THE COMPLEX OSCILLATION THEORY OF f'' + Af' + Bf = F, WHERE $A, B, F \equiv 0$ ARE TRANSCENDENTAL MEROMORPHIC FUNCTIONS

By Xian-yu Li

Abstract

In this paper, we investigate the complex oscillation of the differential equation

$$f'' + Af' + Bf = F$$

where A, B, $F \not\equiv 0$ are finite order transcendental meromorphic functions. In some cases we obtain estimates of the order of growth and the exponent of convergence of the zero-sequence of solutions for above equation. Theorem 3 and Theorem 4 are the main results among the Theorems in this paper.

§ 1. Introduction and results

In this paper, we will use the standard notations of the Nevanlinna theory (e.g. see [9]). In addition, we will also use the same notations as in [1], i.e. we will use, $\lambda(f)$ and $\bar{\lambda}(f)$ to denote respectively the exponents of convergence of the zero-sequence and the sequence of distinct zeros of f(z), $\sigma(f)$ to denote the order of growth of f(z). The individual notations will be shown when they appear.

G. Gundersen proved in [8]:

THEOREM A. If $f \equiv 0$ is a solution of

(1.1)
$$f'' + Af' + Bf = 0$$
,

where A, B are entire such that

(i)
$$\sigma(B) < \sigma(A) < 1/2$$

or

AMS No. 34A20, 30D35

Received July 19, 1993.

Key words: Non-homogeneous linear differential equation, Transcendental meromorphic function, Zero-sequence, Exponent of convergence, Order of growth.

(ii) A is transcendental with $\sigma(A)=0$ and B is a polynomial, then $\sigma(f)=\infty$.

Gao Shi-an proved in [6]

THEOREM B. For the equation

$$(1.2) f'' + a_0 f = p_1 e^{p_0}$$

where a_0 , p_0 , p_1 are polynomials, deg $a_0=n$, deg $p_0<1+(n/2)$

(a) If n>1 and $\deg p_1 < n$, then every solution f of (1.2) satisfies

$$\bar{\lambda}(f) = \lambda(f) = \sigma(f) = 1 + (n/2) > \deg p_0$$
.

(b) If deg $p_1 \ge n \ge 0$, then the solution f of (1.2) either satisfies $\bar{\lambda}(f) = \lambda(f) = \sigma(f) = 1 + (n/2) > \deg p_0$, or is of the form $f = Qe^{p_0}$, where Q is a polynomial. And if (1.2) has a solution of the form Qe^{p_0} with Q polynomial, then (1.2) must have solutions which satisfy $\bar{\lambda}(f) = \lambda(f) = \sigma(f) = 1 + (n/2) > \deg p_0$.

Chen Zong-xuan and Gao Shi-an investigated the complex oscillation of non-homogeneous linear differential equations with rational coefficients in [4].

In this paper, we will investigate the complex oscillation of the second order non-homogeneous linear differential equation

$$(1.3) f'' + Af' + Bf = F$$

where $A, B, F \not\equiv 0$ are transcendental meromorphic functions. We will prove the following four theorems:

THEOREM 1. Suppose that A, B, $F \not\equiv 0$ are finite order meromorphic functions, that either (i) or (ii) below holds:

- (i) $\overline{\lim}_{r\to\infty} \log m(r, A)/\log r < \overline{\lim}_{r\to\infty} \log m(r, B)/\log r$
- (ii) $\lim_{n \to \infty} m(r, B)/\log r = \infty$, and A is rational.

If non-homogeneous linear differential equation (1.3) has meromorphic solution f(z), then

(a) All meromorphic solutions of (1.3) satisfy

(1.4)
$$\bar{\lambda}(f) = \lambda(f) = \sigma(f) = \infty$$

with at most one possible finite order meromorphic solution f_0 . If all solutions of (1.3) are meromorphic, then (1.3) must have solutions which satisfy (1.4).

(b) If there exists a finite order meromorphic solution of in case (a), then f_0 satisfies

$$\sigma(f_0) \leq \max{\{\overline{\lambda}(f_0), \ \sigma(F), \ \sigma(A), \ \sigma(B)\}}.$$

If $\bar{\lambda}(f_0) < \sigma(f_0)$, and $\sigma(F)$, $\sigma(A)$, $\sigma(B)$, are unequal each other, then

$$\sigma(f_0) = \max \{ \sigma(F), \ \sigma(A), \ \sigma(B) \}.$$

THEOREM 2. Suppose that A, B, $F \equiv 0$ are finite order meromorphic functions having only finitely many poles, that either (i) or (ii) below holds:

- (i) $\sigma(A) < \sigma(B)$,
- (ii) B is transcendental, and A is rational.
- If the equation (1.3) has meromorphic solutions f(z), then
- (a) All meromorphic solutions of (1.3) satisfy (1.4) with at most one possible finite order meromorphic solution f_0 . If all solutions of (1.3) are meromorphic, then (1.3) must have solutions which satisfy (1.4).
- (b) If there exists a finite order meromorphic solution f_0 in case (a), then f_0 satisfies

$$\sigma(f_0) \leq \max{\{\overline{\lambda}(f_0), \ \sigma(B), \ \sigma(F)\}}.$$

If $\overline{\lambda}(f_0) < \sigma(f_0)$, $\sigma(F) \neq \sigma(B)$, then $\sigma(f_0) = \max\{\sigma(B), \sigma(F)\}$.

THEOREM 3. Suppose that A, B, $F \not\equiv 0$ are meromorphic functions having only finitely many poles, $F \not\equiv cB(c \text{ is a constant})$, that either (i) or (ii) below holds:

- (i) $\sigma(B) < \sigma(A) < 1/2$, and $\sigma(F) < \sigma(A)$
- (ii) A is transcendental and $\sigma(A)=0$, B and F are rational.
- If f(z) is a meromorphic solution of (1.3) then f satisfies (1.4).

THEOREM 4. Suppose that A, B, $F \not\equiv 0$ are finite order meromorphic functions having only finitely many poles, that either (i) or (ii) below holds:

- (i) $\sigma(B) < \sigma(A) < 1/2 \text{ and } \sigma(A) \leq \sigma(F)$.
- (ii) A, F are transcendental and $\sigma(A)=0$, B is rational.
- If the equation (1.3) has meromorphic solution f(z), then:
- (a) If $B \equiv 0$, then all meromorphic solutions of (1.3) satisfy (1.4) with some possible finite order solutions $f_c = f_0 + c$ (f_0 is some finite order meromorphic solution, C is an arbitrary constant).
- (b) If $B \equiv 0$, then all meromorphic solutions of (1.3) satisfy (1.4) with at most one finite order meromorphic solution f_0 .
 - (c) The finite order meromorphic solution f_c of (1.3) satisfies

$$\sigma(f_c) \leq \max{\{\sigma(F), \overline{\lambda}(f_c)\}}.$$

If $\sigma(A) < \sigma(F)$, $\bar{\lambda}(f_c) < \sigma(f_c)$, then $\sigma(f_c) = \sigma(F)$

(d) If all solutions of (1.3) are meromorphic, then (1.3) must have solutions which satisfy (1.4).

§ 2. Lemmas

LEMMA 1. Suppose that f(z)=g(z)/h(z) is transcendental meromorphic function having only finitely many poles, where g(z) is a transcendental entire function, h is a polynomial. Let z be a point with |z|=r at which |g(z)|=M(r,g), $h(z)\neq 0$, $\nu(r)$ denote the centralindex of the entire function g(z), then

(2.1)
$$f'(z)/f(z) = (\nu(r)/z) (1+o(1))$$

holds for all |z|=r outside a subset E of r of finite logarithmic measure.

Proof. By f = g/h, we have

(2.2)
$$f'(z) = (g'(z)/h(z)) - g(z) \cdot (h'(z)/h^{2}(z)).$$

On the other hand, from the Wiman-Valiron theory (see [10, 11, 12]), let z be a point with |z|=r, at which |g(z)|=M(r,g), $h(z)\neq 0$, then we have

(2.3)
$$g'(z) = (\nu(r)/z)g(z)(1+o(1)) \qquad r \in E$$

where $E\subset(0,\infty)$ has finite logarithmic measure.

Substituting (2.3) into (2.2), we have

$$(2.4) f'(z) = (\nu(r)/z)(1+o(1))(g(z)/h(z)) - g(z)(h'(z)/h^{2}(z))$$

$$= (\nu(r)/z) \cdot (g(z)/h(z))\lceil (1+o(1)) - (\nu(r)/z)^{-1}h'/h \rceil \ (r \in E).$$

Since g(z) is transcendental, we have $(\nu(r))^{-1} \rightarrow o(r \rightarrow \infty)$. And h(z) is a polynomial, $|z \cdot h'(z)/h(z)| = O(1)$ $(r \rightarrow \infty)$, so

(2.5)
$$(\nu(r)/z)^{-1}(h'/h) = o(1) \ (r \to \infty) \ (r \in E).$$

Therefore, by (2.4) and (2.5), we obtain

$$f'(z) = (\nu(r)/z) \cdot f(z) \cdot (1+o(1)) \quad r \in E$$
.

This proves Lemma 1.

LEMMA 2. Suppose that A, B satisfy the hypotheses of Theorem 1. If g(z) $\equiv 0$ is a meromorphic solution of the homogeneous linear differential equation

$$(2.6) g'' + Ag' + Bg = 0$$

then $\sigma(g) = \infty$.

Proof. If $\sigma(g) < \infty$, then we have from (2.6)

$$m(r, B) \le m(r, A) + m(r, g''/g) + m(r, g'/g) = m(r, A) + O(\log r)$$

If A is transcendental, then

$$\overline{\lim} \log m(r, B)/\log r \leq \overline{\lim} \log m(r, A)/\log r$$
;

if A is rational, then $\lim_{r\to\infty} m(r, B)/\log r \le \lim_{r\to\infty} m(r, A)/\log r < M(M>0$ is some constant), this contradict on the hypotheses A, B.

Lemma 3. Suppose that A, B satisfy hypotheses of Theorem 3 or Theorem 4. If $g(z) \not\equiv 0$ is a meromorphic solution of (2.6), then: if $B \not\equiv 0$, then $\sigma(g) = \infty$;

if $B \equiv 0$, then either g(z) is a constant, or $\sigma(g) = \infty$.

Proof. Assume that g(z) is a transcendental meromorphic solution and $\sigma(g) = \sigma < \infty$. By (2.6) and fact that A, B have only finitely many poles, it is easy to see that g(z) has only finitely many poles.

Now set

(2.7)
$$g(z) = u(z)/p(z), \quad A(z) = u_A/p_A(z), \quad B(z) = u_B(z)/p_B(z)$$

where p, p_A , p_B are polynomials, u, u_A , u_B are entire functions, u, u_A are transcedental, and $\sigma(u_A) = \sigma(A) < 1/2$, $\sigma(u_B) = \sigma(B)$, $\sigma(u) = \sigma(g) = \sigma$

From Lemma 1, let z be a point with |z|=r at which |u(z)|=M(r, u), then

(2.8)
$$g'(z)/g(z) = (\nu(r)/z) (1+o(1))$$

holds for all |z|=r outside a set E_1 of r of finite logarithmic measure, where, $\nu(r)$ denotes the centralindex of the entire function u(z).

On the other hand, by $\sigma(g) = \sigma < \infty$, and Corollary 2 of [7], we have

$$(2.9) |g''(z)/g(z)| \le |z|^{2\sigma+1}$$

for all $|z|=r \notin E_2 \cup [0, 1]$, $E_2 \subset (1, \infty)$ has finite logarithmic measure. From (2.6) and (2.7), we have

$$(2.10) |u_A g'/g| \le |p_A \cdot g''/g| + |p_A u_B/p_B|.$$

Now divide the discussion into two cases.

CASE I. Suppose that $\sigma(u_A) = \sigma(A) > 0$. Then we take ρ , τ such that

$$\sigma(u_B) = \sigma(B) < \rho < \tau < \sigma(u_A) < 1/2$$
.

From Theorem of $\cos(\pi\sigma)$ type in [2, 3], it is easy to know that there exists a subset $H\subset(1, +\infty)$ with infinite logarithmic measure, such that if $|z|=r\in H$, then

$$(2.11) \qquad \log |u_A(z)| > r^{\tau}, \qquad \log |u_B(z)| < r^{\rho}$$

By (2.9)-(2.11), for $|z| = r \in H-(E_1 \cup E_2 \cup [0, 1])$, $(H-(E_1 \cup E_2 \cup [0, 1])$ has infinite logarithmic measure) we have as $r \to \infty$,

$$(2.12) |z^2, g'(z)/g(z)| \le |z|^2 [|p_A \cdot p_B \cdot g''(z)/g(z)| + |p_A u_B|] / |p_B u_A|$$

$$(2.13) |z^2 \cdot g'/g| \leq O(r^{M_1}) \cdot \exp(r^{\rho}) / \exp(r^{\tau}) \longrightarrow 0,$$

where $M_1>0$ is a constant.

CASE II. Suppose that $\sigma(u_A) = \sigma(A) = 0$, u_A is transcendental, then also from Theorem of $\cos(\pi\sigma)$ type, there exists a subset $H_1 \subset (1, \infty)$ with infinite logarithmic measure such that if $|z| = r \in H_1$, then.

$$(2.14) \qquad \min \left\{ \log |u_A(z)| : |z| = r \right\} / \log r \longrightarrow \infty \qquad (r \to \infty).$$

By (2.9), (2.12) and (2.14), for $|z|=r\in H_1-(E_1\cup E_2\cup [0, 1])$ $(H_1-(E_1\cup E_2\cup [0, 1])$ has infinite logarithmic measure), we have as $r\to\infty$

$$(2.15) |z^2 \cdot g'(z)/g(z)| \leq 0(r^{M_1})/\min|u_A(z)| \longrightarrow 0.$$

Therefore, for both cases above, by (2.13) or (2.15),

$$(2.16) |z^2 \cdot g'(z)/g(z)| \longrightarrow 0 (r \to \infty)$$

holds for $r \in H - (E_1 \cup E_2 \cup [0, 1])$, or $r \in H_1 - (E_1 \cup E_2 \cup [0, 1])$.

But by (2.8), for such z satisfying $|z|=r\in H-(E_1\cup E_2\cup [0, 1])$ or $r\in H_1-(E_1\cup E_2\cup [0, 1])$ and $|u(z)|=M(r, u), r\to\infty$, we have

(2.17)
$$z^{2} \cdot g'(z)/g(z) = z \cdot \nu(r) \ (1+o(1)).$$

By (2.16) and (2.17), we have $\nu(r) \rightarrow 0$ $(r \rightarrow \infty)$. This contradicts the fact that u is a transcendental entire function if and only if $\nu(r) \rightarrow \infty$ (as $r \rightarrow \infty$). Therefore, u(z) either is a polynomial, or satisfies $\sigma(u) = \infty$, i.e. g(z) either is a rational function, or satisfies $\sigma(g) = \infty$.

By (2.6), it is easy to know that if $g(z) \equiv 0$ is a nonconstant rational function, then g'' + Ag' + Bg is a transcendental function with $\sigma(g'' + Ag' + Bg) = \sigma(A)$, this is a contradiction; if $B \equiv 0$ and g(z) is a constant $C \neq 0$, then $g'' + Ag' + Bg = CB \equiv 0$, this contradicts (2.6).

LEMMA 4. Suppose that A, B, $F \equiv 0$ are finite order meromorphic functions. If f(z) is a meromorphic solution of equation (1.3) with $\sigma(f) = \infty$, then $\overline{\lambda}(f) = \lambda(f) = \infty$.

Proof. We can write from (1.3)

$$(2.18) 1/f = (1/F)(f''/f) + A(f'/f) + B),$$

hence

$$(2.19) N(r, 1/f) \leq 2\overline{N}(r, 1/f) + N(r, 1/F) + N(r, A) + N(r, B).$$

Applying the Lemma of the logarithmic derivative, from (2.18), we have

$$(2.20) \quad m(r, 1/f) \le m(r, 1/F) + m(r, A) + m(r, B) + 0\{\log T(r, f) + \log r\} \ (r \in E)$$

where a subset $E \subset (0, \infty)$ has finite linear measure, (2.19) and (2.20) give

$$T(r, f) = T(r, 1/f) + O(1)$$

$$(2.21) \le 2\overline{N}(r, 1/f) + T(r, 1/F) + T(r, A) + T(r, B) + O\{\log T(r, f) + \log r\} \ (r \in E).$$

Since $\sigma(f) = \infty$, there exists $\{r'_n\}(r'_n \to \infty)$ such that

$$\lim_{r_n'\to\infty}\log T(r_n', f)/\log r_n'=\infty.$$

Setting the linear measure of E, $mE=\delta < \infty$, then there exists a point $r_n \in [r'_n, r'_n + \delta + 1] - E$. From

$$\log T(r_n, f)/\log r_n \ge \log T(r'_n, f)/\log(r'_n + \delta + 1)$$

$$= \log T(r'_n f)/\lceil \log r'_n + \log \lceil 1 + (\delta + 1)/r'_n \rceil \rceil,$$

we have

$$(2.22) \quad \lim_{r_n \to \infty} \log T(r_n, f) / \log r_n$$

$$\geq \lim_{r'_n \to \infty} \log T(r'_n, f) / [\log r'_n + \log(1 + (\delta + 1)/r'_n] = \infty.$$

For a given arbitrary large $\beta(\beta > c = \max{\{\sigma(A), \sigma(B), \sigma(F)\}})$, by (2.22),

$$(2.23) T(r_n, f) \ge r_n^{\beta}$$

hold for sufficiently large r_n .

On the other hand, for a given $\varepsilon (0 < \varepsilon < \beta - c)$, for sufficiently large r_n , we have

$$T(r_n, A) < r_n^{c+\varepsilon}, T(r_n, B) < r_n^{c+\varepsilon}, T(r_n, F) < r_n^{c+\varepsilon}.$$

By (2.23) as $r_n \rightarrow \infty$, we have

$$T(r_n, A)/T(r_n, f) < r_n^{c+\varepsilon-\beta} \longrightarrow 0$$

 $T(r_n, B)/T(r_n, f) < r_n^{c+\varepsilon-\beta} \longrightarrow 0$
 $T(r_n, F)/T(r_n, f) < r_n^{c+\varepsilon-\beta} \longrightarrow 0$

Therefore,

$$(2.24) T(r_n, A) < (1/5)T(r_n, f)$$

$$(2.25) T(r_n, B) < (1/5)T(r_n, f)$$

$$(2.26) T(r_n, F) < (1/5)T(r_n, f)$$

hold for sufficiently large r_n . From

$$O\{\log T(r_n, f) + \log r_n\} = o\{T(r_n, f)\},\$$

we obtain that

(2.27)
$$O\{\log T(r_n, f) + \log r_n\} \le (1/5)T(r_n, f)$$

also holds for sufficiently large r_n . Substituting (2.24)-(2.27) into (2.21), we obtain

(2.28)
$$T(r_n, f) < 10\overline{N}(r, 1/f)$$
.

By (2.22) and (2.28), we have

$$\infty = \lim_{r_n \to \infty} \log T(r_n, f) / \log r_n \leq \overline{\lim}_{r_n \to \infty} \log \overline{N}(r_n, 1/f) / \log r_n \leq \overline{\lambda}(f)$$

therefore, $\bar{\lambda}(f) = \lambda(f) = \sigma(f) = \infty$.

§ 3. Proofs of theorems

Proof of Theorem 1. (a) Assume that f_0 is a meromorphic solution of (1.3) with $\sigma(f_0) = \sigma < \infty$. If $f_1(\not\equiv f_0)$ is second finite order meromorphic solution of (1.3), then $\sigma(f_1 - f_0) < \infty$, and $f_1 - f_0$ is a meromorphic solution of the corresponding homogeneous equation (2.6) of (1.3). But $\sigma(f_1 - f_0) = \infty$ from Lemma 2, this is a centradiction.

Now assume that f(z) is an infinite order meromorphic solution of (1.3), then $\bar{\lambda}(f) = \lambda(f) = \infty$ from Lemma 4.

If all solutions of (1.3) are meromorphic functions, then all solutions of the corresponding homogeneous equation (2.6) of (1.3) are meromorphic functions. Assume $\{f_1, f_2\}$ is fundamental solution set of (2.6). By [5, p. 412], we have

$$m(r, B) = O\{\log[\max(T(r, f_s), s=1, 2)] + O(\log r)\}.$$

Since B is transcendental, there exists at least f_1 or f_2 with infinite order of growth. If f_0 is a solution of (1.3), then every solution f of (1.3) can be written in the form

$$f = c_1 f_1 + c_2 f_2 + f_0$$

where c_1 , c_2 are arbitrary constants. Hence (1.3) must have infinite order solutions, and all infinite order solutions satisfy (1.4) from Lemma 4.

(b) For the finite order meromorphic solution f_0 of (1.3), using the analogous proof as in Lemma 4, and remarking $m(r, f^{(j)}/f) = O(\log r)(j=1, 2)$ from $\sigma(f_0) = \sigma < \infty$, we easily know that

(3.1)
$$T(r, f_0) \leq 2\overline{N}(r, 1/f_0) + T(r, F) + T(r, A) + T(r, B) + O(\log r)$$

holds for all r. Hence

(3.2)
$$\sigma(f_0) \leq \max{\{\bar{\lambda}(f_0), \sigma(F), \sigma(A), \sigma(B)\}}$$

If $\bar{\lambda}(f_0) < \sigma(f_0)$, and $\sigma(F)$, $\sigma(A)$, $\sigma(B)$ are different from each other, then from (1.3), we have

(3.3)
$$\sigma(f_0) \ge \max \{ \sigma(F), \ \sigma(A), \ \sigma(B) \}.$$

Therefore, (3.2) and (3.3) give

(3.4)
$$\sigma(f_0) = \max\{\sigma(F), \ \sigma(A), \ \sigma(B)\}.$$

Proof of Theorem 2. Theorem 2 immediately follows from Theorem 1.

Proof of Theorem 3. From $F \not\equiv cB$, we know that (1.3) has no constant solutions. If f is a nonconstant rational function, then for case (i), we have $\sigma(f'' + Af' + Bf) = \sigma(A) > \sigma(F)$; for case (ii), we have f'' + Af' + Bf is trans-

cendental, but F is a rational function. Hence (1.3) has no rational solutions, i.e. f must be a transcendental meromorphic solution.

Now assume that f is a transcendental meromorphic solution with $\sigma(f) = \sigma < \infty$. From (1.3) and fact that A, B, F have only finitely many poles, we know that f has only finitely many poles.

Set

(3.5)
$$f(z) = u(z)/p(z)$$
, $A(z) = u_A/p_A$, $B = u_B/p_B$, $F = u_F/p_F$

where u, u_A , u_B , u_F are entire and u, u_A are transcendental p, p_A , p_B , p_F are polynomials, $\sigma(u) = \sigma(f) = \sigma$, $\sigma(u_A) = \sigma(u)$, $\sigma(u_B) = \sigma(B)$, $\sigma(u_F) = \sigma(F)$.

For f, using the same reasoning as in Lemma 3, by Lemma 1, we have

(3.6)
$$f'(z)/f(z) = (\nu(r)/z)(1+o(1)) \qquad r \in E_1$$
,

where |z|=r, |u(z)|=M(r, u), $E_1\subset(1, \infty)$ has finite logarithmic measure, $\nu(r)$ denotes the centralindex of u(z). From Corollary 2 of [7], we have

$$(3.7) |f''(z)/f(z)| \le |z|^{2\sigma+1} r \in E_2 \cup [0, 1]$$

where $E_2\subset(1,\infty)$ has finite logarithmic measure. By (3.5) and (1.3), we obtain

$$(3.8) |u_A f'/f| \le \lceil |p_A \cdot p_B \cdot f''/f| + |p_A u_B| \rceil / |p_B| + |u_F p_A| / |p_F u|.$$

From u(z) is a transcendental entire function, we take z satisfying |z|=r, |u(z)|=M(r,u), then for sufficiently large |z|, we have |u(z)|>1 and $|u_Fpp_A|/|p_Fu|<|u_Fpp_A|/|p_F|$. By (3.8), we have

$$(3.9) |u_A f'/f| \le \lceil |p_A p_B f''/f| + |p_A u_B| \rceil / |p_B| + |u_F p_A| / |p_F|$$

for sufficiently large |z|, and z satisfying |z|=r, |u(z)|=M(r, u). Divide the discussion into two cases.

CASE I. Suppose that $\sigma(u_A) = \sigma(A) > 0$, then we take ρ , τ , such that $\max \{ \sigma(u_B), \sigma(u_F) \} < \rho < \tau < \sigma(u_A) < 1/2$.

From theorem of $\cos(\pi\sigma)$ type [2, 3], it is easy to know that there exists a subset $H \subset (1, \infty)$ with infinite logarithmic measure such that if $|z| = r \in H$, then

(3.10)
$$\log |u_A(z)| > r^{\tau}, \log |u_B(z)| < r^{\rho}, \log |u_F(z)| < r^{\rho}.$$

By (3.6)-(3.10), for $|z| = r \in H - (E_1 \cup E_2 \cup [0, 1])$ and z satisfying $|u(z)| = M(r, u), r \to \infty$, we have

$$(3.11) |z^{2} \cdot f'(z)/f(z)| \leq [|z^{2}p_{A}p_{B}p_{F}f''/f| + |z^{2}p_{A}p_{F}u_{B}| + |z^{2}u_{F}p_{A}p_{B}|^{\gamma}/|p_{F}p_{B}u_{A}| \leq O(r^{M_{1}}) \exp(r^{\rho})/\exp(r^{\tau}) \longrightarrow 0$$

where $M_1>0$ is a constant.

CASE II. Suppose that $\sigma(u_A) = \sigma(A) = 0$, u_A is transcendental, then also from

Theorem of $\cos(\pi\sigma)$ type, there exists a subset $H_1\subset(1,\infty)$ with infinite logarithmic, measure such that if $|z|=r\in H_1$, then

(3.12)
$$\min \{ \log |u_A(z)| : |z| = r \} / \log r \longrightarrow \infty \qquad (r \to \infty).$$

By (3.6)-(3.9), (3.12), and the fact that B, F are rational function, for $|z| = r \in H_1 - (E_1 U E_2 U [0.1])$, and z satisfying |u(z)| = M(r, u), $r \to \infty$, we have

$$(3.13) |z^2 \cdot f'(z)/f(z)| \leq O(r^{M_1})/\min |u_A(z)| \longrightarrow 0.$$

Therefore, for both cases above, by (3.11) or (3.13), for $r \in H_1(E_1 \cup E_2 \cup [0.1])$ (or $r \in H_1(E_1 \cup E_2 \cup [0, 1])$ and z satisfying |u(z)| = M(r, u), $r \to \infty$, we have

$$(3.14) |z^2 f'(z)/f(z)| \longrightarrow 0.$$

On the other hand, for $r \in H-(E_1 \cup E_2 \cup [0, 1])$ (or $r \in H_1-(E_1 \cup E_2 \cup [0, 1])$ and z satisfying |z|=r, |u(z)|=M(r, u), by (3.6) as $r \to \infty$, we have

$$(3.15) z^2 f'(z)/f(z) \sim z \cdot \nu(r).$$

(3.15) and (3.14) give $\nu(r) \rightarrow 0 \ (r \rightarrow \infty)$, this contradicts the fact that u is a transcendental entire function if and only if $\nu(r) \rightarrow \infty \ (r \rightarrow \infty)$. Therefore, we have $\sigma(f) = \infty$. From Lemma 4, we know that f satisfies (1.4).

Proof of Theorem 4. (a) If $B\equiv 0$, then arbitrary constant c is a solution of the corresponding homogeneous equation (2.6) of (1.3). Assume f_0 is a finite order meromorphic solution of (1.3), then $f_c=f_0+c$ are also solutions of (1.3). If $f_1(\equiv f_0)$ is second finite order meromorphic solution of (1.3), then f_1-f_0 is a constant solution of the corresponding homogeneous equation (2.6) of (1.3). From Lemma 3 and $\sigma(f_1-f_0)<\infty$, all finite order meromorphic solutions of (1.3) are of the form $f_c=f_0+c$.

If f is a meromorphic solution of (1.3) with $\sigma(f) = \infty$, then $\bar{\lambda}(f) = \lambda(f) = \sigma(f)$ = ∞ from Lemma 4.

- (b) If $B \not\equiv 0$, using the same reasoning as in Theorem 1 by Lemma 3, we know that (1.3) has at most one finite order meromorphic solution f_0 . If f is a meromorphic solution of (1.3) with $\sigma(f) = \infty$, then $\bar{\lambda}(f) = \lambda(f) = \sigma(f) = \infty$ from Lemma 4.
- (c) For the finite order meromorphic solution f_c of (1.3), using the same reasoning as in Theorem 1, and remarking $\sigma(A) \leq \sigma(F)$, we can obtain

(3.16)
$$\sigma(f_c) \leq \max{\{\bar{\lambda}(f_c), \ \sigma(F)\}}$$

If $\bar{\lambda}(f_c) < \sigma(f_c)$ and $\sigma(A) < \sigma(F)$, then $\sigma(f_c) \ge \sigma(F)$ from (1.3), combining (3.4), we have $\sigma(f_c) = \sigma(F)$.

(d) We can use the same proof as in Theorem 1(a).

§ 4. Examples for having finite order solutions

Example 1. The equation

$$f''-2zf'+(\sin z-2)f=\exp(z^2)\cdot\sin z$$

satisfies hypotheses of Theorem 1 or Theorem 2, it has a finite order solution $f = \exp(z^2)$.

Example 2. Suppose A is a transcendental meromorphic function satisfying the additional hypothesis of A in Theorem 4, then the equation

$$f'' + Af' + zf = (A+z+1)e^z$$

has finite order solution $f_0 = e^z$.

Acknowledgment. The author thank the referees for valuable suggestions that improved our paper.

REFERENCES

- [1] S. BANK AND I. LAINE, On the oscillation theory of f''+Af=0, where A is entine, Trars. Amer. Math. Soc., 273 (1982), 351-363.
- [2] P.D. BARRY, On a theorem of Besicoivitch, Quart. J. Math, Oxford (2), 14 (1963), 293-302.
- [3] P.D. BARRY, Some theorems related to the $cos(\pi \rho)$ theorem, Proc. London Math. Soc. (3), 21 (1970), 334-360.
- [4] ZONG-XUAN CHEN AND SHI-AN GAO, On the complex oscillation of non-homogeneous linear differential equations with meromorphic coefficients, Kodai Math. J., 15 (1992), 65-78.
- [5] G. Frank and S. Hellerstein, On the meromorphic solutions of non-homogeneous linear differential equations with polynomial coefficients, Proc. London Math. Soc. (3), 53 (1986), 407-428.
- [6] Shi-An Gao, On the complex oscillation of solution of non-homogeneous linear differential equations with polynomial coefficients, Comment. Math. Univ. St. Pauli, 38 (1989), 11-20.
- [7] G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2), 37 (1988), 88-104.
- [8] G. GUNDERSEN, Finite order solutions of second order linear differential equations, Trans. Amer. Math. Soc., 305 (1988), 415-429.
- [9] W. HAYMAN, Meromorphic Functions, Clarendon Press, Oxford, 1964.
- [10] W. HAYMAN, The local growth of power series: a survey of the Wiman-Valiron method, Canad. Math. Bull., 17 (1974), 317-358.
- [11] YU-ZAN HE AND XIU-ZHI XIAO, Algebroid Functions and Ordinary Differential Equations, Science Press, 1988 (in Chinese).
- [12] G. Valiron, Functions Analytiques, Presses Universitaires de France, Paris, 1954.

DEPARTMENT OF MATHEMATICS JIANGXI NORMAL UNIVERSITY NANCHANG P.R. CHINA