). In addition, we will also use the same notations as in [1], i.e.
we will use, λ(f) and J(f) to denote respectively the exponents of convergence
of the zero-sequence and the sequence of distinct zeros of f(z), σ(f) to denote
the order of growth of f(z). The individual notations will be shown when
they appear.

G. Gundersen proved in [8] :

THEOREM A. // /^0 is a solution of

(1.1) f"+Af'+Bf=0,

where A, B are entire such that
( i ) σ(B)<σ(A)<l/2

or
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(ii) A is transcendental with σ(Λ)=0 and B is a polynomial, then σ(/)=oo.

Gao Shi-an proved in [6]

THEOREM B. For the equation

(1.2) f'+aof=p1e
po

where a0) po, pi are polynomials, άegao=n, άeg po<l+(n/2)
(a) // n>l and άegpt<n, then every solution f of (1.2) satisfies

2(/)=«/)=*(/)=l+(n/2)>deg #c

(b) // degp!>n^0, then the solution f of (1.2) either satisfies J(f)=λ(f)=
σ(/)=l+(n/2)>deg p0, or is of the form f=QePo, where Q is a polynomial. And
if (1.2) has a solution of the form QePo with Q polynomial, then (1.2) must have
solutions which satisfy λ(f)=λ(f)=σ(f)=1+(w/2)>άeg p0.

Chen Zong-xuan and Gao Shi-an investigated the complex oscillation of
non-homogeneous linear differential equations with rational coefficients in [4].

In this paper, we will investigate the complex oscillation of the second
order non-homogeneous linear differential equation

(1.3) f*+Af'+Bf=F

where A, B, FΞ^O are transcendental meromorphic functions. We will prove
the following four theorems:

THEOREM 1. Suppose that A, B, F^O are finite order meromorphic functions,
that either ( i ) or (ii) below holds:

( i ) Πm log m(r, A)/log r<ϊίm log m(r, B)/\og r
r-*<y r-*oo

(ii) limwίfr, B)/\og r=oof and A is rational.

If non-homogeneous linear differential equation (1.3) has meromorphic solution
/(*), then

(a) All meromorphic solutions of (1.3) satisfy

(1.4) J(f)=%f)=σ(f)=oo

with at most one possible finite order meromorphic solution f0. If all solutions
of (1.3) are meromorphic, then (1.3) must have solutions which satisfy (1.4).

(b) // there exists a finite order meromorphic solution of in case (a), then
/ 0 satisfies

), c(F), σ(A),

If Λ(/o)<(τ(/o), and σ(F), a(A), σ(B), are unequal each other, then

σ(fo)=max{σ(F), σ(A\ σ(B)}.
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THEOREM 2. Suppose that A, B, F^O are finite order meromorphic functions
having only finitely many poles, that either ( i ) or (ii) below holds:

( i ) σ(A)<σ(B),
(ii) B is transcendental, and A is rational.

If the equation (1.3) has meromorphic solutions f(z), then
(a) All meromorphic solutions of (1.3) satisfy (1.4) with at most one possible

finite order meromorphic solution /0. // all solutions of (1.3) are meromorphic,
then (1.3) must have solutions which satisfy (1.4).

(b) // there exists a finite order meromorphic solution f0 in case (a), then
/o satisfies

), σ(B), σ(F)\.

If 2(/oK*(/o), σ(F)Φσ(B), then σ(fo)=max{σ(B), σ(F)}.

THEOREM 3. Suppose that A, B, F^Q are meromorphic functions having only
finitely many poles, F^cB(c is a constant), that either ( i ) or (ii) below holds:

( i ) σ(B)<σ(A)<l/2, and σ(F)<σ(A)
(ii) A is transcendental and σ(A)=0, B and F are rational.

If f(z) is & meromorphic solution of (1.3) then f satisfies (1.4).

THEOREM 4. Suppose that A, B, F ^ O are finite order meromorphic functions
having only finitely many poles, that either ( i ) or (ii) below holds:

( i ) σ(B)<σ(A)<l/2 and σ(A)£σ(F).
(ii) A, F are transcendental and σ(A)=0f B is rational.

If the equation (1.3) has meromorphic solution f(z), then:
(a) // B=0, then all meromorphic solutions of (1.3) satisfy (1.4) with some

possible finite order solutions f\=f'0-\-c (/Ό is some finite order meromorphic solu-
tion, C is an arbitrary constant).

(b) // B^O, then all meromorphic solutions of (1.3) satisfy (1.4) with at most
one finite order meromorphic solution /<,.

(c) The finite order meromorphic solution fc of (1.3) satisfies

If σ(A)<σ(F), λ(fc)<σ(fc), then σ(fc)=σ(F)
(d) // all solutions of (1.3) are meromorphic, then (1.3) must have solutions

which satisfy (1.4).

§ 2. Lemmas

LEMMA 1. Suppose that f(z)=g(z)/h(z) is transcendental meromorphic func-
tion having only finitely many poles, where g{z) is a transcendental entire func-
tion, h is a polynomial. Let z be a point with \z\—r at which \g(z)\=M(r, g),
h(z)φθ, v(r) denote the centralindex of the entire function g(z), then
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(2.1) f'(z)/f(z)=Mr)/z)

holds for all \z\—r outside a subset E of r of finite logarithmic measure.

Proof. By f=g/h, we have

(2.2) f'(z)=(g'(z)/h{z))-g(zHh'{z)/h\z)).

On the other hand, from the Wiman-Valiron theory (see [10, 11, 12]), let z be
a point with \z\=r, at which \g(z)\=M(r, g), h(z)Φθ, then we have

(2.3) g'(z)=Mr)/z)g(zXl+o(l))

where £c(0, oo) has finite logarithmic measure.
Substituting (2.3) into (2.2), we have

(2.4)

Since g{z) is transcendental, we have (v(r))~ι-*o(r->oo). And h{z) is a polyno-
mial, \z-h'(z)/h(z)\=O(\) (r-oo), so

(2.5)

Therefore, by (2.4) and (2.5), we obtain

f'(z)={v{r)/z) f{z)

This proves Lemma 1.

LEMMA 2. Suppose that A, B satisfy the hypotheses of Theorem 1. // g(z)
^0 is a meromorphic solution of the homogeneous linear differential equation

(2.6) g"+Ag'+Bg=0

then σ(g)=oo.

Proof. If 0(gX°°f then we have from (2.6)

mix, B)^m(r, A)+m(r, g"/g)+m(r, g'/g)=m(r, A)+O(logr)

If A is transcendental, then

Πm log m(r, B)/\og r^ϊϊrn log m(r, A)/\og r
r-*oo r->oo

if 4̂ is rational, then lim^oo m(r, B)/\og r^]\mr^eom(r, ^4)/log r<M(M>0 is
some constant), this contradict on the hypotheses A, B.

LEMMA 3. Suppose that A, B satisfy hypotheses of Theorem 3 or Theorem
4. // g(z)^0 is a meromorphic solution of (2.6), then: if B^O, then σ(g)=oo
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if B=Q, then either g(z) is a constant, or σ(g)=oo.

Proof. Assume that g(z) is a transcendental meromorphic solution and
<^{g)—tf<oo. By (2.6) and fact that A, B have only finitely many poles, it is
easy to see that g(z) has only finitely many poles.

Now set

(2.7) g(z)=u(z)/p(z), A(z)= uA/pA(z), B(z)= uB(z)/pB(z)

where p, pA> pB are polynomials, u, uAy uB are entire functions, u, uA are
transcedental, and σ(uA)=σ(A)<l/2, σ(uB)=σ(B), σ(u)=σ(g)=σ

From Lemma 1, let z be a point with \z\=r at which \u(z)\—M(r, u), then

(2.8) g\z)/g{z)=W)/z)

holds for all \z\=r outside a set Ex of r of finite logarithmic measure, where,
v{r) denotes the centralindex of the entire function u(z).

On the other hand, by σ(g)=σ<oo, and Corollary 2 of [7], we have

(2.9) \g"(z)/g(z)\£\z\*<+1

for all \z\=r&E2yJl0, 1], £ 2 C(1, ©o) has finite logarithmic measure.
From (2.6) and (2.7), we have

(2.10) \UAg'/g\£\pA'g"/g\ + \pAUB/pB\.

Now divide the discussion into two cases.

CASE I. Suppose that σ(uA)=σ(A)>0. Then we take p, τ such that

σ(uB)=σ(B)<p<τ<σ(uA)<l/2.

From Theorem of cos(πσ) type in [2, 3], it is easy to know that there exists
a subset Hd(l, +©o) with infinite logarithmic measure, such that if \z\=r^H,
then

(2.11) log I uA{z)\>r\ log | uB(z)\<rf>

By (2.9H2.11), for \z\ = r e H-iE^EAJlO, 1]), (//-(£iW£ 2U[0, 1]) has
infinite logarithmic measure) we have as r-^oo,

(2.12) U8, fir'CarV^Cίr)!^UΓHI^•ίn ̂ C ^ V ^ W I +

(2.13) I z2 ^ 7 ^ I^OCr^O exp(rO/exp(rr) — > 0,

where Mi>0 is a constant.

CASE II. Suppose that σ(uA)=σ(A)=0, uA is transcendental, then also from
Theorem of cos(π(τ) type, there exists a subset i/iC(l, oo) with infinite logari-
thmic measure such that if \z\=r^Hu then.

(2.14) min{log |w^) | : \z\=r}/\ogr—> co ( r_+oo).
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By (2.9), (2.12) and (2.14), for \z\=r^H1-(Eί\JE2\J[0, 1]) {H1-{Eι\JE2\J
[0, 1]) has infinite logarithmic measure), we have as r^oo

(2.15) \z* g'(z)/g(z)\mrMl)/jninIuA(z)\ —> 0 .

Therefore, for both cases above, by (2.13) or (2.15),

(2.16) \z2-g\z)/g{z)\ — > 0 ( r - oo)

holds for r^H-(E1KjE2\Jί0ί 1]), or re i/ 1 -(£ 1 UE 2 U[O, 1]).
But by (2.8), for such z satisfying |z |=rei/—(£iUJ5 a U[0, 1]) or r^Hx-

(E1\JE2KJ[Q, 1]) and \u(z)\=M(r, u), r-^oo, we have

(2.17) z* g'(z)/g(z)=z v(r) (l+o(l)).

By (2.16) and (2.17), we have y(r)->0 (r-*oo). This contradicts the fact that
u is a transcendental entire function if and only if v(r)->oo (as r->oo). There-
fore, w(2) either is a polynomial, or satisfies σ(u)=oof i.e. g(z) either is a
rational function, or satisfies σ(g)=oo.

By (2.6), it is easy to know that if g(z)^0 is a nonconstant rational func-
tion, then gf/-\-Agr+Bg is a transcendental function with σ(^//+i4
σ(Λ), this is a contradiction; if B^O and #(2) is a constant C^O, then
Ag'+Bg=CB^0, this contradicts (2.6).

LEMMA 4. Suppose that A, B, F^O are finite order meromorphic functions.
If f{z) is a meromorphic solution of equation (1.3) with (j(/)=oo, then J(/)=

Proof. We can write from (1.3)

(2.18) l/f=(X/FXf"/f)+A(f'/f)+B),

hence

(2.19) N(r, l/f)£2N(r, l/f)+N(r, l/F)+N(r, A)+N(r, B).

Applying the Lemma of the logarithmic derivative, from (2.18), we have

(2.20) m{χ, l/f)<m(r, l/F)+m(r, A)+m(r, B)+0{\og T(r, /)+log r\ (r$E

where a subset Ed(Q, 00) has finite linear measure, (2.19) and (2.20) give

T(r, f)=T(r,
(2.21) _

2N( l / / ) T ( 1 / F T ( A ) T ( £ ) O { l T(r, / ) + l o g r }

Since <;(/)=00, there exists {rn}(r»—>°̂ ) such that

limlogΓ(rί,/)/logr;=oo.
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Setting the linear measure of E, mE—δ<oof then there exists a point r n e
ίr'n, K+δ+U-E. From

log T(rn, /)/log r»^log T(r'n, f)/\og(K+δ+l)

= log T(ri/)/[log r;
we have

lim log T(rn,
(2.22) r»-~

^ lim log

For a given arbitrary large j8(j8>c=max{<τ(i4), (7(5), σ(F)}), by (2.22),

(2.23)

hold for sufficiently large rn.
On the other hand, for a given ε (0<ε<β—c), for sufficiently large rn, we

have

T(rn, A)<rc

n+
ε, T{rn, B)<rc

n

+S, T{rn,

By (2.23) as rn-*oof we have

T(rn, A)/T{rn, / )<r c / ε "^ — ^ 0

T{rnf B)/T{rn, f)<rc

n

+s^ —> 0

T(rn, F)/T(rn, / ) < r c

w

+ δ ^ — ^ 0
Therefore,

(2.24) T(r,, i4)<(l/5)T(rn,

(2.25) T(rn, β)<(l/5)Γ(r n,

(2.26) T(rn, F)<(l/5)T(rn,

hold for sufficiently large rn. From

O{logT(rn,
we obtain that

(2.27) O {log T{rn, /)+log rn} ^

also holds for sufficiently large rn. Substituting (2.24)-(2.27) into (2.21), we
obtain

(2.28) T{rn, f)<10N(r, 1//).

By (2.22) and (2.28), we have

00= lim log T(rn, /)/log rn^\mι log N(rn,
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therefore, I(/)=JK/)=<r(/)=oo.

§ 3. Proofs of theorems

Proof of Theorem 1. (a) Assume that f0 is a meromorphic solution of
(1.3) with σ(f0)=σ<oo. If / ^ / Ό ) is second finite order meromorphic solution
of (1.3), then σ(f1—f0)<oo> and fi—fo is a meromorphic solution of the cor-
responding homogeneous equation (2.6) of (1.3). But o{fι—fo)—oo from Lemma
2, this is a centradiction.

Now assume that f(z) is an infinite order meromorphic solution of (1.3),
then J(f)z=X(f)—σ(f)=oo from Lemma 4.

If all solutions of (1.3) are meromorphic functions, then all solutions of the
corresponding homogeneous equation (2.6) of (1.3) are meromorphic functions.
Assume {fu f2} is fundamental solution set of (2.6). By [5, p. 412], we have

m(r, £)=O{log[max(T(r, f 8 ) , s = l , 2)]+O(logr)}.

Since B is transcendental, there exists at least fx or / 2 with infinite order of
growth. If /o is a solution of (1.3), then every solution / of (1.3) can be
written in the form

where clf c2 are arbitrary constants. Hence (1.3) must have infinite order solu-
tions, and all infinite order solutions satisfy (1.4) from Lemma 4.

(b) For the finite order meromorphic solution f0 of (1.3), using the ana-
logous proof as in Lemma 4, and remarking m(r, /W )//)=O{log r}(/=l, 2) from
G{fo)=o<°°, we easily know that

(3.1) T{rf fQ)^2N(r, 1//O)+T(r, F)+T(r, A)+T{r, B)+O{log r\

holds for all r. Hence

(3.2) <K/o)^max{2(/o), σ(F), σ(A), σ(B)}

If λ(fo)<σ(fo), and σ(F), σ(Λ), σ(B) are different from each other, then from
(1.3), we have

(3.3) <7(/o)^max{<7(F), σ{A\ σ{B)\.

Therefore, (3.2) and (3.3) give

(3.4) σ(/β)=max{σ(F), σ(A), σ(B)}.

Proof of Theorem 2. Theorem 2 immediately follows from Theorem 1.

Proof of Theorem 3. From F^cB, we know that (1.3) has no constant
solutions. If / is a nonconstant rational function, then for case ( i ) , we have
σ{f"-\-Af'-\-Bf)=σ{A)>σ{F)) for case (ii), we have f"+Af'+Bf is trans-
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cendental, but F is a rational function. Hence (1.3) has no rational solutions,
i.e. / must be a transcendental meromorphic solution.

Now assume that / is a transcendental meromorphic solution with σ(f)=
<τ<oo. From (1.3) and fact that A, B, F have only finitely many poles, we
know that / has only finitely many poles.

Set

(3.5) f(z)=u(z)/p(z), A(z)=uA/pA, B = uB/pB, F = uF/pF

where u, uA, uB, uF are entire and u, uA are transcendental p, pA, pB, PF are

polynomials, σ(u)=σ(f)=σ, σ(uA)=σ(u), σ(uB)=0(B), σ(uF)—σ(F).
For /, using the same reasoning as in Lemma 3, by Lemma 1, we have

(3.6) /W/(*)=Mr)/z)(l+o(l)) r ί £ 1 ,

where \z\—r, \u(z)\=M(r, u), £id(l, ©o) has finite logarithmic measure, v{r)
denotes the centralindex of u(z). From Corollary 2 of [7], we have

(3.7) \f"(z)/f(z)\<\z\2a+1

where E2d(l, °°) has finite logarithmic measure. By (3.5) and (1.3), we obtain

(3.8)

From u(z) is a transcendental entire function, we take z satisfying \z\=r,
\u(z)\=M(r, u), then for sufficiently large \z\, we have |w(^)|>land \uFppA\/
\pFu\<\ uFppA \/\pF\. By (3.8), w e h a v e

(3.9) \uAf'/f\^ί\pApBf"/f\ + \pAUB\y\pB\ + \uFppA\/\pF\

for sufficiently large \z\, and z satisfying \z\=r, \u(z)\=M(r, u).
Divide the discussion into two cases.

CASE I. Suppose that σ(uA)=σ(A)>0, then we take p, τ, such that

max{σ(uB), σ(uF)}<p<τ<σ(uA)<l/2.

From theorem of cos(π<;) type [2, 3], it is easy to know that there exists a
subset i/c(l, oo) with infinite logarithmic measure such that if \z\=r^H, then

(3.10) log I uA{z) I >r\ log | uB(z) | <r^, log | uF(z) \ <r? .

By (3.6M3.10), for \z\ = r^H-(E1\JE2VJ[0f 1]) and z satifying \u(z)\ =
M(r, u), r-^oo, we have

Iz1' f\z)/f{z) I < [ i z2pApBpFf'/f I +1 z2pApFuBI
(3.11)

+ \z2uFppApB\VI PFPBUA\ <O(rMi) exp(rθ/exp(r7) —> 0

where Mx>0 is a constant.

CASE II. Suppose that σ(uA)=σ(A)=0, uA is transcendental, then also from
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Theorem of cos(π<7) type, there exists a subset i/iC(l, oo) with infinite logari-
thmic, measure such that if \z\=r^Hlf then

(3.12) min{log |w^) | : \z\=r}/logr—> oo (r->«>).

By (3.6M3.9), (3.12), and the fact that B, F are rational function, for | z | =
r(ΞH1—(E1UE2UlQA']), and z satisfying \u(z)\=M(r, u), r->°oy we have

(3.13) I z* f'(z)/f(z) I ^ 0{rM^)l min | z ^ ) | — > 0.

Therefore, for both cases above, by (3.11) or (3.13), for re i/—(
(or r^Hί—(E1\jE2^J[0, 1]) and z satisfying \u(z)\=M(r, u), r-+oo, we have

(3.14) I *"/'(*)//(*) I — > 0 .

On the other hand, for r^H—^KJEjUίO, 1]) (or r e f t - ^ i U E s W t O , 1])
and 2: satisfying |2r|=r, |u(^) |=M(r, w), by (3.6) as r->oo, we heve

(3.15) zψ(z)/f(z)~z »(r).

(3.15) and (3.14) give v(r)—>0(r—>oo), this contradicts the fact that u is a trans-
cendental entire function if and only if ι>(r)-^oo(r-*oo). Therefore, we have
(j(/)=oo. From Lemma 4, we know that / satisfies (1.4).

Proof of Theorem 4. (a) If B=0, then arbitrary constant c is a solution
of the corresponding homogeneous equation (2.6) of (1.3). Assume / 0 is a finite
order meromorphic solution of (1.3), then fc-=f0-\-c are also solutions of (1.3).
If f^fo) is second finite order meromorphic solution of (1.3), then / i — / 0 is
a constant solution of the corresponding homogeneous equation (2.6) of (1.3).
From Lemma 3 and σ(f1—f0)<oo, all finite order meromorphic solutions of (1.3)
are of the form fe=fo+c.

If / is a meromorphic solution of (1.3) with σ(f)=oo, then I(/)=Λ(/)=<τ(/)
-co from Lemma 4.

(b) If B^O, using the same reasoning as in Theorem 1 by Lemma 3, we
know that (1.3) has at most one finite order meromorphic solution / 0 . If / is
a meromorphic solution of (1.3) with σ(f)=oo, then I(f)=λ(f)z=σ(f)=oo from
Lemma 4.

(c) For the finite order meromorphic solution fc of (1.3), using the same
reasoning as in Theorem 1, and remarking σ(Λ)<σ(F), we can obtain

(3.16) *(/e)^max{2(/e), σ(F)}

If λ{fc)<o(fc) and σ(A)<σ(F), then σ{fc)^σ{F) from (1.3), combining (3.4),
we have σ(fc)=σ(F).

(d) We can use the same proof as in Theorem 1 (a).
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§4. Examples for having finite order solutions

Example 1. The equation

satisfies hypothses of Theorem 1 or Theorem 2, it has a finite order solution

Example 2. Suppose A is a transcendental meromorphic function satisfying

the additional hypothesis of A in Theorem 4, then the equation

f" + Af'+zf=(A+z+l)eg

has finite order solution fo=ez.
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