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SOME RESULTS ON RIGIDITY OF
HOLOMORPHIC MAPPINGS

By YosHIHISA KUuBOTA

1. In this paper we study rigidity properties of holomorphic mappings.
Let X and Y be complex normed spaces. Let D, be a balanced domain in X
and D, be a bounded convex balanced domain in Y. We consider holomorphic
mappings f from D, into D,., We prove two theorems. One of them is a
generalization of the Schwarz lemma, which gives an upper bound for p,(f(x)),
x€D,. Here pp, denotes the Minkowski functional of D,. We also discuss the
extremal mappings related to the Schwarz lemma. We deduce as a corollary
the following fact: if f: X—Y is a holomorphic mapping which satisfies | f(x)|
=|lx|| for all x&X, then f is linear. Another theorem gives a lower bound
for pp,(f(x)), x&€D,. Finally we are concerned with the limits of sequences of
automorphisms of bounded domains. It is known that if D is a bounded domain
in C* and if a mapping f: D—D is a pointwise limit of a sequence of auto-
morphisms of D, then f is also an automorphism of D. However, in the case
that D is a bounded domain in a complex normed space X the limit f:D—D
need not be an automorphism of D. We give a simple counterexample. Using
the above two theorems we show that the limit f is one-to-one.

2. We summarize the main notation and terminology used in this paper.
Let X be a complex normed space and let D be a domain in X. The Minkowski
functional pp of D is defined by

po(x)=inf{t>0:t"'x= D} (xeX).

We denote the open ball with center at ¢ and radius » in X by B(a, ). Then
we have that ppe.»(x)=r"*|x].

Let X and Y be complex normed spaces and let D be a domain in X. A
mapping f:D—Y is said to be holomorphic in D if, corresponding to every
as D, there exist a power series k:ﬁ‘,o P, and a positive number p such that f is
expressed by

f<x>=§o Pu(x—a) (x€B(a, p)).
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Here P, is a continuous k-homogeneous polynomial from X to Y, and the con-
vergence is uniform on B(a, 7) for every » with 0<r<p. We use the notation

d*f(a)=k'P,  (k=0,1,2, ),

and we call the power series

3 L dt f@a—a)

the Taylor series of f at a. We refer to [1], [2] and [6] for further details.

3. There are some generalizations of the Schwarz lemma in complex
normed spaces (see, for example, [2], [3], [4] and[5]). We also give a gener-
alization of the Schwarz lemma. We adapt Rudin’s proof [8, Theorem 8.1.2]
in which only the finite dimensional case is considered.

Let X and Y be complex normed spaces and let D, and D, be balanced
domains in X and Y, respectively. Suppose that D,#X. Then there exists a
point x&X with pp,(x)>0. For a holomorphic mapping f: D,—D, we define

df(0
A= 1nf{””’< n{((xi(x)) xeX, up, (x)>0}

and
(A f(0)(%)) .
A=su { - 4, (%)

Here df(0)=d'f(0) is the linear part of the Taylor series of f at the origin 0
of X.

: x€X, pio,(x)>0}.

THEOREM 1. Let X and Y be complex normed spaces. Suppose that

(i) D, is a balanced domain in X,

(ii) D, is a bounded convex balanced domain in Y,

(ili) f: D,—D, is a holomorphic mapping with f(0)=0.
Then

@ o (f()Spp(x) (D),

(b) #n,(df(O)(x))<ﬂul(x) (xeDy),

(¢c) if D,#X, then 0<1,<A,£1
The equality A,=1 holds if and only if the equality pps(f(x))=pp (x) holds for
all xeD,.

Proof. We first note that since D, is bounded, convex and balanced, up,
is a norm on Y and that since D, is balanced, the power series

o

251 d”f(O)(x)
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converges to f uniformly on every compact subset of D,. (See [1], Corollary
5.2).
Take a point x,&D; with pp (x0)>0. Put y=pp (x,)"'x,. Then ye&adD;.
Let ¢ be a continuous linear functional on ¥ of norm 1, i.e.,
lell=sup{le(x)| : €Y, up(x)=1}=1.
We define the function g by
g@=0e(fCy) (eC, |LID).

Then g is holomorphic and |g({)| <1 in A={{eC: |{|<1}, and g(0)=0. Now
applying the classical Schwarz lemma we have

lg@I=18l (C=a),
g’ <1.
Since g’(0)=¢(d f(0)(¥))=pp,(%s)'¢(d f(0)(xo)), these inequalities imply
[(f (x| = ptp,(%0),
| p(d fO)(x)| < prp,(%o).

The Hahn-Banach theorem assures the existence of continuous linear functionals
@ and ¢, on ¥ of norm 1 such that go(f(xe))=pep,(f(%0)) and ¢i(df(0)(x0))=
#p,(df(0)Xx,)). Hence we obtain the inequalites

#Dz(f(xo))§/lol(xo) ’
0y(d f(0)(x0)) < (%0) .

Suppose that x,&D; and pp (x,)=0. For every ¢>0 there is a positive number
t such that 0<t<e and ¢t 'x,&D,. Considering the function

gQ=¢(f(Ct'x0)) (€4,

we have
po(f(XN=t,  pp(df0)x )t .

Hence pp,( f(xo))=,uD2(¢? f(0)Xx,))=0. Thus (a) and (b) are proved.
Now the inequality

IA

0<i,<A,<1

is an immediate consequence of (b).

Suppose that 1;:1. Then ,upz(z?f(O)(x))ngl(x) for all x€X. Let x,&D,.
If pp,(x0)=0, then up,(f(x,))=0 as we have shown. If up (x,)>0, we consider
the function

gQ=e:(fC¥),  y=pp,(x0) %o
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Then
21(0)=p20,(%0) " pu(d f (O)(xa))=pr0,(%6) ™ pr0,(d f (O)(xo)) =1
and so g,({)={ for all {=A. Hence
10,(X0)=g1(to,(X))=1(f (X)) Z @1l 20, (f (%)) = prpy(f (%0)) .
Consequently we obtain that
o (f(x)=pp(x)  (x€Dy).

Conversely, suppose that pp,(f(x0))=pp,(x,) for some x,€D, with pp (o)
>0. We consider the function

D= y),  y=pp,(%0)"%,.

Since go(up,(%0))=pp (%), We have go{)=( for all {€Aand so gi0)=1. Hence
we obtain

120,(%0)=o(d F(0)(20)) = ppy(d £ (0)(x0)) .
Thus if pp,(f(x))=pp,(x) for all x&D,, then i,=1 and hence 1,=1.

Remarks. If pp,(f(%0))=pp,(%,) for some x,ED; with pp,(x0)>0, then A,=1.
However, 4,=1 does not imply that there exists a point x,&D; with pp (x,)>0
such that pp,(f(%o)=pp,(%,). Indeed, let X=Y =cy and D,=D,={x&cy: ||x]
<1}. Here ¢4 is the vector space of all sequences x=(x,, X5, +-+, X,, =) Of

complex numbers having only a finite number of non-vanishing terms, with
norm

%l =max|z,|.
The mapping f: X—Y defined by
1 2 n
f’ (xl’ xg} .") xn} ...)'__)<-Exl’ —é—x27 .." mxn} ”')

maps D, into D, and satisfies f(0)=0 and 4,=1. But up,(f(x)=|f(x)]#]x]
=pp (x) for every x€D, with pp, ()= x| >0.
Moreover, we consider the mapping g: X—Y defined by

g: (xl) 'x2) x37 tty xﬂy '“)’_—>(x%7 xly ny ) xn—l, '“)'
Then g maps D, into D, and §atisﬁes g(0)=0 and 4,=1. But g+dg(0). Thus
1,=1 does not imply that g=dg(0).

COROLLARY. Let X and Y be complex normed spaces. If f:X—-Y isa
holomorphic mapping which satisfies | f(x)||=l|x|| for all x&X, then [ is linear.

Proof. Let M be a positive number. By the assumptions it follows that f



250 YOSHIHISA KUBOTA
maps B(0, M) into B(0, M) and satisfies f(0)=0 and
eso. (f(E)=pro.m(x)  (x€B(0, M)).
Hence by Theorem 1 we have i,=1, and so
s, 0(dfOXX)=ps0. (%)  (x€X).
Therefore it follows that the equality
17 )=l fO)x)l

holds for all xX. Replacing x by {x we have

5 LR Om|=Idf0mI (X, e0).

Let ¢ be a continuous linear functional on Y. Then the function
[ 1 -
hQ=g( 3 57C* a4 £O)X))

is holomorphic and bounded in C. Hence the Liouville theorem says that A is
constant. Since the dual space Y* of Y separates points on ¥, it now follows
that

$ O Om=0  Ce0).

k=2

Therefore we conclude that f=df(0).

Next we prove a theorem which gives a lower bound for up,(f(x)), xD;.
In our proof the following fact plays an important role.

PROPOSITION. Let X be a complex normed space and D be a convex balanced
domain in X. Let kp denote the Kobayashi pseudodistance of D. Then

_ 1 14pp(x)
kp(0, x)= 5 log 1= (%)
and
(xeD: bn0, )<al=rD, r=°oi
X « RplY, ap = y —ega_l_l .

(See [2], Theorem 1V.1.8),

THEOREM 2. Let X and Y be complex normed spaces. Suppose that
(i) D, is a balanced domain in X,
(ii) D, is a bounded convex balanced domain in Y,
(iii) f:Dy—D; is a holomorphic mapping with f(0)=0.
Then
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(x)(zf —p (%))

l—jf,ubl(x) (xeD,).

oy f(x))= 21

Proof. Take a point x,&D, with tp,(x0)>0. Put y=pp (x,)"'x, and define
the mapping g from A into D, by

g@=rCy) (4.
Since D, is balanced, the Taylor series of f at 0
© 1
; T 7* F(0)(x)
converges to f uniformly on every compact subset of D,. Hence we have

and hence we can write

g@=¢r@ (e4b),

where i is a holomorphic mapping from A into Y with the Taylor series
= 1
=2 k—C’” 1d* F(0)(y)

at 0. Let 0<t<l. By Proposition and the definition of kp, we have that if
Ch(Q)+0, then

kg0, tRE)<kny (0, Ch(C)="n,(8(0), 8EN= ‘°gi+:§:

and so

tCh©< LD, .
Since D, is balanced, this implies that
th(®)eD, <A, £+0).

By Theorem 1, h(0)=df(0)v)eD, and so th(0)&D,. Thus th is also a holo-
morphic mapping from A into D,. Therefore by Proposition and the definition
of kp, we have the following two inequalities :

L+tpp,(d f(0X9))
1—tto,(d f(0X¥))

z—;—l gl+t2,

ko, (0, th(0)="kp,(0, td f(O)X¥))= % log

and
1+(Z)
1—-1gl-

kp,(th(0), th(C))é log
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Moreover, by the triangle inequality we have
kp,(0, th(Q))= kp,(0, th(0))— kp,(th(0), th({)).

Combining these inequalities we obtain

(131 1C))
A=tz A+ IZD)"

Now this inequality and Proposition show that

1p,(t8(EN=18] po,th()= ] P(k,(0, th(L)))

(L2, X0- 12Dy _ 12104~ 12D
(A—tipA+ 12D/~ 1—e1el

where @(s)=(e**—1)/(e**+1). Letting t—1 and putting {=pp,(x,) we obtain the
desired inequality

a0, th(©)=  log

=1£10(5 log

ﬂDl(xo)(zf — tp,(%0))
20,(f(x0))= —ﬂwfﬂul(?‘o) .

4. Finally we study the limits of sequences of automorphisms of bounded
domains. If D is a bounded domain in C" and if f:D—D is a pointwise limit
of a sequence {F,} of automorphisms of D, then f is also an automorphism of
D. This follows from the fact that {F,} has a subsequence {F,,} which con-
verges to f uniformly on every compact subset of D. (See [7], pp. 78-82).
However, in the case that D is a bounded domain in a complex normed space
X the limit f:D—D of a sequence of automorphisms of D need not be an
automorphism of D. In this section using Theorems 1 and 2 we prove that f
is one-to-one.

Let X be a complex normed space and D be a domain in X. The auto-
morphisms of D are the biholomorphic mappings from D onto D. We denote
by Aut (D) the group of all automorphisms of D. We begin with a simple
example.

Example. Let X=c, and D={x&X:|x||<1l}. Define the mappings F;,
n=1, 2, ---, and f by

Fn:(xly Xeo, X3yt y Xny Xny1, "')'—)<xny xl) KXoyt y Xn-1, Xns1, )
and
f:(xly X3, Xgy 0ty Xy '“)"—>(O; X1, Xoy 0y Xn-yy '“)'
Then D is a bounded domain in X and F,€Aut(D), n=1, 2, ---. Moreover,

f(x)=lim F,(x) (x€D).
However, f¢ Aut (D).
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We next prove two lemmas. For a holomorphic mapping f:D—X we
define

ldf(a)x)

Zf(a)zinf{ T 1xeX, x;&O} (aeD),

and

As(a)=sup {W cxeX, xth} (aeD).

Here we note that if f maps B(0, r,) into B(0, r,), then
Ty T g
A:(0)= ;. As, A,(0) . Ay

LEMMA 1. Let D be a bounded domain in X. Let FEAut(D) and a<D.
If M, r and p are positive numbers such that DCB(0, M), B(a, r)CD and
B(F(a), p)CD, then
2M
S A(@=Ar@)< ==,
_ Proof. Since F'eF=F-F'=id, we have dF(F(a)):dF(a)=dF(a)-
dF~'(F(a))=id. Hence it follows that dF(a)eAut (X) and Ar(a)Ap-1(F(a))=1.
Put G(x)=F(x+4a)—F(a). Then G maps B(0, ) into B(0, 2M) and G(0)
=0. Hence, by Theorem 1, we obtain

2M -~ 2M
AF(G):AG(0)=TAG§T-

On the other hand, since F~' maps B(F(a), p) into B(0, M), we have

IS S
Ar(a)= A, (F(a)) = oM

LEMMA 2. Let D be a bounded domain in X. Let FEAut(D), acD and
Ax(a)=4,>0. Let M and r be positive numbers such that B(a, r)cDcCB(0, M).
If 0<t<(r®4,/AM), then

Ao
F(B(a, )2 B(F(a), 7t).
Proof. Put G(x)=F(x+a)—F(a). Then G maps B(0, ) into B(0, 2M) and
G(0)=0. Hence applying Theorem 2 to G we have

2M || x]|(r*25(0) —2M || x|})
Icl=z— M= 20 x|

(xeB(, 7).

Since A¢(0)=2r(a)=21,, we have

2M | x—al|(r*A —2M || x—al|)
rt 2M— 2| x—a]

[F(x)—F(a)|= (x€B(a, 7).
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Hence using the inequality A, <Ar(a)< Ap(a)<(2M/r), we obtain that if [[x—al
<(r*2,/4M), then

4M?22,
8M?2—r222
Since FeAut (D), this inequality shows that if 0<t<(r*4,/4M), then

IF(x)—F(a)| = ]]x——a]lz%"nx—an.

F(B(a, t)):)B(F(a), fzit)

Now we can prove the following theorem.

THEOREM 3. Let D be a bounded domain in X. Suppose that f:D—D is
a pointwise limit of a sequence {F,} of automorphisms of D. Then f is one-to-
one in D.

Proof. Assume that there exist two distinct points a, and a, in D such
that f(a;)=f(a,)=>b. Since b€ D, there is a positive number p with B(b, 2p)
cD. Hence we can choose a positive integer n, such that if n>n,, then
B(Fyn(a,), p)cD, i=1, 2. Take positive numbers M, r, and 7, such that B(0, M)
DD, B(a,, r\)CD and B(a,, rs)cD. Then, by Lemma 1, we have, if n>n,,
then

ir,(a (=1, 2),

VZ3
and hence, by Lemma 2, if n>n, and 0<t<(r?p/8M?*), then

Fu(B(a,, 1)DB(Fala G=1, 2).

> o)

On the other hand, we can choose a positive number ¢ and a positive integer
n satisfying conditions :

2 2
(i) 0<i< min{sr]t/;’z, g&—"z} and B(a,, )N\ B(ay, 1)=0,

(i) n>n, and B(Fa(a), o i NB(Fu(as), 4Mt);é0
These facts contradict that F,eAut (D). Therefore it follows that f is one-to-

one in D.
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